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ABSTRACT  
 Background:  Cardiovascular disease outcomes have been associated with exposure to 
ambient particulate matter (PM) air pollution in many epidemiological studies. Experimental studies 
have revealed potential mechanisms behind the epidemiological results and many of these studies 
have revealed changes in the expression of important genes in key biological pathways with exposure 
to air pollution from fossil fuel combustion.  Few epidemiological studies have examined this.  We 
hypothesized that blood cell gene expression levels along biological pathways relevant to 
cardiovascular outcomes would be associated with traffic-related air pollutant exposures in elderly 
subjects with coronary artery disease. 
 Methods: Available data were collected in a cohort panel study funded by the National 
Institutes of Health, National Institute of Environmental Health Sciences.  Gene expression data were 
available for 43 subjects with up to 12 weekly repeated measures conducted in three of the four 
retirement communities in the Los Angeles Air basin where the exposure measurement work took 
place.  Whole blood samples were collected weekly, RNA was isolated and then it was reversed 
transcribed into complementary DNA for subsequent gene expression analysis using the polymerase 
chain reaction method.  Candidate genes (35) were selected a priori based on biological function and 
reported pollutant exposure effects.  Exposure measurements were conducted in the indoor and 
outdoor environment of each community and included daily size-fractionated PM mass and PM 
organic chemical composition, including polycyclic aromatic hydrocarbons (PAH).  We also measured 
hourly criteria pollutant gases, total particle number concentration, PM2.5 organic carbon (OC), and 
PM2.5 markers of primary combustion products, namely elemental carbon (EC), and black carbon 
(BC).  The present ARB-funded study provided accumulation mode PM data for: 1) chemical 
composition; 2) in vitro generation of reactive oxygen species (ROS) by alveolar (lung) macrophages 
that were exposed to extracts of the weekly PM samples; and 3) source apportionment work, 
including estimations of photochemically-related secondary organic aerosols.  Within-subject relations 
between air pollutant exposures and normalized gene expression levels were analyzed using mixed-
effects regression models adjusted for weather, community and study season. 
 Results: Source apportionment results in the four retirement communities showed that 
although people spend most of their time indoors, this does not shield them from outdoor pollutants 
since a sizeable portion of indoor PM2.5 particles originate from outdoor mobile sources.  Expression 
levels of 30 genes from the 43 subjects were suitable for analysis and provided around 360 samples.  
Results of regression models showed that traffic-related air pollutants were associated with the 
expression of 7 genes in important pathways including Nrf2-mediated oxidative stress response, 
xenobiotic response, inflammation, and platelet activation. Although many relationships were not 
statistically significant, associations were consistent with respect to their magnitude and direction 
(positive). PAH and/or ROS from quasi-ultrafine PM (<0.25 micrometers) generally showed stronger 
associations with gene expression than did accumulation mode PM (0.25-2.5 micrometers).  In 
secondary analyses we found some evidence of effect modification of these and other associations by 
polymorphisms in selected candidate genes, including NFE2L2, SELP, and SOD2. Secondary air 
pollutant exposures were not associated with gene expression.  Other air pollutants (metals, total OC 
and CO) were not associated with the expression of genes. Source-apportioned biomass smoke was 
positively associated with expression of the hemoxenase-1 gene and was positively, but not 
significantly, associated with expression of seven others.  None of the air pollutant exposures were 
associated with expression of 15 genes linked to most of the biological pathways studied.  
 Conclusions:  Results revealed numerous positive associations with gene expression among 
genes that are part of the Nrf2-mediated oxidative stress response, xenobiotic response, 
inflammation, and platelet activation pathways.  This supports our hypothesis that traffic-related air 
pollutant exposures affect the expression of genes in pathways that are relevant to adverse 
cardiovascular effects.  Our findings are relevant to ambient air quality standards, which do not 
include ultrafine PM or the general class of organic components from fossil fuel combustion sources 
that have been associated with gene expression outcomes in this study as well as with cardiovascular 
outcomes in other analyses involving the same cohort.     
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EXECUTIVE SUMMARY 
Background:  Cardiovascular disease outcomes have been associated with exposure to ambient 
particulate matter (PM) air pollution in many studies.  However, there is a lack of knowledge about the 
health effects of various particle size fractions in ambient PM or their sources and components. A 
better understanding of mechanisms is also needed.  To partly address this, in vitro experiments of 
the effects of air pollutants on cell cultures have shown gene expression changes in cells linked to 
cardiovascular disease progression, including endothelial cells, epithelial cells, monocytes and 
macrophages. Results of these and other experimental studies of potential mechanistic pathways 
through which air pollutants may cause adverse cardiovascular outcomes need to be tested in human 
populations at risk. We used repeated measures to evaluate gene expression changes in a well-
characterized urban cohort panel to provide coherence with the toxicology literature.  Few published 
studies in human subjects have examined associations of gene expression with exposure to air 
pollution from fossil fuel combustion or similar sources, and none have been panel studies to our 
knowledge.  For the present analysis of our cohort panel we hypothesized that gene expression levels 
along biopathways relevant to cardiovascular outcomes would be associated with traffic-related air 
pollutant exposures.   

Methods:  We followed elderly subjects with coronary artery disease with up to 12 weekly repeated 
measures to evaluate acute cardiorespiratory health effects of exposure to PM with a focus on 
ultrafine particles.  Included in the analysis of gene expression were 43 subjects living in three of four 
retirement communities in the Los Angeles Air basin that were in the parent study, the Cardiovascular 
Health and Air Pollution Study funded by the National Institutes of Health, National Institute of 
Environmental Health Sciences.  Whole blood samples were collected weekly using a standardized 
collection method for stabilizing the RNA profile immediately after blood withdrawal. Total RNA was 
isolated and then reversed transcribed into first-strand cDNA for subsequent gene expression 
analysis using the polymerase chain reaction method. Gene expression normalization factors for each 
sample were generated from three stable reference genes. Thirty-five candidate genes were selected 
a priori based on biological function and reported pollutant exposure effects. Exposure measurements 
were conducted in the indoor and outdoor environment of each community and included daily size-
fractionated PM mass for quasi-ultrafine particles, <0.25 µm in diameter (PM0.25), accumulation mode 
particles, 0.25-2.5 µm in diameter (PM0.25-2.5), and coarse mode particles, 2.5-10 µm in diameter 
(PM2.5-10). PM organic chemical composition was measured for PM0.25 and PM0.25-2.5 for 5-day 
composites of the PM filters, including polycyclic aromatic hydrocarbons (PAH). We also measured 
hourly criteria pollutant gases, total particle number concentration, and PM2.5 elemental carbon (EC), 
organic carbon (OC) and black carbon (BC).  Primary OC and secondary OC were estimated using 
the EC tracer method.  The present ARB-funded study provided accumulation mode PM data for: 1) 
chemical composition; 2) in vitro generation of reactive oxygen species (ROS) by alveolar (lung) 
macrophages that were exposed to extracts of the weekly composites of PM0.25 and PM0.25-2.5 filter 
samples; and 3) source apportionment work, including estimations of photochemically-related 
secondary organic aerosols (SOA).  Within-subject relations between exposures and normalized gene 
expression levels were analyzed using mixed-effects regression models adjusted for weather, 
community and study period (warm or cool season). 

Results:  Source apportionment results in the four retirement communities demonstrated that mobile 
sources were the dominant contributor to both indoor and outdoor PM2.5 at all sites.  Indoor SOA 
formation, possibly resulting from the reaction of household products’ emissions with ozone, was also 
evident at some of the sites.   
 In the analysis of gene expression, expression levels of five genes were too low for 
quantification.  The remaining expression data for 30 genes from 43 subjects yielded 360 person-
observations per gene on average. Results of the linear mixed-effects models showed that daily 
traffic-related air pollutants were associated with the expression of genes in several key a priori-
selected pathways including Nrf2-mediated oxidative stress response, xenobiotic response, 
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inflammation, and platelet activation. Although many of the 95% CIs for the fold change estimates 
included 1.0, associations were consistent with respect to their magnitude and direction (positive) 
across each of the genes within the pathways.  In particular, we found positive associations of primary 
pollutants (PAH, EC, BC, primary OC, and NOX) with the Nrf2 gene (NFE2L2) as well as the Nrf2-
mediated or linked genes (HMOX1, NQO1, and SOD2). Traffic-related air pollutants were also 
positively associated with increased expression of IL1B (inflammation), SELP (platelet activation), and 
CYP1B1 (phase I enzyme, xenobiotic metabolism) whose transcription is not directly Nrf2-mediated.  
PM0.25 in vitro ROS was positively associated with expression of NFE2L2, NQO1 and CYP1B1 
whereas PM0.25-2.5 ROS was only associated with CYP1B1.  Overall, there were generally stronger 
associations for PM0.25 PAH and/or ROS than for PM0.25-2.5 PAH and ROS. PM from biomass burning 
was significantly associated with HMOX1, and was positively, but not significantly, associated with 
expression of seven others (ATF4, ATF6, GCLM, IL1B, KLF2, MPO and XBP1).   Secondary air 
pollutant exposures were not associated with gene expression, including size-fractionated particle 
components (SOA and organic acids), PM2.5 SOC, and O3.  Other air pollutants measured (metals, 
total OC and CO) were not associated with the expression of genes.  We also found no trends of 
association of any pollutants with down regulation of genes. None of the air pollutant exposures were 
associated with expression of the following 15 genes: AHR, CCL2, CXCL1, DUSP1, F3, GCLC, GPX-
1, GSTP1, HSPA8, IL6, IL6R, IL8, PTGS2, TNF, TNFRS1B.  
 We found some evidence of effect modification of gene expression associations by 
polymorphisms in selected candidate genes, including NFE2L2, SELP, and SOD2. The effects were 
complex and suggested that multiple gene-gene interactions may be involved, including many genes 
we did not assess.   

Conclusions:  Results revealed numerous positive associations with gene expression among genes 
that are part of the Nrf2-mediated oxidative stress response pathway.  This supports our hypothesis 
that traffic-related air pollutant exposures would be associated with the expression of genes in 
pathways that are relevant to adverse cardiovascular effects. Our novel findings for the Nrf2 gene 
itself are in agreement with the existing experimental literature that describes the Nrf2 protein as a 
master regulator of antioxidant response.  The Nrf2 transcription factor regulates phase II and other 
antioxidant genes by binding to antioxidant response elements (ARE) of their promoter regions. The 
positive associations of NFE2L2 expression with PAHs that we found are consistent with what would 
be expected based upon experimental data.  We also found increases in gene expression of 
downstream genes in both Nrf2-ARE and AHR-XRE pathways consistent with recent experimental 
evidence suggesting crosstalk between the xenobiotic and antioxidant response pathways.   
 Other key findings are the positive associations of IL1B and SELP with traffic-related air 
pollutant exposure. IL-1β contributes to atherosclerosis progression by mediating vascular injury 
responses.  In the present panel we previously found positive associations between air pollution 
exposure and the circulating protein marker of platelet activation that is encoded by SELP (soluble 
platelet selectin).  This finding is of clinical importance in that higher air pollution exposures may 
increase the potential for an acute thrombotic event. 
 The present hypothesis-driven analysis produced informative epidemiological results that 
support the experimental data (in vivo and in vitro toxicological studies).  The involvement of the Nrf2 
pathway in the associations we observed between gene expression and air pollution exposure 
supports the view that oxidative stress is a potential mode of action by which exposure to traffic-
related air pollutants increases the risk of adverse cardiovascular responses we have previously 
observed in the CHAPS cohort panel.  
 Our findings are relevant to potential future regulations. Ambient air quality standards, do not 
include ultrafine PM or the general class of organic components from fossil fuel combustion sources 
that have been associated with gene expression outcomes in this study as well as with cardiovascular 
outcomes in other analyses involving the same cohort, although many of the regulation of the Air 
Resources Board are designed to reduce traffic pollution. This is important because we found that 
mobile sources were the dominant contributor to both indoor and outdoor PM2.5 at all community sites.  
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BODY OF REPORT 
 

1. CHAPTER ONE: INTRODUCTION  

1.1 Background 

Gene Expression:  
Cardiovascular disease outcomes have been associated with exposure to air pollution in 

many studies, both epidemiological and toxicological (Brook et al. 2010). In particular, increases 
in blood pressure, myocardial infarction, atherosclerotic progression, and other outcomes have 
been associated with traffic-related air pollution (Brook et al. 2010). The modes of action for 
these effects are still under investigation but are believed to include vascular dysfunction, 
thrombosis, coagulation, increases in oxidative stress and inflammation, and autonomic 
dysregulation (Brook et al. 2010). In previous studies, using the same elderly coronary artery 
disease (CAD) cohort panel examined in the current research, we showed a positive association 
between circulating inflammatory biomarker levels and exposure to traffic-related air pollutants 
(Delfino et al. 2009, 2010a). However, cellular mechanisms behind these findings are not 
completely understood.  For the present analysis of our cohort panel we hypothesized that gene 
expression levels along biopathways relevant to the above outcomes would be associated with 
traffic-related air pollutant exposures.  Figure 1.1 illustrates how gene expression responses are 
involved in selected known or suspected biopathways of air pollutant exposure-response 
relations. 

In vitro experiments of the effects of air pollutants have shown gene expression changes 
in cells linked to cardiovascular disease progression, including endothelial cells, epithelial cells, 
monocytes and macrophages. Gong et al. (2007) found human endothelial cells exposed to 
diesel exhaust particles demonstrated increased expression levels of genes linked to vascular 
inflammation (IL8, CXCL1, and DUSP1), antioxidant genes (SOD1, HMOX1 and NQO1), and 
unfolded protein response (UPR) genes (HSPA8, XBP1, ATF4, and ATF6).  The unfolded 
protein response is also referred to as endoplasmic reticulum (ER) stress.  Gargalovic et al. 
(2006) studied human endothelial cells in vitro and identified UPR genes as mediators of 
vascular inflammation and atherosclerosis, supporting the potential that UPR genes may be 
important in air pollution effects on cardiovascular outcomes.  Huang et al. 2011 found that 
genes from the Nrf2-mediated oxidative stress response pathway were upregulated in airway 
epithelial cells after exposure to particulate matter (PM) from ambient outdoor air pollution. 
Oxidative stress is an important factor in the progression of cardiovascular disease, including 
atherosclerotic plaques (Lee et al. 2012).  Oxidative stress has been shown to be increased with 
particulate air pollution exposure in several studies reviewed by Delfino et al. (2011).  Therefore, 
it is likely that Nrf2-mediated oxidative stress response genes are important in adverse 
cardiovascular responses in humans exposed to elevated levels of air pollution.  

Wu et al. (2011) showed decreased expression of Kruppel-like factor 2 (Klf2) with PM 
exposure in inflammation-prone Sirt1 knock-out mice (Wu et al. 2012).  Klf2 is a key 
transcription factor for proper coagulation and thrombotic function and down-regulates pro-
inflammatory genes (Das et al. 2006; Lin et al. 2005).  Klf2 expression levels are reduced in 
circulating monocytes from patients with CAD compared with age-matched controls (Das et al. 
2006). Therefore, it is possible that in our cohort panel of subjects with CAD, cardiovascular 
responses to air pollution exposure may be mediated by KLF2 expression changes. 

 



11 

 

Figure 1.1  Known or Suspected Oxidative Stress Response Pathways.  Many effects of air 
pollutant exposures may occur through the generation of  reactive oxygen and nitrogen 
species (ROS/RNS) from organic chemicals acting either directly or through activation of 
bronchial epithelial cells, macrophages, neutrophils, and endothelial cells.  Relevant 
pollutant components are emitted from fossil fuel combustion and include polycyclic 
aromatic hydrocarbons (PAH), quinones, and transition metals (e.g. Fe).  These 
components have pro-oxidant properties and can induce oxidative stress through the 
production of free radicals and subsequent activation of redox-sensitive signaling 
pathways (e.g., Nrf2, ARE, and NF-κB).  Activation of these pathways may underlie 
findings that indicate exposures to fine particles trigger inflammatory and cytotoxic 
responses in the human lung as well as systemic inflammation and thrombosis. This is 
most likely when oxidant defenses are inadequate.  Systemic oxidative stress and 
inflammation may occur as a result of effects of air pollutants deposited on the airways 
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(indirect pathway) or from the direct systemic distribution of pollutant chemicals following 
pulmonary deposition (direct pathway). Adapted from: Delfino RJ, Staimer N, Vaziri ND. 
Air pollution and circulating biomarkers of oxidative stress. Air Qual Atmos Health, 
2011;4:37-52. 

 

We used repeated measures to evaluate gene expression changes in a well-
characterized urban cohort panel to provide coherence with studies of potential mechanistic 
pathways through which air pollutants may cause adverse cardiovascular outcomes.  To our 
knowledge, there have been only five published studies in human subjects examining 
associations of gene expression with exposure to air pollution from fossil fuel combustion or 
similar sources, but none have been panel studies (Peretz  et al. 2007; van Leeuwen  et al. 
2006, 2008; Wang  et al. 2005; Wu et al. 2011) (see McHale et al. 2010 for review of human 
genome-wide studies of other inhaled exposures). All have been exploratory microarray studies.  
Two small studies with limited results evaluated changes in peripheral-blood mRNA levels in 
occupational settings, one with metal fumes exposure in welders (Wang et al. 2005) and 
another in coke oven workers exposed to polycyclic aromatic hydrocarbons (Wu et al. 2011).  
Two small studies with limited or no ambient air pollution exposure data evaluated cross-
sectional differences in mRNA levels (van Leeuwen et al. 2006, 2008).   Peretz et al. (2007) 
conducted an experimental human clinical chamber study and found gene expression changes 
using microarray analysis of peripheral blood mononuclear cells in only 5 healthy subjects. They 
showed that 1290 probe sets were > 1.5-fold up- or down-regulated at p < .05 following 6h and 
22h after exposure to 200 μg/m3 diesel exhaust compared to clean air.  Genes included those 
involved in inflammation and oxidative stress, as well as vascular homeostasis. 

 

Air Pollutant Particle Characteristics:   

 A lack of knowledge about the health effects of various particle size fractions in ambient 
PM or their sources and components has limited the ability of regulatory agencies to established 
protective exposure limits (NRC 2004; U.S. EPA 2009).  In this regard, there are two important 
classes of organic aerosols for which little are known regarding differences in their health effects 
in human populations, namely:  

1) Primary organic aerosols (POA) from combustion sources, which are primarily traffic-related 
in the Los Angeles air basin; 

2) Secondary organic aerosols (SOA), which are photochemically-produced from combustion-
related, industrial, and biogenic volatile or semi-volatile precursors.   

 These particle types have different spatial and temporal variability and are thus 
minimally or not correlated (Delfino et al. 2008, 2009).  The organic component mix and size 
distribution in ambient PM differs as well between these classes of particulate organic matter, 
with POA being the predominant mass fraction in ultrafine particles and SOA generally 
predominant in accumulation mode particles.  In addition, POA components are more 
hydrophobic, and SOA components are more hydrophilic.  These characteristics will likely 
determine their toxicity, their ability to enter the circulation, and pathophysiological mechanisms 
of effect.  However, to our knowledge, data on the direct relevance of this in human populations 
is limited to our previous research (Delfino et al. 2008, 2009, 2010a, 2010b).  Furthermore, 
there is little data in humans on whether increased exposure to urban air pollution is associated 
with changes in mRNA expression reflecting biological processes linked to oxidative stress and 
inflammation.  
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 For our panel study, the Cardiovascular Health and Air Pollution Study (CHAPS), we 
previously reported that associations with biomarkers of inflammation in the blood were stronger 
with mass concentrations of quasi-ultrafine particles <0.25 µm (PM0.25) compared with larger 
particles that make up most of the accumulation mode of PM2.5 (PM0.25-2.5) (Delfino et al. 2008, 
2009).  We then reassessed these biomarker associations with indoor and outdoor home PM0.25 
mass using the new particle organic composition data from PM0.25 filter extracts (Arhami et al. 
2009a; Delfino et al. 2010a, 2010b).  We found indoor and outdoor PAH in PM0.25, followed by 
hopanes (a tracer of vehicular emissions), were most strongly positively associated with 
inflammatory biomarkers as compared with little to no associations for SOA tracers (organic 
acids, water soluble organic carbon) or transition metals (Delfino et al. 2010a, 2010b).  Using 
source apportionment data from chemical mass balance models (Arhami et al. 2009a), we 
found that only vehicular emission sources and hopanes were strongly correlated with PAH (R = 
0.71).  To further elucidate our earlier findings, we present herein new particle composition data 
from archived frozen accumulation mode filter samples, and then an analysis of repeated 
measures using available gene expression data from CHAPS.  PM composition and source 
tracers were used to detect differences in associations between POA and SOA, as well as 
between particle size fractions carrying these organic aerosol types.  

 

1.2. Design of the Parent Project, and Scope and Purpose of the Present Project  

 Briefly, in the parent study (CHAPS) we followed subjects longitudinally with repeated 
measures of health outcomes and exposures across 12 weeks in each subject to evaluate acute 
cardiorespiratory health effects of exposure to PM with a focus on ultrafine particles.  Recruited 
subjects were elderly individuals with a diagnosis of CAD to ensure that clinically relevant 
changes in cardiovascular outcomes would occur during the study.  CHAPS is a cohort panel 
study, which is a design that is well suited to the study of acute-on-chronic patterns of change in 
physiologic factors important to cardiovascular diseases.  The main analytic focus is on within-
subject exposure-response relationships, with each subject serving as his/her own control over 
time modeled by the use of a random effect term for each subject.  The design is statistically 
efficient because: 1) multiple exposure conditions and time frames are studied in each subject, 
and 2) response variability due to between-subject characteristics is reduced by repeated 
measurements without reductions in the magnitude of exposure-response relationships, thereby 
enhancing power and precision (Weiss and Ware 1996). 

Study subjects were nonsmokers and lived in retirement communities prohibiting indoor 
tobacco smoke at shared locations and in buildings with common ventilation systems.  We 
completed follow-up in four targeted communities in the LA air basin.  Three were in the San 
Gabriel Valley and one in Riverside County.  These communities are located in inland urban 
areas of the basin considered to be down-wind smog receptor sites with aged PM, but also 
affected by local traffic with freshly emitted PM.  Our research as well as others has shown that 
size-fractionated PM concentrations and components vary across the sites because of traffic 
density and transport, and between our two seasonal study periods described below (Fine et al. 
2004a, 2004b; Kim et al. 2002; Polidori et al. 2007; Zhu et al. 2002a, 2002b, 2004).   

Over a seven month period, subjects were followed in two 6-week blocks with blood draws 
at the end of each week for circulating biomarkers of inflammation, platelet activation, and 
antioxidant activity (Figure 1.2).  Two 6-week periods of follow-up in each subject were 
separated by around a two-month rest period.  In each community, we collected 6 weeks of data 
during a warmer period of higher photochemical activity (Phase 1: Jul to early Oct), and 6 weeks 
of data during a cooler period of higher air stagnation (Phase 2: late Oct through Feb).  This was 
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intended to enhance contrasts in PM composition (including POA and SOA), particle number, 
and size distribution in each community (Sioutas et al. 2005).  In 2005-2006, two retirement 
communities were followed in four alternating six-week phases.  Again in 2006-2007, another 
two retirement communities were followed in four alternating six-week phases.   

 

Figure 1.2. Panel Study Flow Chart. 

Subjects completed a baseline questionnaire with items from our previous work, the 
Multiethnic Study of Atherosclerosis, and the Atherosclerosis Risk in Communities study.  This 
data was used to assess demographic characteristics, lifestyle and environmental risk factors, 
personal and family history of cardiovascular and pulmonary conditions, other comorbidities, 
and home environment.  Subject-specific characteristics that are time invariant over the daily 
periods of interest such as socioeconomic status or race-ethnicity are controlled for by the 
repeated measures (within-subject) design.  A clinical work-up was done once only at baseline 
and included an intake history and physical by study cardiologists, 12-lead ECG, pulmonary 
function tests, blood tests including CBC, fasting lipid profile and fasting glucose.  Confirmation 
of CAD diagnosis was made with a medical records review (e.g. positive stress test, MI history).  
In Chapter 4, we describe the complete exposure measurements from funded work in CHAPS 
that are available to enhance the present measurements of additional accumulation mode 
exposures.  

Population and Recruitment    

Inclusion criteria included age ≥ 65, history of CAD, which could include a history of 
myocardial infarction and bypass surgery but not within the preceding 12 months.  Subjects also 
had to be sufficiently ambulatory to perform sit-to-stand transfers over short distances.   

Exclusion criteria included the following: employment outside of the monitored home; 
exposure to environmental tobacco smoke at home (all communities had to prohibit smoking in 
common areas as well); active smoking within the preceding 12 months; psychiatric disorders; 
dementia; Parkinson’s or other debilitating neuromuscular diseases; alcohol or drug abuse; 
dialysis treatment; daily oral corticosteroids; or medical conditions that would place the subject 
or staff at risk from the blood donations. 

We recruited four retirement communities with an average of 365 residents (range 182 to 
575).  We recruited 102 subjects who underwent baseline clinical evaluations on site at the UC 
Irvine Mobile Medicine unit.  Twenty-one were not eligible and 21 dropped out prior to or after 
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the start of the panel study, or had too few biomarker observations (< 5 of 12 weeks), in part 
due to exclusions for frequent infections.  This left 60 subjects for the analysis of circulating 
protein biomarker data for use in supplemental studies of gene variants, (Figure 1.2).   

Enrolled subjects in CHAPS were investigated in this study of gene expression (Task 3, 
described below).  Subject samples for the gene expression assay came from a subset of 43 
subjects living in three of the four parent-study retirement communities. These three were in the 
San Gabriel Valley region of the Los Angeles Air Basin (Figure 1.2).  This was necessary given 
the available funds from NIH NIEHS who funded the gene expression assay work 
(R21ES016420).  The three communities located in the San Gabriel Valley were selected rather 
than the semi-rural Riverside community since these were closest to the Los Angeles metro 
area, and thus more likely to experience higher exposures to traffic-related air pollutants.  
Exposure measurements at all four communities was intensive and included daily PM mass 
(ultrafine, accumulation and coarse modes), PM chemical composition, and hourly 
measurements of indoor and outdoor home pollutant gases, EC, OC, BC, and total particle 
number concentration. Tasks 1 and 2 (described below) were to utilize PM filter samples and 
data from all four communities.   

The informative nature of this panel study prior to the present analysis is evidenced in our 
previous papers (Bartell, et al. 2013; Delfino et al. 2008, 2009, 2010a, 2010b, 2010c, 2011).  
Their overall findings combined with the current literature (Brook et al. 2010; Link and Dockery 
2010; Mills et al. 2009) support the following hypothesized pathways to cardiovascular health 
effects (Figure 1.3):  Redox-active and other components in particles from fossil fuel combustion 
affect airway and cardiovascular target sites leading to oxidative stress, as well as systemic 
inflammation and thrombosis that were measured as both protein expression (Delfino et al. 
2008, 2009, 2010a, 2010b) and gene expression (present study). Other gene expression 
changes we measured include endoplasmic reticulum (ER) stress and changes in phase I and II 
enzymes.  ER stress is also called the unfolded protein response (UPR) functions to restore 
cells to normal function where cells have accumulated unfolded or misfolded proteins in the ER. 
This is done by stopping the translation of protein as well as activating the production of 
chaperones that carry out the folding of protein. If unsuccessful, the ER stress response then 
moves the cell towards apoptosis. 

Resultant clinical effects that were previously measured in this cohort include the adverse 
cardiovascular responses of increased blood pressure (Delfino et al. 2010c), cardiac ischemia 
(Delfino et al. 2011), and occurrence of ventricular arrhythmias (Bartel et al., 2013), all of which 
enhance the risk of myocardial infarction.   
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Figure 1.3. Hypothesized pathways from PM exposure to adverse cardiovascular health 

effects (in red) for evaluation in the present study. Adapted from: Delfino RJ, 
Staimer N, Tjoa T, Gillen D, Polidori A, Arhami M, Kleinman MT, Vaziri N, 
Longhurst J, Sioutas C. Air pollution exposures and circulating biomarkers of effect 
in a susceptible population: clues to potential causal component mixtures and 
mechanisms. Environ Health Perspect, 2009;117:1232–1238. 

 

1.3. Tasks 
This study expands upon and further elucidates our earlier findings in CHAPS showing 
associations between traffic-related air pollutants and systemic inflammation, platelet activation, 
increased ambulatory blood pressure, and ischemic ST-segment depression and ventricular 
arrhythmias from ambulatory electrocardiographs.  We produced new particle composition data 
from archived frozen accumulation mode filter samples from CHAPS, and then conducted an 
repeated measures analysis using available gene expression data from CHAPS.  We first 
measured organic components in indoor and outdoor accumulation modes and performed a 
source apportionment.  We then investigated effects of POA and SOA on peripheral blood gene 
(mRNA) expression reflecting biological processes linked to oxidative stress and inflammation.  
Composition and source tracers were used to detect differences between POA and SOA in 
associations with gene expression.  We also compared associations for different particle size 
fractions carrying these organic aerosol types as well as with transition metals in those PM 
fractions.    
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      We expected that gene expression measurements from whole blood would enhance 
understanding of the biological basis for exposure-related impacts on systemic mediators of 
oxidative stress, inflammation and thrombosis that likely play a role in air pollutant-mediated 
acute cardiovascular events. Primary Research Questions of this study include the following:  
 Are expression levels of key genes more strongly associated with markers of primary 

(combustion-related) organic aerosols than with secondary (photochemically-related) 
organic aerosols?   

 Are there differences in associations of gene expression with POA, SOA, and particle 
components such as PAH and transition metals across different particle size fractions? 

 What are the sources of key particle component classes and size fractions in both indoor 
and outdoor environments of study subjects? 

The following tasks were completed to address the above research questions: 

Task 1. To conduct a chemical speciation of organic components in indoor and outdoor 
accumulation mode filters (47 weeks) collected at retirement communities of 60 study 
subjects in CHAPS. (Dr. James J. Schauer)  

Task 2. To use the accumulation mode composition data from Task 1 and existing metals data 
to conduct exposure analysis and source apportionment using chemical mass balance 
models.  (Dr. Constantinos Sioutas, USC). This was combined with existing metals 
data to extend the indoor-outdoor exposure analysis and source apportionment work 
already completed using the quasi-ultrafine PM (PM0.25) data in a chemical mass 
balance (CMB) model. 

Task 3. To conduct an epidemiologic analysis of the relations between gene expression and 
exposure to particle mass, components, and source tracers of PM0.25 and PM0.25-2.5 
from Tasks 1 and 2 as well as to PM mass and metal content in PM2.5-10 (Dr. Ralph 
Delfino and colleagues, UCI).  Gene expression data for 35 genes selected a priori 
were available from NIH, NIEHS-funded work.  This includes genes involved in 
oxidative stress, antioxidant defense, xenobiotic metabolism, inflammation, 
coagulation, and endoplasmic reticulum stress.  

  

The following chapters reports on the methods, results and conclusions of each of these three 
tasks (Chapters 2-4)  as well as a supplemental analyses to evaluate gene expression models 
for the modifying effects of potentially important genetic variants of selected genes (Chapter 5). 
Chapter 5 will also include supplemental analyses of genetic polymorphisms to evaluate effect 
modification of relations between air pollution exposures and protein expression (e.g., soluble 
platelet selectin) that utilized exposure and outcome data from all four communities. This will be 
followed by an overall summary and conclusions (Chapter 6), and recommendations (Chapter 
7). 
 
 
 
 
 
 
 
 
 
 



18 

References: 
 

Bartell S, Tjoa T, Longhurst J, Sioutas C, Delfino RJ. Particulate air pollution, ambulatory heart 
rate variability and cardiac arrhythmia in retirement community residents with coronary 
artery disease. Environ Health Perspect in press 3-2013.  

Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. 2010. 
Particulate matter air pollution and cardiovascular disease: An update to the scientific 
statement from the American Heart Association. Circulation 2010;121(21):2331-78. 

Das H, Kumar A, Lin Z, et al. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation 
of monocytes. Proc Natl Acad Sci U S A 2006;103(17):6653-8. 

Delfino RJ, Gillen DL, Tjoa T, Staimer N, Polidori A, Arhami M, Sioutas C, Longhurst J. 
Electrocardiographic ST segment depression and exposure to traffic-related aerosols in 
elderly subjects with coronary artery disease. Environ Health Perspect 2011;119:196–202. 
PMID: 20965803. 

Delfino RJ, Sioutas C, Malik S, Potential role of ultrafine particles in associations between 
airborne particle mass and cardiovascular health. Environ Health Perspect, 2005; 113:934-
46. 

Delfino RJ, Staimer N, Tjoa T, Arhami M, Polidori A, Gillen D, Kleinman MT, Schauer J, Sioutas 
C. Association of biomarkers of systemic effects with organic components and source 
tracers in quasi-ultrafine particles. Environ Health Perspect, 2010a;118:756-762. 

Delfino RJ, Staimer N, Tjoa T, Arhami M, Polidori A, Gillen DL, George SC, Shafer MM, 
Schauer J, Sioutas C. Associations of primary and secondary organic aerosols with airway 
and systemic inflammation in an elderly panel cohort. Epidemiology 2010b;21:892-902. 
PMID: 20811287 

Delfino RJ, Staimer N, Tjoa T, Gillen D, Polidori A, Arhami M, Kleinman MT, Vaziri N, Longhurst 
J, Sioutas C. Air pollution exposures and circulating biomarkers of effect in a susceptible 
population: clues to potential causal component mixtures and mechanisms. Environ Health 
Perspect, 2009;117:1232–1238. PMID: 19672402 

Delfino RJ, Staimer N, Tjoa T, Polidori A, Arhami M, Gillen D, Kleinman MT, Vaziri N, Zaldivar 
F, Longhurst J, Sioutas C. Circulating biomarkers of inflammation, antioxidant activity, and 
platelet activation are associated with urban air pollution in elderly subjects with a history of 
coronary artery disease. Env Health Perspect, 2008; 116:898–906. PMID: 18629312. 

Delfino RJ, Staimer N, Vaziri ND. Air pollution and circulating biomarkers of oxidative stress. Air 
Quality, Atmosphere & Health 2011;4(1):37-52. 

Delfino RJ, Tjoa T, Gillen D, Staimer N, Polidori A, Arhami M, Jamner L, Sioutas C, Longhurst J. 
Traffic-related air pollution and blood pressure in elderly subjects with coronary artery 
disease. Epidemiology, 2010c;21:396-404. PMID: 20335815. 

Fine PM, Si S, Geller MG, Sioutas C.  Inferring the sources of fine and ultrafine PM at downwind 
receptor areas in the Los Angeles Basin using multiple continuous monitors.  Aerosol 
Science and Technology, 2004a; 38:182-195.  

Fine PM, Chakrabarti B, Krudysz M, Schauer JJ, Sioutas C. 2004b. Seasonal, spatial, and 
diurnal variations of individual organic compound constituents of ultrafine and accumulation 
mode PM in the Los Angeles Basin.   Environmental Science and Technology, 38:1296-
304. 



19 

Gargalovic PS, Gharavi NM, Clark MJ, et al. The unfolded protein response is an important 
regulator of inflammatory genes in endothelial cells. Arterioscler Thromb Vasc Biol 
2006;26(11):2490-6. 

Gong KW, Zhao W, Li N, et al. Air-pollutant chemicals and oxidized lipids exhibit genome-wide 
synergistic effects on endothelial cells. Genome biology 2007;8(7):R149. 

Huang YC, Karoly ED, Dailey LA, et al. Comparison of gene expression profiles induced by 
coarse, fine, and ultrafine particulate matter. Journal of toxicology and environmental health 
Part A 2011;74(5):296-312. 

Kim S, Shi S, Zhu Y, Hinds WC, Sioutas C. 2002. Size distribution, diurnal and seasonal tends 
of ultrafine particles in source and receptor sites of the Los Angeles Basin.  J Air Waste 
Manage Assoc 52:174-185. 

Lee R, Margaritis M, Channon KM, et al. Evaluating oxidative stress in human cardiovascular 
disease: methodological aspects and considerations. Curr Med Chem 2012;19(16):2504-
20. 

Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, Gimbrone MA Jr, 
Balasubramanian V, García-Cardeña G, Jain MK. Kruppel-like factor 2 (KLF2) regulates 
endothelial thrombotic function. Circ Res. 2005;96:e48-57. 

Link MS, Dockery DW.  2010. Air pollution and the triggering of cardiac arrhythmias.  Curr Opin 
Cardiol 25:16–22. 

McHale CM, Zhang L, Hubbard AE, et al. Toxicogenomic profiling of chemically exposed 
humans in risk assessment. Mutat Res 2010;705(3):172-83. 

Mills NL, Donaldson K, Hadoke PW, Boon NA, MacNee W, Cassee FR, Sandström T, Blomberg 
A, Newby DE. Adverse cardiovascular effects of air pollution. Nat Clin Pract Cardiovasc 
Med. 2009;6:36-44. 

National Research Council, Committee on Research Priorities for Airborne Particulate Matter. 
Research Priorities for Airborne Particulate Matter: IV. Continuing Research Progress. 
National Academies Press, 2004.  

Peretz A, Peck EC, Bammler TK, et al. Diesel exhaust inhalation and assessment of peripheral 
blood mononuclear cell gene transcription effects: an exploratory study of healthy human 
volunteers. Inhal Toxicol 2007;19(14):1107-19. 

Polidori A, Arhami M, Delfino RJ, Allen R, Sioutas C. 2007. Indoor-outdoor relationships, trends 
and carbonaceous content of fine particulate matter in retirement communities of the Los 
Angeles basin.  J Air Waste Manage Assoc 57:366-379. 

Sioutas C, Delfino RJ, Singh M. 2005. Exposure assessment for atmospheric ultrafine particles 
(UFP) and implications in epidemiological research. Environ Health Perspect, 113:947-55. 

U.S. EPA. Integrated Science Assessment for Particulate Matter (Final Report). U.S. 
Environmental Protection Agency, Washington, DC, EPA/600/R-08/139F, 2009. Available 
at: http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=216546 

van Leeuwen DM, Pedersen M, Hendriksen PJ, et al. Genomic analysis suggests higher 
susceptibility of children to air pollution. Carcinogenesis 2008;29(5):977-83. 

van Leeuwen DM, van Herwijnen MH, Pedersen M, et al. Genome-wide differential gene 
expression in children exposed to air pollution in the Czech Republic. Mutat Res 
2006;600(1-2):12-22. 



20 

Wang Z, Neuburg D, Li C, et al. Global gene expression profiling in whole-blood samples from 
individuals exposed to metal fumes. Environ Health Perspect 2005;113(2):233-41. 

Weiss ST, Ware JH. Overview of issues in the longitudinal analysis of respiratory data. Am J 
Respir Crit Care Med 1996; 154:S208-S211. 

Wu MT, Lee TC, Wu IC, et al. Whole genome expression in peripheral-blood samples of 
workers professionally exposed to polycyclic aromatic hydrocarbons. Chem Res Toxicol 
2011;24(10):1636-43. 

Wu Z, Liu MC, Liang M, et al. Sirt1 protects against thrombomodulin down-regulation and lung 
coagulation after particulate matter exposure. Blood 2012;119(10):2422-9. 

Zhu Y, Hinds WC, Kim S, Sioutas C. 2002a. Concentration and size distribution of utrafine 
particles near a major highway. J Air Waste Manage Assoc 52:1032-42. 

Zhu Y, Hinds WC, Kim S, Shen S, Sioutas C.  2002b. Study on ultrafine particles and other 
vehicular pollutants near a busy highway. Atmos Environ 36:4375-4383.  

Zhu Y, Hinds, WC, Kim S, Shen S, Sioutas C. 2004. Seasonal trends of concentration and size 
distributions of ultrafine particles near major freeways in Los Angeles. Aerosol Science and 
Technology, 38(Suppl 1):5-13. 

 
 



21 

 
2. CHAPTER TWO: TASK 1 

Task 1. To conduct a chemical speciation of organic components in indoor and outdoor 
accumulation mode filters (47 weeks) collected at retirement communities of 60 
study subjects in CHAPS. (Dr. James J. Schauer) 

 

2.0 Overview of sampling method and chemical analyses 
   24-h size segregated PM samples were collected prior to the project by USC 
investigators using the Personal Cascade Impactor Sampler (PCIS, SKC Inc., Eighty Four, 
Pennsylvania, USA). Coarse, accumulation, and quasi-ultrafine particle (UFP) mode PM were 
collected on Zefluor filters (3 μm pore-size, Pall Life Sciences, Ann Arbor MI); however, the 
present Task 1 focused on the accumulation PM fraction.  The PM mass concentrations had 
been already determined gravimetrically by weighing filters in a controlled temperature and 
relative humidity room using a microbalance (Mettler-Toledo, Columbus, OH; weight uncertainty 
± 2 μg).  

 For the present study, PM filter substrates from the PCIS were composited weekly for 
chemical analyses (including 5 daily collected samples, from Monday to Friday).   Chemical 
speciation of quasi-UFP had already been reported prior to the study in a number of 
publications resulting from our previous ARB- and NIH-funded CHAPS study (Polidori et al 
2007; Arhami et al 2009; 2010).   

 Similar to the quasi-UFP samples that had already been speciated, composites were 
sectioned for chemical analysis.  The remaining 1/4 sections of the Accumulation Mode particles 
were analyzed as part of the present study for more than 80 different organic compounds using 
Gas Chromatography/Mass Spectrometry (GC/MS).  A previous section of the composited filters 
had already been digested with concentrated acid using microwave digestion and then analyzed 
by high resolution Inductively Coupled Plasma Mass Spectrometer (HR-ICPMS, Finnigan 
Element 2) to determine transition metals (Herner  et al., 2006).  Another section had already 
been analyzed for water soluble organic carbon (WSOC).  

 

2.1  Organic speciation analysis 
 Due to the limited mass on the remaining portion of the filters, a high volume injection 
version of the standard organic speciation method for primary and secondary organic 
compounds was employed for the accumulation mode POA and SOA tracers, which were 
mathematically added to the existing ultrafine particle organics data that was completed as part 
of the earlier project.  The organic analysis employed the methods used in earlier studies by 
Prof. Schauer’s research group at the University of Wisconsin-Madison (Schauer et al., 1996; 
Lewandowski et al. 2008; Stone et. al., 2009).  More than 80 organic compounds were 
quantified including the key source tracers shown in Table 2.1.  The methods of analysis to 
quantify individual organic compounds in the collected aerosol samples were based on earlier 
established solvent extraction methods (Sheesley et al. 2004), and was modified to increase 
analytical sensitivity by increasing the sample injection volume for the GCMS analysis to 30 µl 
from the standard 3 µl using a Agilent Programmable Temperature Vaporization (PVT) inlet 
(Agilent G2888A).  Procedures for sample extraction and molecular quantification for the 
organic tracers have been described in detail by Phuleria et al. (2006) and only a brief summary 
is presented here.  The impactor samples were spiked with known amounts of isotope labeled 
internal standard compounds, including three deuterated PAH, three deuterated alkanoic acids, 
four deuterated alkanes, deuterated cholestane, deuterated cholesterol, and C13 labeled 
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levoglucosan.  Samples were extracted in dichloromethane and methanol, combined, and 
reduced in volume to 100 μL by rotary evaporation followed by pure nitrogen evaporation.  The 
final target volume was determined based on the amount of organic carbon mass in each 
sample (Phuleria et al. 2006).  The extracts were derivatized using diazomethane to convert 
organic acids to their methyl esters and run on the GCMS.  An aliquot of the sample extract was 
then silylated and run on the GC-PCI-MS to measure levoglucosan and other polar organic 
compounds (Lewandowski et al. 2008; Stone et. al., 2009).  

 The methylated and silylated samples were analyzed by auto-injection into a GC/MSD 
system (GC model 5890, MSD model 5973, Agilent).  A 30 m × 0.25 mm DB-5MS capillary 
column (Agilent) is used with a splitless injection.  Along with the samples, six dilutions of 
authentic quantification standard solutions were also injected and used to determine calibration 
curves for the compounds of interest.  While some compounds are quantified based on the 
response of a matching compound in the standard mixtures, others for which matching 
standards were not available were quantified using the response factors of compounds with 
similar structures and retention times.   

 Field blanks, laboratory blanks, spiked samples, and small aliquots of standard 
reference material (NIST Urban Dust SRM 1649a) were analyzed along with the composite 
PM0.25-2.5 samples used for organic tracer compound analysis by GC/MS.  Table 2.1 summarizes 
the recovery of spikes for the spiked samples.  Analytical errors for these methods were 
calculated by compound using spike recovery and the standard deviation of blank filter analysis.  
All measurements were blank corrected using the average of the blanks. Point-wise estimates 
of uncertainties for each measurement, which were based on analytical uncertainties and 
uncertainties associated with blank correction, were used to determine if each measurement 
were statistically different from zero.  Although duplicate samples were not available to evaluate 
method precision based on our experimental protocol of the study, the precision of the spike 
and standard reference material analyses were used to estimate method precision.  Table 2.1 
also show which compounds were used in the chemical mass balance (CMB) model (Task 2, 
Chapter 3). Table 2.2 shows mean concentrations for the various organic compounds.  

 

2.2  In vitro measurement of PM-related ROS production in alveolar macrophages 
 We measured the potential biological production of ROS using an in vitro system of rat 
alveolar macrophage cells (NR8383, American Type Culture Collection) that were exposed to  
aqueous extracts of PM filters.  Details of the method can be found in Landerman et al. (2008) 
including the assay validation study.  The rationale for using murine cell line NR8383 is outlined 
in Landreman et al. (2008). Briefly, well-characterized human alveolar macrophage cell lines are 
not available. Hence, we selected NR8383 because it exhibits all the functional characteristics 
of normal primary human alveolar macrophages. These cells are highly responsive to microbial, 
particulate, and soluble stimuli with phagocytosis and killing.  NR8383 cells produce an 
oxidative burst and secrete relevant cytokines (e.g. IL-1, IL-6, TNF-α, β). Importantly, NR8383 
cells express a functional mannose receptor, which is a phagocytic and endocytic receptor 
critical for immune response and host defense.  This cell line has been used in studies of the 
health impacts of environmental particles; it has proven robust and consistent in its cellular 
responses, allowing for accurate comparisons between studies and environmental samples. 

 Cells were exposed to aqueous extracts of PM filters for either PM0.25 (previously 
performed under separate funding) or PM0.25-2.5 particles (funded under the present ARB study) 
as previously described (Hu et al. 2008, Verma et al. 2009).  We present laboratory results of 
the PM0.25-2.5 assay here and data from both size fractions are used in the epidemiologic 
analysis in Task 3.  Extracts were collected from composited PM0.25 and PM0.25-2.5 samples using 
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purified water. Dissolved, colloidal, and small insoluble species were collected after filtration 
with a 0.22 µm pore size filter. A dilution series of salt- and glucose- buffered filtrate in medium 
was prepared for cell exposures. The NR8383 cells were exposed in triplicate to PM0.25 or 
PM0.25-2.5 extracts and 2’7’-dicholorohidroflourescin diacetate (DCFH-DA) in 96-well plates, and 
incubated at 37°C for 2.5 hours. After incubation, a Cytoflour II automated fluorescence plate 
reader was used to read fluorescence intensity; increased fluorescence (from the oxidized 
product, DCF) represented increased ROS production and therefore increased oxidative 
generating capacity of extracts. Un-opsonized Zymosan (a β-1,3-polysachharide of D-glucose) 
was used as the positive control because, by binding to TLR-2 receptors on macrophage cells, it 
causes a strong respiratory burst and reproducibly increases ROS production. Results are filter 
blank (negative control) subtracted and reported in units µg Zymosan equivalents/m3 air (µg 
Zymosan/µg PM in extract multiplied by 5-day average PM µg/m3 air). 

 The mean ROS activity of 6 filter blanks and 24 method blanks was not significantly 
greater than zero (mean filter blank activity was <1% of average PM sample activity).  Positive 
controls were consistent within repetitions (±20%). Overall assay precision (based on intra- and 
inter-batch results) averaged 11% (without Zymosan normalization) and 7.2% with Zymosan 
normalization. We assessed cell viability by (a) running a dilution series of each extract, and (b) 
measuring lactate dehydrogenase release. Cell damage/toxicity, revealed as non-linearity in 
dose-response curves and/or increased lactate dehydrogenase release, was not detected.  
Descriptive statistics of the ROS data are presented later in Chapter 4 (Tables 4.3 and 4.4). 

 

 

Table 2.1 Organic Compounds Quantified and Selected QA/QC Results.  

Compound Compound Class Used In CMB Model Spike Recovery (n=10) 

Fluoranthene Low MW PAH  115 ± 7 

Acephenanthrylene Low MW PAH  105 ± 6 

Pyrene Low MW PAH  NQ 

Benzo(ghi)fluoranthene Low MW PAH  126 ± 9 

Benz(a)anthracene Low MW PAH  102 ± 6 

Chrysene Low MW PAH    120 ± 11 

1-Methylchrysene Low MW PAH  NQ 

Benzo(b)fluoranthene Medium MW PAH X    127 ± 10 

Benzo(k)fluoranthene Medium MW PAH X  125 ± 4 

Benzo(j)flouranthene Medium MW PAH  NQ 

Benzo(e)pyrene Medium MW PAH X NQ 
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Table 2.1 (cont.) 

Compound Compound Class Used In CMB Model Spike Recovery (n=10) 

Benzo(a)pyrene Medium MW PAH  NQ 

Indeno(1,2,3-cd)pyrene) High MW PAH     89 ± 20 

Benzo(ghi)perylene High MW PAH    106 ± 13 

Dibenz(ah)anthracene High MW PAH  NQ 

Picene High MW PAH  NQ 

Coronene High MW PAH    103 ± 11 

17α(H)-22,29,30-Trisnorhopane Hopanes X   111 ± 14 

17β(H)-21α(H)-30-Norhopane Hopanes    115 ± 14 

17α(H)-21β(H)-Hopane Hopanes    120 ± 14 

22S-Homohopane Hopanes X 105 ± 8 

22R-Homohopane Hopanes X NQ 

22S-Bishomohopane Hopanes  NQ 

22R-Bishomohopane Hopanes  NQ 

22S-Trishomohopane Hopanes  NQ 

22R-Trishomohopane Hopanes  NQ 

n-Decanoic acid Organic Acids  NQ 

n-Dodecanoic acid Organic Acids  NQ 

n-Tetradecanoic acid Organic Acids  NQ 

n-Pentadecanoic acid Organic Acids  NQ 

n-Hexadecanoic acid Organic Acids  NQ 

n-Heptadecanoic acid Organic Acids  NQ 

n-Octadecanoic acid Organic Acids  NQ 

Palmtoleic acid Organic Acids  115 ± 16 

Oleic acid Organic Acids     95 ± 13 

Phthalic acid Organic Acids  NQ 

n-Tetracosane n-Alkanes  109 ± 7 

n-Pentacosane n-Alkanes    94 ± 7 

n-Hexacosane n-Alkanes    89 ± 7 
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Table 2.1 (cont.) 

Compound Compound Class Used In CMB Model Spike Recovery (n=10) 

n-Heptacosane n-Alkanes    86 ± 7 

n-Octacosane n-Alkanes  106 ± 9 

n-Nonacosane n-Alkanes X 109 ± 6 

n-Triacontane n-Alkanes  118 ± 9 

n-Hentriacontane n-Alkanes X 107 ± 5 

n-Dotriacontane n-Alkanes  118 ± 9 

n-Tritriacontane n-Alkanes X NQ 

n-Tetratriacontane n-Alkanes  NQ 

n-Pentatriacontane n-Alkanes  NQ 

n-Hexatriacontane n-Alkanes  NQ 

n-Heptatriacontane n-Alkanes  NQ 

n-Octatriacontane n-Alkanes  NQ 

n-Nonatriacontane n-Alkanes  NQ 

n-Tetracontane n-Alkanes  NQ 

αββ-20R-C27-Cholestane Steranes  105 ± 8 

αββ-20S-C27-Cholestane Steranes  103 ± 9 

ααα-20S-C27-Cholestane  Steranes  NQ 

αββ-20R-C28-Ergostane Steranes  105 ± 7 

αββ-20S-C28-Ergostane  Steranes  NQ 

αββ-20R-C29-Sitostane Steranes  106 ± 6 

αββ -20S-C29-Sitostane  Steranes  NQ 

Levoglucosan Levoglucosan X NQ 

Abbreviations: CMB, chemical mass balance; MW: molecular weight; NQ, not quantified 
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Table 2.2. Average Indoor and Outdoor Accumulation Mode Organic Compound 

Concentrations by Season.  
Concentration (ng/m3) Indoor 

Phase 1 
Indoor 
Phase 2 

Outdoor 
Phase 1 

Outdoor 
Phase 2 

Fluoranthene 0.032 0.033 0.032 0.033 
Acephenanthrylene 0.032 0.033 0.032 0.033 
Pyrene 0.024 0.024 0.024 0.025 
Benzo(ghi)fluoranthene 0.008 0.009 0.008 0.008 
Cyclopenta(cd)pyrene 0.032 0.033 0.032 0.033 
Benz(a)anthracene 0.032 0.033 0.032 0.033 
Chrysene 0.016 0.025 0.017 0.038 
1-Methylchrysene 0.008 0.011 0.008 0.009 
Retene 0.024 0.026 0.024 0.025 
Benzo(b)fluoranthene 0.032 0.051 0.032 0.077 
Benzo(k)fluoranthene 0.008 0.017 0.008 0.029 
Benzo(j)fluoranthene 0.008 0.008 0.008 0.008 
Benzo(e)pyrene 0.024 0.034 0.024 0.045 
Benzo(a)pyrene 0.016 0.017 0.016 0.016 
Indeno(1,2,3-cd)pyrene 0.018 0.046 0.025 0.056 
Perylene 0.016 0.016 0.016 0.016 
Benzo(ghi)perylene  0.029 0.057 0.038 0.066 
Dibenz(ah)anthracene 0.032 0.037 0.032 0.033 
Picene 0.024 0.027 0.024 0.025 
Coronene 0.024 0.026 0.024 0.026 
Dibenzo(ae)pyrene 0.024 0.032 0.024 0.024 
17A(H)-22,29,30-
Trisnorhopane 

0.017 0.021 0.025 0.032 

17B(H)-21A(H)-30-Norhopane 0.032 0.044 0.054 0.066 
17A(H)-21B(H)-Hopane 0.041 0.061 0.075 0.086 
22S-Homohopane  0.050 0.063 0.082 0.087 
22R-Homohopane 0.051 0.056 0.078 0.080 
22S-Bishomohopane 0.012 0.016 0.032 0.026 
22R-Bishomohopane 0.012 0.014 0.027 0.021 
22S-Trishomohopane 0.008 0.008 0.012 0.008 
22R-Trishomohopane 0.008 0.008 0.011 0.008 
ABB-20R-C27-Cholestane 0.020 0.027 0.023 0.028 
ABB-20S-C27-Cholestane 0.023 0.032 0.029 0.033 
AAA-20S-C27-Cholestane 0.017 0.022 0.021 0.024 
ABB-20R-C28-Ergostane 0.010 0.012 0.012 0.011 
ABB-20S-C28-Ergostane 0.010 0.012 0.012 0.011 
ABB-20R-C29-Sitostane 0.020 0.028 0.029 0.033 
ABB-20S-C29-Sitostane 0.016 0.021 0.024 0.024 
Norpristane 0.049 0.049 0.048 0.049 
Heptadecane 0.040 0.041 0.040 0.041 
Pristane 0.032 0.033 0.032 0.033 
Octadecane 0.032 0.033 0.032 0.033 
Phytane 0.024 0.024 0.024 0.024 
Nonadecane 0.042 0.024 0.024 0.024 
Eicosane 0.197 0.008 0.042 0.008 
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Table 2.2 (cont.) 
Concentration (ng/m3) Indoor 

Phase 1 
Indoor 
Phase 2 

Outdoor 
Phase 1 

Outdoor 
Phase 2 

Heneicosane 0.11 0.14 0.08 0.10 
Docosane 0.26 0.21 0.06 0.27 
Tricosane 0.89 0.96 0.67 1.48 
Tetracosane 1.03 1.12 0.77 2.04 
Pentacosane 0.50 0.54 0.47 1.67 
Hexacosane 0.93 0.89 0.87 2.03 
Heptacosane 0.58 0.56 0.46 1.47 
Octacosane 0.80 0.81 0.62 1.53 
Nonacosane 0.80 0.85 0.77 1.45 
Triacontane 0.99 0.89 0.79 1.39 
Hentriacontane 0.83 0.79 0.69 1.13 
Dotriacontane 1.03 0.85 0.80 1.20 
Tritriacontane 0.68 0.60 0.58 0.81 
Tetratriacontane 0.90 0.77 0.72 1.07 
Pentatriacontane 0.35 0.36 0.28 0.42 
Hexatriacontane 0.56 0.46 0.41 0.55 
Heptatriacontane 0.24 0.24 0.23 0.26 
Octatriacontane 0.40 0.34 0.30 0.43 
Nonatriacontane 0.29 0.29 0.28 0.29 
Tetracontane 0.47 0.45 0.36 0.50 
Decylcyclohexane 0.04 0.04 0.04 0.04 
Pentadecylcyclohexane 0.02 0.02 0.02 0.02 
Hexadecylcyclohexane 0.04 0.04 0.04 0.04 
Heptadecylcyclohexane 0.04 0.04 0.04 0.04 
Octadecylcyclohexane 0.04 0.04 0.04 0.04 
Nonadecylcyclohexane 0.01 0.01 0.01 0.02 
Squalane 0.04 0.04 0.04 0.04 
Decanoic acid  0.85 0.30 0.54 0.32 
Dodecanoic acid  0.83 0.75 0.62 0.82 
Tetradecanoic acid  1.19 1.35 1.48 0.98 
Pentadecanoic acid* 0.49 0.38 0.56 0.27 
Hexadecanoic acid  4.00 8.54 7.40 11.47 
Heptadecanoic acid* 0.39 0.42 0.46 0.48 
Octadecanoic acid  4.06 6.04 6.04 6.91 
Nonadecanoic acid* 0.17 0.13 0.16 0.33 
Pinonic acid  1.01 0.38 0.53 0.83 
Palmitoleic acid  0.28 0.21 0.37 0.31 
Oleic acid  1.56 1.54 0.65 2.16 
Linoleic acid  0.68 0.82 0.32 2.20 
Linolenic acid  0.24 0.24 0.24 0.31 
Eicosanoic acid  0.91 0.98 0.89 1.14 
Heneicosanoic acid 0.24 0.25 0.27 0.33 
Docosanoic acid  0.34 0.39 0.47 0.63 
Tricosanoic acid 0.23 0.26 0.27 0.33 
Tetracosanoic acid  0.59 0.73 0.97 0.88 
Pentacosanoic acid 0.17 0.18 0.19 0.19 
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Table 2.2 (cont.) 
Concentration (ng/m3) Indoor 

Phase 1 
Indoor 
Phase 2 

Outdoor 
Phase 1 

Outdoor 
Phase 2 

Hexacosanoic acid 0.21 0.27 0.36 0.40 
Heptacosanoic acid 0.16 0.16 0.19 0.18 
Octacosanoic acid  0.45 0.58 0.66 0.70 
Nonacosanoic acid 0.21 0.19 0.27 0.29 
Triacontanoic acid  0.38 0.52 0.64 0.65 
Dehydroabietic acid  0.53 2.10 0.59 2.93 
7-oxodehydroabietic acid 0.21 0.33 0.23 0.40 
Phthalic acid  25.71 13.83 22.90 18.51 
Isophthalic acid  1.05 1.22 1.93 1.83 
Terephthalic acid  3.98 5.91 4.58 5.89 
1,2,4-Benzenetricarboxylic 
acid  

1.88 1.81 2.96 2.79 

1,2,3-Benzenetricarboxylic 
acid  

0.30 0.30 0.29 0.31 

1,3,5-Benzenetricarboxylic 
acid  

0.16 0.16 0.16 0.16 

1,2,4,5-
Benzenetetracarboxylic aci  

0.23 0.23 0.22 0.22 

Methylphthalic acid  5.21 4.96 7.63 7.04 
Levoglucosan 12.50 14.19 10.01 19.03 
Glutaric acid  0.16 0.16 0.16 0.16 
Adipic acid  0.16 0.44 0.23 0.22 
Pimelic acid  0.25 0.16 0.39 0.16 
Suberic acid  1.04 0.89 0.84 0.65 
Azelaic acid  3.20 3.24 3.53 4.00 
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3. CHAPTER THREE: TASK 2 
 

Task 2: To use the accumulation mode composition data from Task 1 and existing metals 
data to conduct exposure analysis and source apportionment using chemical 
mass balance models (Dr. Constantinos Sioutas).  This was combined with existing 
metals data to extend the indoor-outdoor exposure analysis and source 
apportionment work already completed using the quasi-ultrafine PM (PM0.25) data in a 
chemical mass balance (CMB) model. 

 

3.0 Introduction 
 This task focused on source apportionment of fine PM (PM2.5, particles with an 

aerodynamic diameter smaller than 2.5 μm) in indoor and outdoor environments of four 
retirement communities in the Los Angeles Basin, which constitute the study sites of CHAPS.  

 
The main objectives of this task were: 

a) To determine the degree to which outdoor fine mode PM infiltrates indoors (following a 
similar process to that used for PM0.25 in our previously published work, described by 
Arhami et al. (2010).  

b) To identify major sources of PM2.5 at the indoor and outdoor environments throughout 
the two study years. 

c) To quantify source contributions to PM2.5 mass concentration at the indoor and outdoor 
environments.  
 
The results described in this task were used by the CHAPS investigators to evaluate 

associations between indoor and outdoor PM sources and health outcomes. 
 

3.1  Materials and Methods 

3.1.1 Sampling sites and schedule  
 

At each of the four retirement community sites that were monitored sequentially for 12 
weeks each across a two-year period, 24-hour size-segregated PM samples were collected 
daily from Monday to Friday by means of Sioutas Personal Cascade Impactor Sampler (PCIS, 
SKC Inc., Eighty Four, Pennsylvania, USA). Coarse, accumulation, and quasi-UF mode PM 
were sampled on Zefluor filters (3 µm pore-size, Pall Life Sciences, Ann Arbor, Michigan, USA). 
However, the present study focuses only on fine PM (PM2.5), where data for accumulation 
(PM0.25-2.5) and quasi-ultrafine (PM0.25) PM modes were combined to derive data for PM2.5. PM 
mass concentrations were determined gravimetrically by weighing filters using a microbalance 
(Mettler-Toledo, Columbus, Ohio, USA; weight uncertainty ±2 µg) following equilibration under 
controlled temperature and relative humidity conditions (22–24ºC and 40–50%, respectively).  

Filters were composited weekly (including five daily collected samples – from Monday to 
Friday) for chemical analyses, which are described in Chapter 2 (Task 1) of this report. Briefly, 
samples were analyzed for water-soluble organic carbon (WSOC), total metals, organic tracer 
compounds and reactive oxygen species (ROS). A description of ROS data is presented in 
Chapter 2 (Task 1) of this report. The WSOC content of the samples was evaluated using a 
Sievers 900 Total Organic Carbon Analyzer (Zhang et al., 2008). The total elemental mass of 
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the samples was measured using a high resolution magnetic sector Inductively Coupled Plasma 
Mass Spectrometry (Thermo-Finnigan Element 2) (Herner et al. 2006). For this analysis filter 
substrates were digested in a mixture of 1 mL of 16 M nitric acid, 0.25 mL of 12 M hydrochloric 
acid, and 0.10 mL of hydrofluoric acid, which is typically referred to the “microwave-aided Teflon 
bomb digestion”. Finally, organic speciation was conducted using gas chromatography mass 
spectrometry (GC-6980, quadrupole MS-5973, Agilent Technologies). Details of this method 
can be found in Stone et al. (2008). All measurements were blank corrected using the average 
and standard deviation of the blanks. Finally, hourly PM2.5 elemental and organic carbon (EC 
and OC, respectively) levels in the PM2.5 fraction have already been measured using two semi-
continuous OC-EC analyzers (Model 3F, Sunset Laboratory Inc), one located indoors and one 
outdoors at the four retirement community sites or groups (G1, G2, G3 and G4).  G1 and G3 
were in the east San Gabriel Valley, G2 in the west San Gabriel Valley, and G4 in Riverside CA.  

 

3.1.2  Source apportionment 
 

Source apportionment of fine PM (PM2.5) was conducted using combined data for 
accumulation (PM0.25-2.5) and quasi-ultrafine PM (PM0.25) modes. Primary source contributions to 
weekly ambient fine organic carbon (OC) were estimated using a molecular marker-based 
chemical mass balance model (CMB) that was mathematically solved with the US 
Environmental Protection Agency CMB software (EPA-CMB8.2) by applying the effective 
variance weighted least squares algorithm to apportion the receptor data to the source profiles 
(Watson 1984). Molecular marker compounds that are chemically stable during transport from 
source to receptor and that were detected in the PM samples were selected as fitting species 
(Schauer, Rogge et al. 1996). These included EC, 22S-homohopane, 22R-homohopane, 
17α(H)-21β(H)-hopane, 17α(H)-22,29,30-trisnorhopane, benzo(e)pyrene, benzo(b)fluoranthene,  
benzo(k)fluoranthene, benzo(ghi)perylene, levoglucosan, indeno(1, 2, 3-cd)pyrene, 
nonacosane, hentriacontane, tritriacontane, vanadium, nickel and aluminum. The model input 
source profiles were based on the observed primary tracers. These profiles included light-duty 
and heavy-duty vehicles (LDV and HDV, respectively) (Kam, Liacos et al. 2012; Liacos, Kam et 
al. 2012), biomass burning in Western US (Fine, Cass et al. 2004; Sheesley, Schauer et al. 
2007), ship emissions (Rogge, Hildemann et al. 1997; Agrawal, Malloy et al. 2008), paved road 
dust for the Los Angeles area (Schauer 1998) and vegetative detritus (Rogge, Hildemann et al. 
1993).  Markers used to apportion vegetative detritus included nonacosane, hentriacontane and 
tritriacontane. 

Mobile source profiles were derived from on-road measurements of  PM0.25-2.5 and PM0.25 
conducted at CA-110 and I-710 freeways in Los Angeles (Kam, Liacos et al. 2012), and thus, 
suitably represent vehicular emissions at the study sites. Kam et al. (2012) reported an HDV 
composition of 3.9% and 11.3% for I-110 and I-710, respectively. However, inclusion of both 
LDV and HDV vehicular profiles led to co-linearity problems in some CMB runs (29 cases). For 
these samples, the “estimable linear combinations of inestimable sources” was considered as 
the contribution from mobile sources (Watson, Robinson et al. 1997). Whereas, mobile source 
contribution was determined as the sum of both LDV and HDV source contributions for the 
remaining samples (Lough et al., 2007). Other OC sources, including coal soot and natural gas, 
were found to be non-statistically significant and were therefore excluded from the model. 

Source contributions to total PM2.5 were evaluated by converting CMB apportionment 
results for fine OC to those of PM2.5 using fine OC-to-PM mass ratios for each source (Rogge, 
Hildemann et al. 1993; Rogge, Hildemann et al. 1997; Schauer 1998; Fine, Cass et al. 2004; 
Sheesley, Schauer et al. 2007; Agrawal, Malloy et al. 2008; Kam, Liacos et al. 2012). For 
samples displaying a co-linearity in mobile sources, we assumed that mobile source contribution 
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to OC is entirely derived from LDVs. OC/PM ratio for the LDV source profile was therefore used 
to convert OC mobile source apportionment results to mass apportionment results for these co-
linear samples. To evaluate the variation in the mass apportionment of mobile sources for these 
co-linear cases, we conducted a sensitivity analysis by considering three different cases. The 
OC apportionment results were converted to PM mass-based assuming that the OC 
apportioned to mobile sources is emitted from 1) only HDV, 2) 25% LDV/75% HDV, 3) 75% 
LDV/25% HDV. Results were then compared to our prior assumption that OC from mobile 
sources is only emitted from LDVs. As can be seen in Table 3.1, results are about 25, 18, and 
8% higher when assuming that OC apportioned to mobile sources is from only LDVs, compared 
to cases 1, 2 and 3, respectively. In addition to the sources identified in OC apportionment, 
other water-insoluble organic matter (“other WIOM”), secondary organic aerosol (SOA) and 
sulfate concentrations were considered in PM2.5 apportionment. In anthropogenic-influenced 
regions, water-soluble organic carbon (WSOC) is mainly emitted from biomass burning sources 
or formed through photochemical reactions (Weber, Sullivan et al. 2007). Since tracers of 
secondary sources were not included in the CMB model, SOA was estimated by multiplying the 
difference between measured WSOC and WSOC from biomass burning by a factor of 1.8 
(μgOM/μgOC) (Turpin and Lim 2001). This ratio, which is the average molecular weight per 
carbon weight for the organic aerosols, varies from 1.4 to 1.8 for urban aerosols and 1.9 to 2.3 
for non-urban aerosols. Biomass burning, determined from CMB output, was estimated as 71% 
water-soluble (Sannigrahi et al. 2006). “Other WIOM” corresponds to water-insoluble organic 
matter that could not be apportioned to the considered primary sources. It was estimated by 
multiplying “other water-insoluble organic carbon (WIOC)” by a factor of 1.8 (Turpin and Lim 
2001). “Other WIOC” was determined as the difference between the total concentration of 
WIOC (OC-WSOC) and the sum of all primary source contribution estimates (excluding biomass 
burning), plus the concentration of WIOC from biomass burning. Sulfate was determined from S 
concentration assuming that all measured S by ICPMS is in the form of ammonium sulfate 
(Arhami et al. 2009). Lastly, we should note that samples collected at G4 were excluded from 
the CMB analysis because they were affected by organic adsorption artifacts. 

Table 3.2 presents the results from the CMB model including R2, χ2 and source 
contribution estimates (±standard error) to PM2.5. R2 corresponds to the variance in ambient 
species concentrations explained by their calculated concentration. χ2 represents the weighted 
sum of squares of the differences between calculated and measured fitting species 
concentrations. 

 

3.2. Results and Discussion 

3.2.1  Infiltration ratios of tracer species 
 

Figure 3.1a-d shows the average indoor and outdoor levels of PAHs, hopanes and 
steranes, n-alkanes and organic acids at each site and phase of the study. To investigate the 
influence of outdoor and indoor sources on PM2.5 levels inside the retirement communities, 
weekly average indoor-to-outdoor (I/O) mass ratios and their standard deviations were 
determined for the speciated organics, as shown in Figure 3.2a-d. I/O Pearson correlation 
coefficients (R) were also evaluated to determine whether an indoor species is attributable to 
infiltration from outdoors.  

During both phases, the average outdoor level of total PAHs was lowest at G4 while the 
highest was at the G2 site (Figure 3.1a). The Riverside site (G4) was the most distant from 
primary combustion sources (i.e. freeways and busy roadways) while G2 (west San Gabriel 
Valley) was the closest to a major freeway (within 300 m). The average concentration of the 
sum of all measured PAHs was slightly lower indoors than outdoors, suggesting a possible 
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contribution from outdoor sources to indoor particle levels. This was further corroborated by the 
I/O ratios and indoor-to-outdoor correlation coefficients for individual PAHs (Figure 3.2a). PAH 
components displayed average I/O ratios close to unity, with generally high and positive 
correlation coefficients (median R across components is 0.64 and 0.50 during the warm and 
cold phase, respectively), indicating a strong impact from outdoor sources (e.g. motor vehicle 
emissions) on indoor PAHs. PAHs generated by tobacco smoke were not expected indoors, as 
all of the considered retirement communities were non-smoking residences. Similarly to PAHs, 
the cumulative concentration of select hopanes was slightly higher outdoors than indoors at all 
sites (Figure 3.1b). Average I/O ratios of individual hopanes were close to unity (ranging from a 
minimum of 0.76 to a maximum of 1.20, across phases) and were accompanied by relatively 
high R-values, highlighting the possible influence of outdoor sources on indoor levels of 
hopanes (Figure 3.2b). Unlike PAHs and hopanes, the average cumulative concentration of 
measured n-alkanes was higher indoors than outdoors, with significantly high indoor levels 
during the cold phase at G3 and G4 sites (Figure 3.1c). Furthermore, individual n-alkanes 
displayed I/O ratios exceeding unity (up to 12 during the cold phase) and overall low or negative 
I/O correlation coefficients, implying a considerable influence from indoor sources on n-alkanes 
levels inside the retirement communities (Figure 3.2c). Potential indoor sources include cooking, 
household products, dust, smoking and candle burning (Fine, Cass et al. 1999; Schauer 1999; 
Kleeman 2008). To further investigate the origin of these n-alkanes, the carbon preference 
index (CPI), defined as the concentration ratio of their odd-to-even numbered homologues, was 
estimated (Figure 3.3). A CPI about 1 indicates a dominance of anthropogenic sources, 
whereas a CPI greater than 2 indicates a prevalence of biogenic sources (Simoneit 1986). Both 
indoor and outdoor n-alkanes did not exhibit a discernible odd-to-even carbon number 
preference (CPI ranging from 0.78 to 1.02), indicating their anthropogenic source. Similarly to n-
alkanes, the average total concentration of measured organic acids (n-alkanoic acids (C10-
C18), palmitoleic acid and oleic acid) was overall substantially higher indoors than outdoors for 
all sites and phases (Figure 3.1d). Individual organic acids were also poorly or negatively 
correlated with their outdoor components and displayed I/O ratios greater than unity, indicating 
their predominantly indoor origin (Figure 3.2d). Potential indoor sources include cooking. Oleic 
and palmitoleic acids have often been used as biomarkers of food cooking (Robinson 2006). 
Other significant sources of organic acids include human skin emissions (Nicolaides 1974).  

 

3.2.2  Source contribution estimates 
 

Results of the source apportionment of fine PM mass are shown in Figure 3.4. Mobile 
sources overall contributed the most to both indoor and outdoor PM2.5 at all sites and during all 
phases (7.9±3.7 µg/m3, 42.7±18.7%, on average ± standard deviation). Furthermore, 
contribution of outdoor mobile sources to indoor PM2.5 was 0.72 times those outdoors, on 
average across sites and phases, indicating a significant influence on indoor fine PM levels from 
outdoor mobile source emissions. “Other WIOM”, which represents uncharacterized primary 
sources such as food cooking, was generally the next most abundant source, contributing to 
25.3±21.1% of PM2.5 on average across all sites and phases. At all sites, sulfate displayed 
greater contributions during the warm phase (23.3±6.0%, 4.4±1.2 µg/m3) than cold phase 
(9.5±2.7%, 1.9±0.5 µg/m3), consistent with its outdoor secondary origin (Rodhe 1999). Soil 
source contribution estimates averaged 1.8±1.6 µg/m3 (10.7±8.1% of PM2.5) at all indoor sites 
while they accounted for 2.5±2.2 µg/m3 at all outdoor sites (11.4±8.8% of PM2.5). Indoor 
activities likely contributed to re-suspension of dust. SOA contributed significantly to PM2.5, 
accounting for 8.0±2.0 and 5.6±4.5% of its mass across all sites during the warm (summer and 
early fall) and cold (late fall and winter) phases, respectively. Its concentration was higher during 
the warm phase than cold period at both indoor and outdoor sites, most likely due to increased 



34 

photochemical activity during warm months. SOA source estimates during the warm phase 
averaged 1.76±0.18 and 1.40±0.70 µg/m3 at the outdoor and indoor sites, respectively. On the 
other hand, source contributions from SOA accounted for 0.84±0.55 and 1.4±1.16 µg/m3 at the 
outdoor and indoor sites during the cold phase, respectively. We should note that the greater 
SOA concentrations at indoor than outdoor locations at some of the sites, such as G1, can be 
attributed to indoor SOA formation from the reaction of household products’ emissions with 
ozone and to a lesser extent with hydroxyl radicals (Destaillats, Lunden et al. 2006; Weschler 
and Nazaroff 2008). It is noteworthy that outdoor ozone concentrations are typically the 
dominant source of ozone at indoor environments; nonetheless, many indoor source of ozone 
exist such as laser printers, photocopiers, and ion generators. Contribution of biomass burning 
to fine PM mass was on average 1.8 times higher during the cold phase than warm period, likely 
due to increased emissions from domestic heating. However, contributions of biomass burning 
to PM2.5 were overall low, accounting for 2.5±2.3% of its mass, on average across all sites and 
phases. The high biomass burning concentration seen at G2 indoor during the warm phase was 
driven by high levoglucosan concentration at this site during this period and while the reason for 
this increase was unclear, this result is consistent with that reported by Arhami et al. (2010) for 
ultrafine PM at the same site and for the same sampling period.  Ships emissions were minor 
contributors to fine PM, respectively accounting for <1 and 2% of its mass, on average. The 
concentrations apportioned to vegetative detritus at indoor site G3 during the cold phase are 
substantially higher than at other locations.  This was possibly due to the impact of small local 
sources other than vegetative detritus on n-alkanes concentration (and therefore the 
contribution of vegetative detritus) at G3 indoor, including synthetic fireplace logs, if used. Un-
apportioned PM mass accounted for less than 15% of PM2.5. This discrepancy in mass 
apportionment could be associated with ammonium nitrate, which was not measured in this 
study, but could constitute a major component of PM2.5 (Hughes, Allen et al. 2002). Additionally, 
uncertainties in the source profiles composition and multiplication factor used to estimate water-
insoluble organic matter (WIOM) and SOA could lead to this discrepancy. 

 

3.4 Summary and Conclusions 
PM2.5 and its components were concurrently measured at indoor and outdoor locations of 

four retirement communities in the Los Angeles air basin. Indoor PAHs and hopanes were 
generally strongly correlated with their outdoor counterparts and displayed indoor/outdoor ratios 
close to unity, highlighting the possible influence of outdoor sources (mainly vehicular 
emissions) on their indoor levels. On the other hand, concentrations of n-alkanes and organic 
acids inside the retirement communities were dominated by indoor sources (e.g. cooking).  
Source apportionment results showed that mobile sources were the dominant contributor to 
both indoor and outdoor PM2.5 at all sites (42.7±18.7%, of fine PM mass, on average across 
sites and phases). Moreover, the contribution of vehicular sources to indoor levels was 
generally comparable to their corresponding outdoor estimates, illustrating the strong influence 
of these sources on indoor PM concentrations. “Other WIOM”, which represents 
uncharacterized primary sources (e.g. food cooking) was generally the next most abundant 
source, accounting for 25.3±21.1% of PM2.5 across all sites and phases, on average. 
Furthermore, indoor SOA formation, possibly resulting from the reaction of household products’ 
emissions with ozone, was also evident at some of the sites.   
 

In conclusion, these findings suggest that although the elderly retirees of the studied 
communities generally spend most of their time indoors (Jenkins et al. 1992), a sizeable portion 
of PM2.5 particles to which they are exposed likely originated from outdoor mobile sources.  
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Table 3.1. Contribution of mobile sources to PM2.5 in the co-linear cases, assuming that the OC 
apportioned to mobile sources is emitted from 1) only LDV, 2) only HDV, 3) 25% LDV, 75% HDV, 4) 
75% LDV, 25% HDV. The units are in µg/m3. 

Co-linear cases 
(site, phase, indoor/outdoor, week) 

  

only 
LDV 

only 
HDV 

25% LDV, 75% 
HDV 

75% LDV, 25% 
HDV 

G1P1INW4 10.22 8.16 8.68 9.71 
G1P2INW1 6.11 4.88 5.18 5.80 
G1P2INW2 10.67 8.52 9.06 10.13 
G1P2INW3 6.52 5.21 5.54 6.19 
G2P1INW2 4.02 3.21 3.41 3.82 
G2P2INW1 14.19 11.34 12.05 13.48 
G2P2INW2 7.12 5.68 6.04 6.76 
G2P2INW3 7.77 6.21 6.60 7.38 
G2P2INW5 11.88 9.49 10.09 11.29 
G3P1INW1 6.03 4.81 5.12 5.72 
G3P1INW2 9.60 7.67 8.15 9.12 
G3P1INW3 7.50 5.99 6.37 7.12 
G3P1INW4 5.24 4.18 4.45 4.98 
G3P1INW5 6.56 5.24 5.57 6.23 

G1P1OUTW1 10.95 8.74 9.29 10.40 
G1P1OUTW2 13.33 10.64 11.31 12.66 
G1P1OUTW5 8.85 7.07 7.52 8.41 
G1P1OUTW6 8.91 7.12 7.57 8.46 
G1P2OUTW2 11.78 9.41 10.00 11.19 
G1P2OUTW3 10.43 8.33 8.86 9.91 
G1P2OUTW4 10.81 8.63 9.18 10.27 
G1P2OUTW5 16.00 12.78 13.58 15.19 
G1P2OUTW6 13.00 10.38 11.04 12.34 
G2P1OUTW2 6.93 5.53 5.88 6.58 
G2P1OUTW3 14.42 11.52 12.24 13.70 
G2P2OUTW2 11.86 9.47 10.07 11.26 
G2P2OUTW3 11.57 9.24 9.83 10.99 
G3P1OUTW2 10.80 8.63 9.17 10.26 

G3P1OUTW4 7.09 5.66 6.02 6.73 
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Table 3.2. Statistical parameters and weekly source contribution estimates (±standard error, in µg/m3) to ambient fine PM mass at the 
indoor and outdoor sampling sites during the warm and cold phases. * indicates samples affected by adsorption artifacts.  Source 
apportionment results for these samples were excluded from the calculations. **uncertainty quantified by propagation of the 
uncertainties of the measurements and CMB output results. 

 
Indoor warm phase 

           

Site Week R2 χ2 Vegetative Detritus Wood smoke Ship Emissions Soil Mobile sources SOA** Other WIOM** Sulfate 

G1 

1 0.86 2.59 0±0.09 0.19±0.11 - - 4.17±5.22 2.49±0.15 4.22±2.47 - 

2 0.93 2.26 0±0.09 0.18±0.11 0.25±0.03 4.29±0.77 5.69±4.27 2.57±0.16 2.71±2.04 4.77±0.04 

3 0.97 2.49 0±0.08 0.11±0.1 0.16±0.02 1.29±0.59 16.86±3.6 2.08±0.14 0±1.69 3.87±0.04 

4 0.9 2.85 0±0.1 0.14±0.11 0.4±0.05 8.44±1.32 10.22±0.85 2.73±0.16 1.1±0.64 7.54±0.06 

5 0.7 10.27 0.14±0.09 0.15±0.1 0.24±0.04 2.04±0.52 3.46±4.09 1.12±0.15 4.89±1.93 4.24±0.06 

6           

G2 

1 0.63 9.95 0.08±0.09 0.98±0.26 0.26±0.04 1.8±0.53 0 1.48±0.33 7.21±2.28 3.65±0.09 

2 0.84 3.51 0.1±0.08 1.24±0.32 0.25±0.03 2.17±0.48 4.02±0.65 1.12±0.39 3.21±0.77 2.81±0.04 

3 0.91 2.53 0.31±0.11 1.75±0.4 0.35±0.04 3.25±0.71 1.5±5.59 1.49±0.49 4.82±2.75 4.66±0.07 

4 0.89 3.96 0±0.09 1.4±0.35 0.15±0.02 2.29±0.58 5.72±4.65 0.8±0.44 6.12±2.35 1.71±0.03 

5 0.91 3.41 0±0.08 1.04±0.3 0.17±0.02 2.2±0.57 7.73±4.14 0.31±0.37 3.29±2.03 1.92±0.03 

6 0.9 3.03 0.31±0.11 1.9±0.38 0.23±0.03 1.03±0.53 3.83±5.25 0±0.47 5.91±2.54 2.23±0.04 

G3 

1 0.87 2.05 0±0.09 0.34±0.13 0.09±0.01 1.29±1.72 6.03±0.73 0.93±0.19 3.31±0.67 2.39±0.05 

2 0.89 2.27 0±0.11 0.22±0.11 0.1±0.02 1.01±1.73 9.6±0.89 1.37±0.18 1.88±0.67 3.31±0.11 

3 0.84 3.15 0.09±0.09 0.14±0.1 0.1±0.02 0.97±1.72 7.5±0.83 1.37±0.17 4.11±0.67 4.18±0.09 

4 0.87 2.25 0±0.08 0.19±0.1 0.13±0.02 1.08±1.72 5.24±0.58 0.7±0.17 1.94±0.55 5.73±0.03 

5 0.85 2.58 0±0.08 0.14±0.1 0.1±0.02 1.01±1.65 6.56±0.74 1.36±0.16 3.48±0.6 2.12±0.03 

6 0.91 1.79 0±0.07 0.16±0.1 0.14±0.02 0.71±1.63 0.68±3.13 1.14±0.16 5.09±1.53 3.12±0.03 
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Indoor cold phase           
Site Week R2 χ2 Vegetative Detritus Wood smoke Ship Emissions Soil Mobile sources SOA** Other WIOM** Sulfate 

G1 

1 0.91 2.56 0.03±0.08 0.07±0.09 0.11±0.01 1.51±0.38 6.11±0.49 1.21±0.16 2.34±0.55 2.31±0.03 
2 0.94 2.28 0±0.09 0.24±0.12 0.16±0.02 3.24±0.65 10.67±0.67 1.94±0.2 0±0.55 3.17±0.04 
3 0.94 2.61 0.14±0.08 0.45±0.13 0.18±0.02 0.65±0.4 6.52±0.46 1.19±0.18 0.6±0.52 3.54±0.06 
4 0.89 4.28 0.15±0.1 0.18±0.11 0.11±0.02 11±1.63 7.34±3.94 0.89±0.17 1.99±1.91 1.64±0.04 
5 0.94 2.98 0.11±0.11 0.51±0.16 0.15±0.02 0.46±0.56 14.48±4.88 1.21±0.23 1.66±2.3 1.49±0.03 
6 

          

G2 

1 0.97 1.1 0±0.1 0.94±0.24 0.09±0.02 0±1.7 14.19±0.91 0±0.3 1.94±0.79 0.88±0.03 
2 0.9 2.39 0.01±0.08 0.36±0.13 0.02±0 0±1.67 7.12±0.57 0±0.17 2.2±0.59 0.34±0.03 
3 0.88 3.34 0±0.07 0.97±0.28 0.04±0.01 0±1.7 7.77±0.64 0.08±0.35 3.21±1.03 1.16±0.04 
4 0.93 2.68 0.04±0.08 1.41±0.33 0.17±0.02 0±1.72 11.63±4.36 1.46±0.41 6.28±2.55 2.62±0.03 
5 0.95 1.56 0±0.09 1.13±0.26 0.08±0.01 0±1.69 11.88±0.82 0±0.32 1.97±0.87 1.12±0.03 
6 0.85 2.92 0±0.07 0.19±0.1 0.06±0.01 0±0.27 2.49±2.67 0.23±0.14 4.77±1.26 0.94±0.03 

G3 

1 0.82 4.78 2.3±0.43 0.12±0.09 0.05±0.01 0.73±0.58 1.3±4.87 1.75±0.15 11.47±2.31 1.62±0.03 
2 0.9 2.47 3.44±0.58 0.3±0.14 0.1±0.02 0.38±0.78 0.64±6.29 3.47±0.21 10.01±2.97 3.22±0.04 
3 

          4* 0.89 2.49 2.53±0.45 0.07±0.09 0.02±0.01 0.52±0.61 0 0.67±0.15 15.62±2.46 0.43±0.01 
5* 0.91 1.97 0.14±0.09 0.17±0.09 0.02±0 0.43±0.31 2.04±2.93 0.4±0.15 16.11±1.41 0.4±0.02 
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Outdoor warm phase 

Site Week R2 χ2 Vegetative Detritus Wood smoke Ship Emissions Soil Mobile sources SOA** Other WIOM** Sulfate 

G1 

1 0.88 4.5 0±0.09 0.23±0.11 0.45±0.05 6±1 10.95±0.74 1.91±0.16 0.75±0.59 6.18±0.04 
2 0.95 2.02 0±0.09 0.05±0.1 0.37±0.04 5.7±1.02 13.33±0.75 2.43±0.14 0±0.53 6.37±0.05 
3 0.95 3.15 0±0.08 0.18±0.1 0.26±0.03 11.37±1.73 12.06±3.71 1.66±0.15 0±1.8 5.08±0.06 
4 0.95 2.76 0±0.1 0.02±0.1 0.37±0.05 4.67±0.94 14.26±4.24 2.45±0.14 0±2 5.87±0.04 
5 0.78 8.92 0±0.08 0.21±0.11 0.38±0.05 3.81±0.7 8.85±0.6 1.51±0.18 1.94±0.43 6.83±0.07 
6 0.74 10.71 0±0.08 0.22±0.11 0.17±0.03 4.99±0.83 8.91±0.61 1.73±0.17 0.66±0.43 4.41±0.05 

G2 

1 0.72 9.97 0.05±0.09 0.26±0.12 0.33±0.05 7.53±1.14 3.39±4.52 1.55±0.16 8.64±2.16 5.51±0.13 
2 0.91 2.91 0±0.07 0.46±0.14 0.26±0.03 2.9±0.56 6.93±0.58 0.86±0.19 2.19±0.4 2.97±0.04 
3 0.97 1.09 0±0.11 1.1±0.33 0.47±0.06 5.64±1.06 14.42±1.04 1.37±0.41 0.42±0.67 6.03±0.14 
4 0.98 0.96 0±0.11 0.1±0.11 0.18±0.03 5.22±1.06 17.19±4.95 2.8±0.16 2.57±2.38 3.15±0.04 
5 0.8 8.36 0±0.09 0.15±0.1 0.1±0.02 1.51±0.57 11.96±5.12 0.92±0.15 5.43±2.46 1.58±0.04 
6 0.89 5.12 0.09±0.1 0.2±0.11 0.33±0.04 3.5±0.78 10.72±5.09 1.98±0.15 4.37±2.41 3.91±0.05 

G3 

1 0.94 1.82 0±0.09 0.09±0.1 0.15±0.02 1.91±0.51 4.78±4.22 1.19±0.17 6.14±2 3.86±0.1 
2 0.9 2.35 0±0.1 0.15±0.1 0.13±0.02 0.89±0.51 10.8±0.89 1.46±0.17 2.96±0.65 4.37±0.07 
3 0.94 1.76 0±0.1 0.14±0.1 0.14±0.02 0±0.49 9.72±4.97 2.64±0.17 4.37±2.35 6.19±0.08 
4 0.91 2.37 0±0.08 0.2±0.11 0.22±0.03 1.3±0.43 7.09±0.61 0.42±0.17 2.2±0.4 9.4±0.03 
5 0.87 2.96 0.12±0.09 0.18±0.1 0.2±0.03 0.75±0.46 1.78±4.54 3.24±0.17 4.64±2.18 3.98±0.04 
6 0.92 1.94 0±0.09 0.39±0.14 0.21±0.03 0.3±0.48 2.84±4.67 1.64±0.21 6.96±2.2 4.82±0.04 
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Outdoor cold phase           
Site Week R2 χ2 Vegetative Detritus Wood smoke Ship Emissions Soil Mobile sources SOA** Other WIOM** Sulfate 

G1 

1 0.98 0.54 0.02±0.08 0.15±0.11 0.11±0.02 0±0.32 6.64±3.06 2.77±0.37 0.61±1.5 2.79±0.04 
2 0.96 1.64 0±0.09 0.25±0.12 0.11±0.02 0±0.4 11.78±0.69 1.14±0.2 1.15±0.49 1.84±0.03 
3 0.88 2.66 0±0.1 0.72±0.19 0.06±0.01 0.05±0.48 10.43±0.96 0.48±0.25 4.58±0.81 0.72±0.03 
4 0.92 2.5 0±0.11 0.19±0.12 0.09±0.02 5.78±0.95 10.81±0.84 1.09±0.17 0.93±0.63 1.07±0.04 
5 0.95 1.46 0±0.13 0.83±0.23 0.1±0.02 2.45±0.74 16±1.25 0.39±0.3 2.53±0.84 1.22±0.03 
6 0.98 0.97 0.09±0.1 0.65±0.18 0.1±0.02 0.05±0.47 13±0.84 0.77±0.24 0±0.55 2.48±0.05 

G2 

1 0.98 1.2 0±0.1 1.27±0.29 0.11±0.02 0±0.55 18.45±5.16 0±0.36 1.05±2.5 1.18±0.03 
2 0.97 0.97 0.05±0.09 0.82±0.21 0.01±0.01 0±1.71 11.86±0.76 0±0.26 4.6±0.77 0.5±0.03 
3 0.9 4.48 0.41±0.11 0.51±0.17 0.04±0.01 0±0.47 11.57±0.68 0.08±0.22 2.7±0.5 1.18±0.03 
4 0.98 0.93 0±0.09 1.59±0.31 0.21±0.03 0±0.55 17.69±5.22 0.25±0.39 6.4±2.5 4.53±0.09 
5 0.93 3.26 0±0.09 0.3±0.12 0.12±0.02 0±0.47 15.02±4.49 0.66±0.16 1.98±2.16 1.62±0.03 
6 0.9 3.09 0±0.08 0.24±0.11 0.08±0.01 2.88±0.55 5.86±3.44 0.25±0.15 6.1±1.68 1.65±0.03 

G3 

1 0.92 1.96 3.28±0.53 0.14±0.1 0.1±0.02 2.76±0.87 0 1.55±0.16 15.27±3.05 2.19±0.03 
2 0.94 2.18 0±0.13 0.46±0.17 0.15±0.02 1.32±0.63 10.85±5.56 2.65±0.24 10.13±2.63 3.35±0.03 
3 0.84 6.46 0±0.09 0.19±0.1 0.12±0.02 2±0.51 7.81±3.94 0.63±0.15 16.92±1.86 1.26±0.02 
4 0.88 4 0.08±0.09 0.29±0.11 0.05±0.01 1.74±0.47 5.91±3.95 0.82±0.17 16.16±1.89 0.63±0.02 
5 0.92 2.07 1.71±0.29 0.81±0.21 0.05±0.01 1.51±0.55 1.36±4.54 0.42±0.27 13.27±2.16 0.76±0.02 
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Figure 3.1. Average concentration of a) PAHs, b) hopanes, c) n-alkanes and d) organic acids at the indoor and outdoor 
sampling sites during the warm and cold phases. Error bars correspond to one standard deviation. 
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(a) PAH 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) hopanes 
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(c) n-alkanes 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) organic acids 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Average indoor-to-outdoor ratios and Pearson correlation coefficients 
between indoor and outdoor concentrations of (a) PAHs, (b) hopanes, (c) n-alkanes and 
(d) organic acids during the warm and cold phases. Values are averaged across the 
sampling sites and error bars correspond to one standard deviation. 
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Figure 3.3.  Average carbon preference index (CPI) of n-alkanes (C19-C40) at the indoor 
and outdoor sampling sites during the warm and cold phases. Error bars correspond to 
one standard deviation. 

 

 
Figure 3.4. Contribution of different sources to fine PM mass at the sampling sites during 
the warm and cold phases. Samples affected by adsorption artifacts are not shown in the 
plot.
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4. CHAPTER FOUR: TASK 3 
Task 3. To conduct an epidemiologic analysis of the relations between gene 

expression and exposure to particle mass, components, and source tracers 
of PM0.25 and PM0.25-2.5 from Tasks 1 and 2 as well as to PM mass and metal 
content in PM2.5-10.   Gene expression data for 35 genes selected a priori were 
available from NIH, NIEHS-funded work.  This includes genes involved in oxidative 
stress, antioxidant defense, xenobiotic metabolism, inflammation, coagulation, and 
endoplasmic reticulum stress. (Dr. Ralph Delfino and colleagues, UCI)   

 
4.0 Introduction 

We conducted a cohort panel study of acute cardiovascular outcomes with home-
based ambient air pollution monitoring in the Los Angeles air basin from July 2005 through 
February 2006 and July 2006 through February 2007.  Given the urban study location, our 
initial interest was on the effects of traffic-related ultrafine particles since they have been 
shown to be enriched in chemical components that have a pro-oxidant effect on cells (Ayres 
et al. 2008, Verma et al. 2009). Exposure data using accumulation-mode PM samples from 
Tasks 1-2 for this analysis were combined with exposure data already available for the 
quasi-ultrafine fraction and other air pollutant data we have collected for comparison (e.g., 
criteria gases, EC and OC). In this manner, the present study extends the CHAPS 
investigation using gene expression data (Figures 1.1 and 1.2).   

Using a hypothesis-driven approach based on existing human studies, and the in 
vitro and in vivo experiments cited, we selected ten biological pathways relevant to air 
pollution exposure responses and examined changes in candidate gene expression (see 
section 1.1, Gene Expression) in our cohort panel of elderly subjects with CAD (Delfino et al. 
2008, 2009, 2010). Biopathways included: coagulation, Klf2-mediated immune response, 
NF-κB signaling, acute phase response, Nrf2-mediated oxidative stress response, 
endoplasmic reticulum stress (UPR), glutathione metabolism, phase I and phase II 
metabolism, endogenous reactive oxygen species (ROS) production, and cytokine signaling 
(Figure 4.1, Table 4.1).  Evaluating gene expression changes along these pathways in an 
urban cohort panel can provide coherence with studies of potential mechanistic pathways 
through which air pollutants may cause adverse cardiovascular outcomes.  

 
Figure 4.1. Candidate Genes grouped by biopathway. Gene abbreviations and NCBI 

identification numbers are listed in Table 4.1. Adapted from Wittkopp et al. 
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Table 4.1. Candidate Gene Names and NCBI identification numbers.  

Symbol  Gene Name Synonyms  

NCBI 
Gene ID 
number 

AHR Aryl hydrocarbon receptor bHLHe76 196 
ATF4 CREB activating transcription factor 4 CREB-2, TAXREB67 468 
ATF6 CREB activating transcription factor 6  ATF6A 22926 
CAT Catalase - 847 

CCL2 Chemokine (C-C motif) ligand 2 GDCF-2, HC11, MCAF, MCP-1, 
MCP1, MGC9434, SMC-CF 6347 

CXCL1 Chemokine (C-X-C motif) ligand 1 GROa, MGSA-a, NAP-3, SCYB1 2919 
CYP1A1 Cytochrome P450,  subfamily A1 CP11, P1-450, P450-C, P450DX 1543 
CYP1B1 Cytochrome P450,  subfamily B1 CP1B 1545 
DUSP1 Dual specificity phosphatase 1 CL100, HVH1, MKP-1 1843 

F3 Tissue factor                                                     
(Thromboplastin, coagulation factor III) CD142 2152 

GCLC Glutamate-cysteine ligase,  catalytic subunit GCS 2729 
GCLM Glutamate-cysteine ligase,  modifier subunit  30 
GPX1 Glutathione peroxidase 1  2876 

GSTP1 Glutathione S-transferase pi GSTP 2950 
HMOX1 Heme oxygenase (decycling) 1 bK286B10, HO-1 3162 
HSPA8 Heat shock 70kda protein 8 HSC70, HSC71, HSP73 3312 

IL1B Interleukin-1beta IL-1B, IL1-BETA, IL1F2 3553 
IL6 Interleukin 6 BSF2, HGF, HSF, IL-6 3569 

IL6R Interleukin 6 receptor CD126 3570 

IL8 Interleukin 8 

3-10C, AMCF-I, b-ENAP, 
CXCL8, GCP-1, GCP1, IL-8, 
K60, LECT, LUCT,  LYNAP, 

MDNCF, MONAP, NAF, NAP-1, 
NAP1, SCYB8, TSG-1 

3576 

KLF2 Kruppel-like factor 2 LKLF 10365 
MPO Myeloperoxidase  4353 

NFE2L2 Nuclear factor (erythroid-derived 2)-like 2 NRF2 4780 
NOX1 NADPH oxidase 1 GP91-2, MOX1, NOH-1, NOH1 27035 
NQO1 NAD(P)H dehydrogenase, quinone 1 DHQU, DTD, QR1 1728 
PON1 Paraoxonase 1 ESA 5444 
PTGS2 Prostaglandin-endoperoxide synthase 2 COX2 5743 

SELP Selectin P (antigen CD62) CD62, CD62P, GMP140, 
PADGEM, PSEL 6403 

SOD1 Superoxide dismutase 1 [Cu-Zn] IPOA 6647 
SOD2 Superoxide dismutase 2 [Mn],  mitochondrial  6648 
TNF Tumor necrosis factor DIF, TNF-alpha, TNFSF2 7142 

TNFRSF1B Tumor necrosis factor receptor superfamily,          
member 1B 

CD120b, p75, TNF-R-II, TNF-
R75, TNFBR, TNFR80 7133 

TXNRD1 Thioredoxin reductase 1 GRIM-12, Trxr1, TXNR 7296 
XBP1 X-box binding protein 1  7494 
XDH Xanthine dehydrogenase XO, XOR 7498 
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4.1 Methods 

4.1.1 Gene Expression Profiling 
 We used RNA from weekly whole blood samples to analyze 35 candidate genes and 

5 housekeeping genes.  In general, whole blood is an excellent sampling system for use in 
evaluating short-term (hours to days or weeks) environmental impacts on systemic sites 
because it reflects changes in a subject’s internal and external environment (Dumeaux et al. 
2010). In the present study evaluating up to 18 subjects in a single day, it was not feasible to 
perform additional fractionation procedures to isolate different cell types because ex vivo 
changes leading to alterations in gene expression profiles would have  occurred because of 
sample handling and prolonged transportation (Debey et al. 2004, 2006; Rainen et al. 2002).  
Furthermore, whole blood carries a plurality of gene expression from other cell types, 
including granulocytes (neutrophils, eosinophils and basophils), which are important in the 
cascade of events that occur in response to pollutant-induced stress.  Nevertheless, week-
to-week changes in the relative distribution of cell types might change expression levels (see 
pilot assessment of adjustment factors below). 

Therefore, we used the PaxGene Blood RNA System (BD Diagnostics, Franklin 
Lakes, NJ) that permits standardized collection of whole blood by stabilizing the RNA profile 
immediately after blood withdrawal (Debey et al. 2006; Rainen et al. 2002; Wang et al. 
2004). The PaxGene system includes a stabilizing additive in a blood collection Vacutainer 
tube to avoid processing-induced changes in gene expression and RNA degradation and a 
standardized processing reagent set for purification of intracellular RNA from whole blood. 
Samples were collected each Friday, at the same time of day for each subject to control for 
temporal and circadian variability.  Tubes were inverted five times to mix with the stabilizing 
additive, immediately frozen, transported to the laboratory and stored at -80 °C until tested.  

Total RNA was isolated by using a robotic workstation for automated RNA 
purification (QIAcubeTM) in combination with the PAXgene Blood RNA Kit and according to 
the manufacturer’s handbook (Qiagen, Valencia, CA).   Isolated RNA was quantified on a 
NanodropND-1000 Spectrophotometer and analyzed for integrity on an Agilent 2100 
Bioanalyzer. Aliquots of RNA were then reversed transcribed into first-strand cDNA 
(ThermoScript RT-PCR kit, Invitrogen, CA) for subsequent polymerase chain reaction (PCR) 
gene expression analysis. 

Candidate genes (Figure 4.1, Table 4.1) were selected based on biological function 
and reported pollutant exposure effects. Pathway information is derived from 
Ingenuity Pathway™ Software Analysis, the PANTHER classification system 
(http://www.pantherdb.org) and NCBI databases (http://www.ncbi.nlm.nih.gov). Gene 
expression levels were determined using end-point competitive polymerase chain reaction 
(PCR), with internal standards (the competitors) and sample cDNA co-amplified in the same 
reaction (Elvidge et al. 2005). The products were resolved with linear Matrix-Assisted Laser 
Desorption/Ionization Mass Spectrometry (MassARRAY™ Quantitative Gene Expression) 
and concentrations of the target transcripts were calculated from the ratio of the PCR 
products. All samples from a given subject were assayed on the same plate. Signal 
acquisition, allele assignment, peak area integration, data processing and analysis were 
carried out using the MassARRAY™ platform and software (Sequenom, San Diego, CA). 
Services were contracted with Immune Sciences Lab (David H. Murdock Research Institute, 
Kannapolis, NC). 

Transcript copy numbers were determined based on the EC50 calculated by non-
linear regression analysis of the cDNA and competitor allele frequencies.  Normalization of 
copy numbers was based on a multiplexed set of well-characterized reference transcripts 
(“housekeeping genes”) in order to control for experimental variance.  Copy numbers were 
normalized using the geNorm algorithm described by Vandesompele et al. (2002).  We 
calculated the expression stability for a reference (housekeeping) gene as the average 
pairwise variation with other tested reference genes.  We determined the most stable 

http://www.pantherdb.org/
http://www.ncbi.nlm.nih.gov/
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reference genes (ACTB, B2M, and GAPDH) by stepwise exclusion of genes with the highest 
instability.  Gene expression normalization factors for each sample were generated from the 
geometric mean of reference genes.  All calculations were carried out using the qBasePLUS 
data-analysis and integrated geNORM software (BiogazelleTM).  

Pilot Assessment of Potential Adjustments for Cell Distributions:   

We realize that gene expression profiling from complex tissues such as whole blood 
presents a challenge related to the variety of heterogeneous cell types, including dilution 
effects whereby a particular gene may only be expressed in a small subset of cells (Fan and 
Hegde 2005; Wurmbach et al. 2002).  For instance, changes in inflammatory cell populations 
may change expression levels.  Our aim though is not to assess expression levels in 
particular cell types, but to instead characterize overall expression levels in peripheral blood.   

Our pilot approach to overcoming potential limitations was to consider the possibility 
that we could adjust regression results by repeated measures in every blood sample of the 
normalized gene expression levels of five cell type-specific surface molecules.   

We evaluated the distribution of gene expression for five cell surface markers (in 
addition to the 35 candidate genes selected) and found, as expected, data were log normally 
distributed.  After removal of outliers over 3 SD above the mean and natural log 
transformation, data distributions were sufficiently normal.  

We then tested the relations between gene expression for five cell surface markers 
against leukocyte counts as follows: 

Cell Specific Marker Cell Type Percentage of Total leukocyte count    
CD19 Lymphocyte percentage (actually B-cells) 

CD3G Lymphocyte percentage (actually T-cells) 

RPS24 Lymphocyte percentage 

CD19  + CD3G + RPS24 Lymphocyte percentage 

SELL Neutrophil percentage 

CD14 Monocyte percentage 

This was done for the 43 CHAPS subjects using their average gene expression data 
(around 360 total repeated measures) in relation to baseline leukocyte counts (43 samples 
only, i.e., no repeated measures).  This was also done for paired samples from a study of 10 
subjects with asthma with blood samples taken before and after exercise (NIH NIEHS K23-
RR021624, C. Schwindt).  In all models, relations were nonsignificant, suggesting that cell 
surface markers are not sufficiently representative of cell distribution.   

As a result, we tested exposure-response models without adjustment for gene 
expression for cell surface markers.  Despite this result, we are confident that the approach 
of using whole blood gene expression is valid, particularly since the statistical analysis 
focused on the repeated measures of exposures and outcomes where each subject served 
as his or her own control over time.  Compared with the inherent biological variability in 
leukocyte differentials (different cell types) between people, leukocyte differentials within 
subject are anticipated to be relatively stable (Ross et al. 1988).  An important determinant of 
within-subject variability is time of day due to circadian variation (Fan and Hegde 2005), 
which we have controlled by design in that blood was drawn on the same day of the week 
(Friday) and around the same hour each Friday afternoon. 
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4.1.2 Air pollutant exposures 
 

Measured air pollutant exposures:  

Four retirement communities were selected for the recruitment of subjects and 
monitoring of air pollution to enhance the accuracy of measurements to reflect subject 
exposures.  This was accomplished by using outdoor community air monitoring in a fully 
equipped trailer provided by CARB.  It was parked on the property of each retirement 
community site and away from main roadways.  A parallel set of indoor data were collected 
on instruments placed in the main community areas of each retirement community.  All 
exposure data were obtained for each week preceding gene expression outcome 
measurements in the three of the four communities that were located in the San Gabriel 
Valley.  Other supplemental analyses of genetic polymorphisms that evaluated effect 
modification of relations between air pollution exposures and protein expression (e.g., 
soluble platelet selectin) utilized exposure and outcome data from all four communities 
(Chapter 5).  

The exposure measurements include the following: 

1) 24-h mean mass concentrations (µg/m3) of primarily condensation mode (quasi-ultrafine) 
particles, <0.25 µm in diameter (PM0.25), accumulation mode particles, 0.25-2.5 µm in 
diameter (PM0.25-2.5), and coarse mode particles, 2.5-10 µm in diameter (PM2.5-10).  
Particles were collected on Teflon filters with impactor samplers operated at 9 L/min 
(Personal Cascade Impactor Sampler, SKC, Inc., Eighty Four, PA) (Misra et al. 2002; 
Singh et al. 2003).   

2) Continuous total particle number concentration (particles/cm3) (Condensation Particle 
Counter model 3785, TSI Inc, Shoreview, MN).   

3) Hourly PM2.5 elemental carbon (EC) and organic carbon (OC) using the semi-continuous 
OC_EC analyzer (Model 3F, Sunset Laboratory Inc., Tigard, OR) (Arhami et al. 2006; 
Baea et al. 2004); 

4) Hourly black carbon (BC) collected with an Aethelometer (Magee Scientific, Berkeley, 
CA). 

5) Organic compounds analyzed by GC-MS to provide selected tracers of key PM sources 
(e.g., hopanes for vehicular emissions, n-alkanoic acids for photochemically-generated 
SOA, and levoglucosan for biomass smoke).  These were measured from PM0.25 filters 
(previous work) and PM0.25-2.5 filters (see Chapter Two, Task 1); 

6) Detailed inorganic profiles (50 elements) in the filter-collected PM were determined at the 
Wisconsin State Laboratory of Hygiene in Drs. Schauer’s and Shafer’s clean laboratory 
using Magnetic-Sector Inductively Coupled Plasma-Mass Spectroscopy (SF-ICP-MS) 
(Schauer et al. 2006). This included concentrations of many trace metals, including: Fe, 
V, Zn, Cr, Ni, Cu, Pb and Mn extracted from five-day composites of PM0.25, PM0.25-2.5 and 
PM2.5-10 from indoor and outdoor filter samples;  

7) Water soluble organic carbon (WSOC) measured by extracting sections of both PM0.25 
and PM0.25-2.5 Teflon filters in high purity water, filtering, and then conducting analyses 
using a Sievers (GE Instruments) Total Organic Carbon (TOC) Analyzer (Zhang et al. 
2008).  WSOC will serve as a marker of SOA. 

8) Particle oxidative potential from aqueous extracts of the five-day filter composites of 
PM0.25 and PM0.25-2.5 using an in vitro assay of reactive oxygen species (ROS) (see 
Chapter Two, Task 1). 

9) Hourly pollutant gases (O3, NO2, NOx, and CO) using federal reference methods. 

10) Meteorological data were collected at the air sampling trailer and at the indoor 
monitoring location. 
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We used the Sioutas™ Personal Cascade Impactor Sampler (SKC, Inc., Eighty Four, 
PA), to measure daily size-fractionated PM mass concentrations for the analysis of 24-hr 
outcomes (Misra et al. 2002; Singh et al. 2003).  The analysis included particles 0-0.25 µm 
in diameter (PM0.25), accumulation mode particles, 0.25-2.5 µm in diameter (PM0.25-2.5), and 
coarse mode particles, 2.5-10 µm in diameter (PM2.5-10).  PM0.25 is considered “quasi-
ultrafine” because the traditional cutpoint for the ultrafine mode is around 0.1 to 0.2 µm.  
Filter samples of PM0.25, PM0.25-2.5 and PM2.5-10 were collected for 24-hr periods over five days 
each week prior to the blood draw whereas the hourly samples of EC, OC, BC, particle 
number, pollutant gases and weather were collected continuously.  Indoor and outdoor quasi-
ultrafine, accumulation and coarse particle mass concentrations were determined by 
weighing the Teflon substrates using standard methods.  Subsequent to weighing, weekly 
composite samples were prepared from five daily filters for each size mode, and analyzed 
for composition (see Chapters Two and Three, Tasks 1 and 2, respectively).  The 
contributions of PM sources to PM0.25 and PM0.25-2.5 samples were quantified using source 
apportionment techniques as described above (see Chapter Three, Task 2). 

Some samplers were run in duplicate (BC, all gases) and there were almost no 
missing data.  Missing indoor PM mass data ranges from 13-29 out of 240 monitored days 
whereas missing indoor particle number, EC and OC data ranges from 37-43 out of 336 
days.  Missing outdoor PM mass data ranges from 14-23 out of 240 monitored days whereas 
missing particle number, EC and OC ranges from 33-58 out of 336 days.  Because we 
require at least 75% of hours or days be non-missing in exposure averaging times (e.g., 3 
days out of a 4-day average) this results in fewer missing data. 

We estimated the mass of total organic carbon (OC) attributed to secondary OC 
(SOC, a surrogate of photochemically-derived OC) and the mass of OC attributed to primary 
OC (OCpri, attributable to primary combustion sources, mostly traffic in the study regions).  
These estimates were based on the EC tracer method that uses EC as a tracer of primary 
combustion generated OC, and are described elsewhere (Polidori et al. 2007; Cabada et al. 
2004; Lim et al. 2003; Turpin et al. 1995).  OCpri and EC are assumed to be emitted from the 
same combustion sources.  Data points primarily during rush hour traffic are characterized 
by high CO and NO peaks and are thus used to identify times dominated by primary sources 
with less formation of secondary aerosols.  The primary OC/EC ratio that characterizes each 
month of study was determined by regressing the OC and EC data we collected during these 
periods. Deming linear least-squares regression (Cornbleet and Gochman 1979) was used 
since the uncertainties in OC and EC were assumed equal.  OCpri and SOC were estimated 
by the following expressions: 

 
OCpri = a × EC + b   
 
SOC = OC - OCpri,   
 
where a = (OC/EC)pri, which is the characteristic primary OC/EC ratio for the study 

area, and b = non-combustion primary OC.  Usually, the SOC values estimated by this 
method vary with season and sampling location and are higher during afternoon hours in the 
warm seasons with photochemical smog episodes. 

We also estimated indoor PM exposures of outdoor origin using the following 
methods that were also used in Delfino et al. 2008.  We found in that study that associations 
were stronger for indoor exposures to PM of outdoor origin than uncharacterized indoor 
exposures.  We concluded that outdoor home measurements are sufficient to capture the 
cardiovascular health impacts of outdoor air pollutants even though people spend most of 
their time indoors.  

First, air exchange rates and infiltration factors (Finf) at each site were determined.  
The average AERs calculated during CHAPS at the four retirement communities ranged 
from 0.21 to 0.40 hr-1 (see Arhami et al. 2009 for more details).  Estimated Finf and measured 
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particle concentrations were then used in a single compartment mass balance model to 
assess the contributions of indoor and outdoor sources to measured indoor EC, OCpri, SOC, 
and PN (Polidori et al. 2007).  Indoor exposures to PM of outdoor origin are relevant to 
personal PM exposures given that people generally spend most of their time indoors.  The 
combined indoor and outdoor exposure data we use here are those data where we were 
able to estimate indoor concentrations of outdoor origin (PN, EC, OCpri, and SOC) from data 
from our work with Constantinos Sioutas and colleagues at the University of Southern 
California (Polidori et al. 2007). 

A single compartment mass balance model (Meng et al. 2005; Polidori et al. 2007; 
Wallace 1996) was used to assess the mean contributions of indoor and outdoor sources to 
measured indoor OC, EC, PM2.5 and PN concentrations. Under the assumption of perfect 
instantaneous mixing and that the factors affecting the indoor concentrations were constant 
or changed slowly with time, the steady state indoor concentration of any particulate species 
can be described by the following equation: 

 
                                                                                                                                                        
                  
 
where, Cin is the indoor concentration of the species of interest (µg/m3), Cout is the 

corresponding outdoor concentration (µg/m3), Finf is the corresponding infiltration factor 
(dimensionless), Cig is the indoor-generated concentration for the same species found 
indoors and Cog is the outdoor-generated concentration for the same species found indoors. 
Typically, in the mass balance model Cig is expressed by Qi/V(a+k), where Qi is the indoor 
source strength (µg/h), and V is the house volume (m3). 

The infiltration factor (Finf, defined as the equilibrium fraction of ambient particles that 
penetrate indoors and remain suspended) is a key determinant of the indoor concentrations 
of particulate species. Finf is described by the following eq: 
 

Finf = P(AER)/(AER+k)       
 
where, P is the penetration coefficient (dimensionless). Finf for particles varies with 

particle composition, particle size and volatility, surface to volume ratio of the indoor 
sampling location and indoor air-speed.  Finf is typically highest for non-volatile species such 
as EC (Lunden et al. 2003; Sarnat et al. 2006).  Finf for OC, EC, and PN were estimated from 
the corresponding indoor/outdoor concentration ratios. In particular, hourly indoor/outdoor 
ratios (I/O) for each particulate species were determined at times when no indoor particle 
sources, such as cooking or cleaning, were likely to be present (i.e. only I/O ratios ≤ 1 were 
considered).  Daily Finf estimates were then obtained by averaging these segregated hourly 
I/O ratios.  Mean Finf for each group and phase of the study were also determined by 
averaging the corresponding daily values.  To verify these results the same analysis of the 
I/O concentration ratios was then repeated by using only nighttime data (from 00:00 to 06:00 
am), for at this time resident activities causing indoor particle generation were expected to 
be minimal.   

The indoor-outdoor air exchange rates (AER; h-1) at each community site were 
estimated from indoor CO measurements collected during periods affected by a dominant 
indoor source.  We considered in our calculations only time-periods when the CO 
concentration peaked at values significantly higher than the background CO level and that 
was followed by a non-source period (mostly observed in the morning and probably 
associated with cooking activities).  Assuming an exponential decay of particles, that AER 
and outdoor concentrations are constant during the decay period, and that indoor 
concentrations are well mixed, then: 

Ct = e-(AER+k)t C0        or 
ln Ct = -(AER+k)t + ln C0 

in

P(AER)CoutC =+
kAER+

= igogigout CCCCF +=+infkAER+
i VQ /

in

P(AER)CoutC =+
kAER+ kAER+

= igogigout CCCCF +=+inf igogigout CCCCF +=+infkAER+
i VQ /

kAER+ kAER+
i VQ /i VQ /
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where, Ct is the indoor CO concentration after time t (after the decay period), C0 is 

the initial peak CO concentration (right after CO emission) and k is the indoor loss rate for 
particles or gases (h-1) (Abt et al 2000).  Since k is rather negligible for CO, it was possible to 
estimate the AERs for the sites directly from the above-mentioned eq (2) by regressing ln Ct 
over ln C0. 

 
 

4.1.3 Analysis 
   

We first evaluated the distributions of the Biogazelle normalized gene expression 
concentrations (all genes were non-normally distributed) after applying the natural logarithm.  
If the distribution was sufficiently normal then the log-transformed gene expression data for 
that individual gene was retained for analysis.  Otherwise, for the genes that were not log-
normally distributed (AHR, CCL2, F3, GCLC, IL6, IL6R, IL8, NQO1, SELP, TNF, 
TNFRSF1B), we applied an autoscale standardization method developed specifically for 
these cases (Willems et al. 2008). This required centering the log-transformed gene 
expression data relative to the subject-specific mean and scaling the data by the ratio of the 
individual to the group standard deviations. This transformation normalized the distributions 
for the purposes of model fitting and parameter estimation.  For the autoscaled genes the 
fold-change estimates presented here are interpreted relative to changes in the predictor of 
interest scaled by the ratio of the individual to the group standard deviation of the outcome. 

 We developed predictive models of expression levels for each gene as a function of 
the exposure concentration.  Each model was fitted and validated using around 360 person-
observations per gene on average in 43 subjects.  We evaluated all available exposure 
measurements to gain a clearer understanding of the importance of the temporality of 
associations, and PM components (e.g., organic carbon fractions, PAH and metals), size 
fractions (e.g., UFP), and sources (e.g., primary traffic emissions).  These main explanatory 
variables are continuous-scaled. 

 To analyze the within-subject relation of gene expression to air pollution exposures 
we used the general linear mixed effects model (Diggle et al. 2000).  It estimates both fixed 
and random effects and accounts for longitudinal repeated measurements taken on each 
subject (up to 12).  Random effects for each subject (random intercepts) reflect the basic 
principle that measurements taken for the same individual are likely to be more similar to 
each other than to measurements taken on different individuals.  We estimated random 
intercepts by subject, nested within season and community, to account for correlated 
within-individual repeated measures. 

 Specifically, a general mixed model for a gene of interest may be described as 
follows.  Let the index i indicate the retirement community (i = 1,2,3), j indicate season 
(phase) within year 1 and 2 (j = 1,2,3,4) nested within community, k indicate subject 
(k=1,…,43) within community, and m indicate the repeated gene expression measurement 
(m = 1,…,12).  Then a given gene measurement, Yi,j,k,m was related to the following two types 
of variables:   

1) a vector of time dependent air pollutant exposure levels, Xi,j,k,m representing time periods 
preceding each gene measurement.  Interaction terms may be included by multiplying 
elements of this vector to form additional components (e.g., genotypes); and  

2) a vector of time-independent subject characteristics (Zi,j,k), specifically genetic variation in 
selected genes.   

The basic model can then be written as:  
  Yi,j,k,m = ai,j,k + αZi,j,k,m + βxi,j,k,m + ε i,j,k,m   (1) 
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where ai,j,k  is the random subject intercept, and εi,j,k,m  denotes random within-person error in 
the gene expression measurement assumed (initially) to be an independent normally 
distributed random variable.  Model estimation used restricted maximum likelihood to 
estimate variance components (Lindstrom and Bates, 1988).  The best fitting covariance 
structure was autoregressive of order 1, as determined by the Akaike's information criterion.  
Here the primary interest is on the parameter β, which relates the air pollution concentration 
to gene expression.   

Pollutant concentrations were averaged for 1 to 7 days preceding blood draws.  
Exposures were mean-centered by season and community, as in our previous analyses 
(Delfino et al. 2010). This was done to adjust for between-subject and between-phase 
exposure effects because exposures were measured in two separate seasonal phases and 
at four retirement communities (Sheppard et al. 2005). This assured that our results reflected 
relations of gene expression to within-subject, within-phase mean centered exposure.  
Temperature effects were adjusted a priori for the same averaging time as the air pollutant. 
We tested raw as compared with smoothed penalized spline terms of temperature adjusting 
for potential nonlinear temperature associations.  Spline terms did not improve the model fit 
over raw temperature and were not retained.  Regression models were not adjusted for 
individual time-invariant characteristics because the mixed models estimate within-subject 
associations with variation in air pollution levels.  Differences between subjects in time 
invariant characteristics (e.g., gender, race/ethnicity) are partly accounted for by the random 
subject intercepts.  Infections could alter transcription levels along inflammatory and other 
pathways of importance to the gene expression results. Therefore, person-weeks when 
subjects reported any infections were excluded from analyses (N = 11 person-weeks, 3% of 
total). Results were expressed for interquartile range (IQR) increases in air pollutant levels to 
standardize comparisons between the pollutants.   

An evaluation of many models such as the present analysis can produce false 
positives or type I errors due to multiple comparisons.  We quantified the extent of this by 
using a permutation analysis to simulate the distribution of the Wald statistic for each 
estimate of association under the strong null hypothesis that there is no relationship between 
gene expression level and air pollutant level.  Gene expression level outcomes were 
permuted 26,500 times for each and every exposure, within each individual subject.  We 
then re-ran our mixed effects model and compared our observed Wald statistic to the critical 
value corresponding to a family-wise level .05 test resulting from the simulated distribution 
after accounting for all comparisons. This computationally intensive method was employed 
rather than the more conservative Bonferroni adjustment because air pollutant exposures 
are correlated, and as such, the resulting tests are also likely to be correlated.  Although the 
permutation correction approach does partially account for the observed correlation among 
tests, it is likely to produce a conservative inference because it bounds the family-wise type I 
error relative to the maximum observed statistic across all comparisons.  This method 
demonstrated that our p-values did not hold up to this somewhat conservative adjustment, 
as expected. This is may be attributable to the limited number of subjects and large number 
of models. We performed this simulation for a two gene subset (IL1B and NFE2L2) and 
present one, NFE2L2, as an example in the   appendix (Figure S1 and Table S1).  The 
observed regression estimates presented in this report are adjusted with the permutation 
correction and it should be understood that these p-values are likely to be non-significant 
when adjusting the family-wise type I error rate at level .05.  Therefore, we consider the 
observed p-values more as a measure of potential effects for future hypothesis generation.  

 
4.2 Results 

Population and Exposures 
Baseline subject characteristics are shown in Table 4.2. Subjects were elderly (about 

85 years of age, on average) and primarily white reflecting the racial makeup of the 
retirement communities that volunteered to participate.  In this population of subjects with 
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CAD the high prevalence of congestive heart failure, hypertension, hypercholesterolemia, 
and use of cardiovascular medications was as expected.  

Table 4.3 shows descriptive statistics of outdoor air pollutant exposures measured at 
the three retirement communities used in the gene expression analysis and indoor air 
pollution data are described in Table 4.4.  Tables 4.5 and 4.6 show results for all 4 
communities (this exposure data were used in Chapter 5 for the analysis of soluble platelet 
selectin).  In addition, Chapter 3 (Task 2, and our previous publications (Arhami et al. 2009, 
2010; Polidori et al. 2007) provide more detailed analysis of indoor vs. outdoor exposures 
and differences across the four retirement communities.  

Correlations between outdoor air pollutants are shown in Tables 4.7 and 4.8, and 
they are similar for indoor exposures (not shown).  Briefly, the correlation matrix for air 
pollutants measured continuously showed that traffic-related (primary) air pollutants (EC, 
BC, OCpri, NOX and CO) were strongly correlated with each other but were weakly correlated 
with the photochemically-related secondary pollutants (O3 and SOC). The correlation matrix 
for air pollutant particle components measured from the 5-day PM composites in each size 
fraction shows that correlations between other components were strongest within the same 
size fraction. As previously observed by us (Delfino et al. 2010a), PM0.25 hopanes and PM0.25 
PAH had a Spearman correlation coefficient of 0.77.  This supports the likelihood that PAH is 
largely attributable to traffic sources in the Los Angeles study area. Because of strong 
correlations between the primary air pollutants, our regression models test one pollutant at a 
time. 
Table 4.2. Characteristics of Subjects in the Gene Expression Analyses (N=43).  
Characteristic Value 

Age (years Mean ± SD) 84.7 ± 5.83 

Female 
 

53.5% 

Race  
 

 

 

Hispanic 2.3% 

 

White 97.7% 

Cardiovascular History 

 

 

Confirmation of CAD 

 

  

Myocardial Infarction 44.2% 

  

Coronary artery bypass graft                      
or angioplasty 32.6% 

  

Positive angiogram or stress test 16.3% 

  

Clinical diagnosis 7.0% 

 

Congestive heart failure 27.9% 

 

Hypertension (by history) 76.7% 

 

Hypercholesterolemia (by history) 67.4% 

Medications 

 

 

ACE inhibitors and Angiotensin II receptor 
antagonists 41.9% 

 

HMG-CoA reductase inhibitors (statins) 51.2% 
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Table 4.3. Descriptive statistics of outdoor air pollutant exposures in three retirement 
communities of the Los Angeles Air Basin.  

Exposurea Mean (SD) Median IQR Min/Max 
PM0.25 Mass (μg/m3) 9.89 (3.97)  9.25 6.27   3.31/ 19.3 
PM0.25 Macrophage ROS  
    (μg Zymosan equivalents/m3) 41.4 (38.5) 21.3 56.2 2.59/ 147 

PM0.25 Organic Components     
    WSOC (μg/m3)b 0.50 (0.22)  0.49 0.28   0.08/ 1.01 
    PAH total (ng/m3) 1.13 (0.48)  0.97 0.46   0.55/ 2.70 
    PAH LMW (ng/m3) 0.41 (0.15)  0.36 0.16   0.21/ 0.74 
    PAH MMW (ng/m3) 0.37 (0.18)  0.34 0.18   0.11/ 0.96 
    PAH HMW (ng/m3) 0.35 (0.20)  0.30 0.27   0.13/ 1.01 
    Hopanes (ng/m3) 0.33 (0.31)  0.25 0.44   0.06/ 1.57 
    Organic Acids (μg/m3) 0.26 (0.22)  0.19 0.35   0.06/ 0.96 
PM0.25-2.5 Mass (μg/m3) 12.2 (5.31) 11 7.14 3.89/ 28.1 
PM0.25-2.5 Macrophage ROS  
    (μg Zymosan equivalents/m3) 84.9 (55.8) 84 97.8 9.03/ 203 

PM0.25-2.5 Organic Components     
    WSOC (μg/m3)b 0.50 (0.29) 0.48 0.36 0.16/ 1.37 
    PAH total (ng/m3) 0.53 (0.17) 0.47 0.26 0.36/ 1.01 
    PAH LMW (ng/m3) 0.17 (0.03) 0.15 0.03 0.14/ 0.30 
    PAH MMW (ng/m3) 0.14 (0.09) 0.09 0.10 0.08/ 0.39 
    PAH HMW (ng/m3) 0.22 (0.06) 0.21 0.07 0.13/ 0.41 
    Hopanes (ng/m3) 0.49 (0.29) 0.39 0.25 0.16/ 1.45 
    Organic Acids (ng/m3) 48.8 (38.5) 40.7 41.6 9.74/ 150 
PM2.5 components     
    Elemental carbon (μg/m3) 1.63 (0.60) 1.58 0.82 0.36/ 3.34 
    Organic carbon (μg/m3) 6.81 (2.80) 6.09 3.57 2.46/ 13.8 
    Black carbon (μg/m3) 1.88 (0.76) 1.76 0.91 0.50/ 4.51 
    Primary organic carbon (μg/m3) 4.37 (2.11) 3.62 2.39 1.41/ 10.6 
    Secondary organic carbon (μg/m3) 2.76 (1.41) 2.61 1.82 0.27/ 7.65 
    Particle number (particle no./cm3) 14,686 (5,910) 13,331 6,729 2,019/ 30,180 
Gases      
    NO2 (ppb) 31.8 (9.58) 31.3 13.2 9.91/ 58.1 
    NOx (ppb) 56.5 (30.3) 50.0 35.3 11.8/ 183 
    CO (ppm) 0.63 (0.27) 0.57 0.38 0.21/ 1.68 
    O3 (ppb) 24.9 (11.4) 23.5 15.2 3.83/ 60.7 

Temperature (°C) 19.6 (5.43) 19.6 8.92 8.42/ 31.4 
IQR: interquartile range; WSOC: water soluble organic carbon; PAH: polycyclic aromatic 
hydrocarbons; LMW: low molecular weight (2-3 ring); MMW: medium molecular weight (4 ring); HMW: 
high molecular weight (>4 ring). ROS: reactive oxygen species. 
 
a These data refer to the three communities where gene expression analyses were performed. 

PMROS and organic component measurements are from extracts of 5-day composites of particle 
filters. PM mass, PM2.5 components and gas exposure data are from daily average measurements. 

b  WSOC (in μg C/m3) was multiplied by 1.8 to yield mass of organic components in μg/m3according  
to Turpin and Lim (2001).  
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Table 4.4. Descriptive statistics of indoor air pollutant exposures in three retirement 

communities of the Los Angeles Air Basin.  
Exposurea Mean (SD) Median IQR Min/Max 
PM0.25 Mass (μg/m3) 10.6 (11.8) 8.46 3.86 3.92/ 69.9 
PM0.25 Macrophage ROS  
    (μg Zymosan equivalents/m3) 33.6 (34.2) 22.0 40.7 2.13/ 156 

PM0.25 Organic Components     
    WSOC (μg/m3)b 0.56 (0.31) 0.54 0.46 0.09/ 1.25 
    PAH total (ng/m3) 1.00 (0.44) 0.86 0.54 0.33/ 2.20 
    PAH LMW (ng/m3) 0.34 (0.10) 0.34 0.13 0.12/ 0.55 
    PAH MMW (ng/m3) 0.32 (0.16) 0.30 0.16 0.09/ 0.69 
    PAH HMW (ng/m3) 0.35 (0.23) 0.27 0.26 0.10/ 0.99 
    Hopanes (ng/m3) 0.23 (0.16) 0.19 0.26 0.05/ 0.56 
    Organic Acids (μg/m3) 0.80 (0.81) 0.49 1.23 0.06/ 2.77 
PM0.25-2.5 Mass (μg/m3) 6.90 (3.07) 6.33 4.55 2.24/ 14.3 
PM0.25-2.5 Macrophage ROS  
    (μg Zymosan equivalents/m3) 56.8 (39.3) 52.4 70.7 3.16/ 152 

PM0.25-2.5 Organic Components     
    WSOC (μg/m3)b 0.44 (0.28) 0.42 0.34 0.02/ 1.53 
    PAH total (ng/m3) 0.48 (0.18) 0.42 0.13 0.35/ 1.15 
    PAH LMW (ng/m3) 0.16 (0.03) 0.15 0.02 0.14/ 0.27 
    PAH MMW (ng/m3) 0.12 (0.06) 0.09 0.02 0.08/ 0.32 
    PAH HMW (ng/m3) 0.21 (0.10) 0.18 0.09 0.13/ 0.66 
    Hopanes (ng/m3) 0.26 (0.13) 0.26 0.18 0.10/ 0.62 
    Organic Acids (ng/m3) 42.8 (38.0) 29.6 35.6 8.29/ 184 
PM2.5 components     
    Elemental carbon (μg/m3) 1.36 (0.47) 1.31 0.73 0.40/ 2.54 
    Organic carbon (μg/m3) 6.16 (2.33) 5.63 2.64 2.47/ 12.6 
    Primary organic carbon (μg/m3) 3.33 (2.30) 2.58 1.63 0.60/ 10.9 
    Secondary organic carbon (μg/m3) 2.20 (1.26) 1.85 1.63 0.10/ 6.36 
    Particle number (particle no./cm3) 11,361 (7,793) 10,618 9,795 815/ 35,946 
Gases      
    NO2 (ppb) 28.1 (10.0) 28.5 15.6 5.86/ 52.0 
    NOx (ppb) 55.0 (32.2) 47.2 38.2 10.2/ 196 
    CO (ppm) 0.71 (0.29) 0.65 0.33 0.23/ 1.91 
Temperature (°C) 24.1 (1.49) 23.9 1.9 18.5/ 28.8 
IQR: interquartile range; WSOC: water soluble organic carbon; PAH: polycyclic aromatic 
hydrocarbons; LMW: low molecular weight (2-3 ring); MMW: medium molecular weight (4 ring); HMW: 
high molecular weight (>4 ring). ROS: reactive oxygen species. 
 
a  These data refer to the three communities where gene expression analyses were performed.  PM 

ROS and organic component measurements are from extracts of 5-day composites of particle 
filters. PM mass, PM2.5 components and gas exposure data are from daily average measurements.  

b  WSOC (in μg C/m3) was multiplied by 1.8 to yield mass of organic components in μg/m3 according 
to Turpin and Lim (2001).  
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Table 4.5. Descriptive statistics of outdoor air pollutant exposures in 4 retirement 

communities of the Los Angeles Air Basin.  
Exposurea Mean (SD) Median IQR Min/Max 

PM0.25 Mass (μg/m3) 9.11 (3.95) 8.46 7.37 3.31/19.34 

PM0.25 Macrophage ROS  
    (μg Zymosan equivalents/m3) 36.3 (34.9) 20.1 35.4 2.6/147.2 

PM0.25 Organic Components     

    WSOC (μg/m3)b 0.45 (0.23) 0.47 0.37 0.06/1.01 

    PAH total (ng/m3) 0.96 (0.50) 0.90 0.56 0.40/2.70 

    PAH LMW (ng/m3) 0.36 (0.15) 0.34 0.19 0.17/0.74 

    PAH MMW (ng/m3) 0.30 (0.19) 0.28 0.24 0.08/0.96 

    PAH HMW (ng/m3) 0.30 (0.20) 0.23 0.21 0.11/1.01 

    Hopanes (ng/m3) 0.26 (0.30) 0.08 0.35 0.06/1.57 

    Organic Acids (μg/m3) 0.24 (0.20) 0.17 0.29 0.06/0.96 

PM0.25-2.5 Mass (μg/m3) 11.0 (5.36) 9.83 8.36 2.28/28.1 

PM0.25-2.5 Macrophage ROS  
    (μg Zymosan equivalents/m3) 75.0 (53.1) 64.6 86.4 7.1/203.0 

PM0.25-2.5 Organic Components     

    WSOC (μg/m3)b 0.46 (0.27) 0.40 0.30 0.09/1.37 

    PAH total (ng/m3) 0.49 (0.16) 0.43 0.16 0.33/1.01 

    PAH LMW (ng/m3) 0.16 (0.03) 0.15 0.03 0.13/0.30 

    PAH MMW (ng/m3) 0.13 (0.08) 0.09 0.06 0.08/0.39 

    PAH HMW (ng/m3) 0.20 (0.07) 0.20 0.10 0.12/0.41 

    Hopanes (ng/m3) 0.40 (0.29) 0.34 0.32 0.10/1.45 

    Organic Acids (ng/m3) 41.6 (37.2) 28.2 42.6 9.74/150 

PM2.5 components     
    Elemental carbon (μg/m3) 1.52 (0.62) 1.47 0.90 0.32/3.34 

    Organic carbon (μg/m3) 7.78 (3.68) 6.92 5.20 2.46/18.7 

    Black carbon (μg/m3) 1.67 (0.79) 1.60 1.02 0.29/4.51 

    Primary organic carbon (μg/m3) 5.34 (2.92) 4.27 4.37 1.41/12.5 

    Secondary organic carbon (μg/m3) 2.90 (1.54) 2.64 2.14 0.27/7.65 

    Particle number (particle no./cm3) 12,817 (5,889) 11,900 6,351 2,019/30,180 

Gases      
    NO2 (ppb) 27.5 (11.6) 28.0 17.4 2.91/58.1 

    NOx (ppb) 46.6 (31.4) 41.2 42.3 3.2/184 

    CO (ppm) 0.53 (0.30) 0.47 0.42 0.01/1.68 

    O3 (ppb) 27.1 (11.5) 25.7 17.4 3.8/60.7 

Temperature (°C) 18.7 (5.89) 18.4 8.79 3.25/31.4 

IQR: interquartile range; WSOC: water soluble organic carbon; PAH: polycyclic aromatic 
hydrocarbons; LMW: low molecular weight (2-3 ring); MMW: medium molecular weight (4 ring); HMW: 
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high molecular weight (>4 ring). ROS: reactive oxygen species. 
 
a    PM ROS and organic component measurements are from extracts of 5-day composites of particle 

filters. PM mass, PM2.5 components and gas exposure data are from daily average measurements.  
b    WSOC (in μg C/m3) was multiplied by 1.8 to yield mass of organic components in μg/m3 according 

to Turpin and Lim (2001).  
 
Table 4.6. Descriptive statistics of indoor air pollutant exposures in 4 retirement 

communities of the Los Angeles Air Basin.  
Exposurea Mean (SD) Median IQR Min/Max 
PM0.25 Mass (μg/m3) 9.5 (10.3) 7.11 4.84 3.92/69.9 
PM0.25 Macrophage ROS  
    (μg Zymosan equivalents/m3) 29.6 (31) 19.7 28.4 2.13/156 

PM0.25 Organic Components     
    WSOC (μg/m3)b 0.48 (0.30) 0.39 0.47 0.03/ 1.25 
    PAH total (ng/m3) 0.85 (0.46) 0.76 0.62 0.33/ 2.20 
    PAH LMW (ng/m3) 0.30 (0.11) 0.28 0.16 0.12/ 0.55 
    PAH MMW (ng/m3) 0.26 (0.17) 0.23 0.25 0.09/ 0.69 
    PAH HMW (ng/m3) 0.29 (0.22) 0.20 0.26 0.10/ 0.99 
    Hopanes (ng/m3) 0.18 (0.16) 0.07 0.24 0.05/ 0.56 
    Organic Acids (μg/m3) 0.68 (0.74) 0.37 1.05 0.06/ 2.77 

PM0.25-2.5 Mass (μg/m3) 6.00 (3.20) 4.96 4.61 1.07/ 14.3 

PM0.25-2.5 Macrophage ROS  
    (μg Zymosan equivalents/m3) 48.7 (38.1) 41.7 51.4 1.57/ 152 

PM0.25-2.5 Organic Components     
    WSOC (μg/m3)b 0.38 (0.27) 0.31 0.33 0.02/ 1.53 
    PAH total (ng/m3) 0.46 (0.16) 0.39 0.10 0.34/ 1.15 
    PAH LMW (ng/m3) 0.16 (0.03) 0.15 0.02 0.14/ 0.27 
    PAH MMW (ng/m3) 0.11 (0.06) 0.09 0.01 0.08/ 0.32 
    PAH HMW (ng/m3) 0.19 (0.09) 0.16 0.07 0.12/ 0.66 
    Hopanes (ng/m3) 0.26 (0.15) 0.22 0.19 0.10/ 0.74 
    Organic Acids (ng/m3) 36.4 (35.2) 24.1 29.0 8.03/ 184 

PM2.5 components     
    Elemental carbon (μg/m3) 1.31 (0.44) 1.29 0.6 0.40/ 2.54 
    Elemental carbon of OO (μg/m3) 1.08 (0.38) 1.01 0.54 0.29/ 2.54 
    Organic carbon (μg/m3) 7.56 (3.58) 6.42 5.11 2.47/ 17.2 
    Primary organic carbon of OO (μg/m3) 4.51 (3.25) 3.13 5.28 0.60/ 12.5 
    Secondary organic carbon of OO (μg/m3) 2.47 (1.69) 2.05 1.84 0.10/ 10.9 
    Particle number (particle no./cm3) 9,434 (7,279) 6,051 8,321 814/ 35,946 

Gases      
    NO2 (ppb) 24.2 (11.2) 22.9 19.0 5.86/ 51.9 
    NOx (ppb) 45.8 (32.3) 35.9 38.8 7.99/ 196 
    CO (ppm) 0.67 (0.27) 0.62 0.29 0.23/ 1.91 

Temperature (°C) 24.3 (1.57) 24.1 2.04 18.5/ 29.3 
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IQR: interquartile range; WSOC: water soluble organic carbon; PAH: polycyclic aromatic 
hydrocarbons; LMW: low molecular weight (2-3 ring); MMW: medium molecular weight (4 ring); HMW: 
high molecular weight (>4 ring). ROS: reactive oxygen species.  OO: outdoor origin. 

 
a    PM ROS and organic component measurements are from extracts of 5-day composites of particle 

filters. PM mass, PM2.5 components and gas exposure data are from daily average measurements.  
b    WSOC (in μg C/m3) was multiplied by 1.8 to yield mass of organic components in μg/m3 according 

to Turpin and Lim (2001).  

 

Table 4.7. Spearman correlation matrix for air pollutants measured daily.  
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Elemental 
Carbon 1         
Organic 
Carbon 0.61 1        

Black 
Carbon 0.89 0.63 1       
Primary 
Organic 
Carbon 

0.97 0.65 0.88 1      

Secondary 
Organic 
Carbon 

-0.03 0.72 0.07 0.00 1     

Particle 
Number 0.50 0.27 0.40 0.47 -0.08 1    

NOX 0.82 0.46 0.86 0.79 -0.09 0.63 1   
Carbon 

Monoxide 0.78 0.59 0.79 0.75 0.11 0.45 0.82 1  
Ozone -0.39 -0.05 -0.38 -0.36 0.26 -0.38 -0.53 -0.29 1 
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Table 4.8. Spearman correlation matrix for PM air pollutants measured weekly. 
 

 PM0.25 exposure variables PM0.25-2.5 exposure variables 

   Pa
rt

ic
le

 
m

as
s 

O
xi

da
tiv

e 
po

te
nt

ia
l 

 W
SO

C
 

PA
H

 

PA
H

 L
M

W
 

PA
H

 M
M

W
 

PA
H

 H
M

W
 

H
op

an
es

 

O
rg

an
ic

 
A

ci
ds

 

Pa
rt

ic
le

 
m

as
s 

O
xi

da
tiv

e 
po

te
nt

ia
l 

 W
SO

C
 

PA
H

 

PA
H

 L
M

W
 

PA
H

 M
M

W
 

PA
H

 H
M

W
 

H
op

an
es

 

O
rg

an
ic

 
A

ci
ds

 

PM
0.
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ria
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Particle mass 1                  
Oxidative 
potentiala 0.42 1                 

 WSOC 0.41 0.29 1                
PAH 0.37 0.25 0.29 1               

PAH LMW 0.50 0.46 0.35 0.86 1              
PAH MMW 0.37 0.19 0.23 0.97 0.80 1             
PAH HMW 0.27 0.03 0.27 0.91 0.65 0.89 1            

Hopanes 0.22 -0.00 0.37 0.77 0.64 0.73 0.78 1           
Organic 

Acids -0.13 -0.11 0.08 0.20 0.05 0.14 0.40 0.32 1          

PM
0.

25
-2

.5
 e

xp
os

ur
e 

va
ria

bl
es

 Particle mass 0.26 0.16 0.57 0.25 0.32 0.21 0.24 0.42 0.22 1         
Oxidative 
potential 0.19 0.12 0.58 0.03 0.18 -0.03 -0.02 0.24 0.19 0.81 1        

 WSOC 0.15 0.25 0.50 0.08 0.27 0.06 -0.04 0.15 -0.04 0.70 0.73 1       
PAH 0.08 0.04 0.32 0.56 0.36 0.57 0.66 0.52 0.17 0.22 -0.12 -0.05 1      

PAH LMW -0.02 0.03 0.27 0.16 0.06 0.17 0.27 0.30 0.18 0.24 -0.01 -0.10 0.74 1     
PAH MMW -0.10 -0.09 0.13 0.31 0.12 0.33 0.44 0.40 0.22 0.12 -0.21 -0.15 0.85 0.83 1    
PAH HMW 0.10 0.11 0.29 0.63 0.48 0.61 0.67 0.57 0.15 0.21 -0.11 -0.06 0.93 0.62 0.72 1   

Hopanes 0.20 0.10 0.45 0.73 0.59 0.68 0.72 0.58 0.17 0.41 0.18 0.32 0.68 0.31 0.46 0.65 1  
Organic 

Acids -0.05 0.23 0.18 0.39 0.34 0.37 0.38 0.25 0.14 0.47 0.29 0.45 0.37 0.22 0.29 0.37 0.54 1 

a Macrophage ROS production from the 5-day PM extracts. 
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Regression Models: Gene Expression and Air Pollution 
We found that expression levels of five genes were too low for quantification 

(CYP1A1, PON1, SOD1, NOX1, and XDH).  Therefore, we analyzed the expression levels 
for the remaining 30 genes from 43 subjects.  The overall repeated measures sample size 
was 360 person-observations per gene on average.  Findings from the linear mixed-effects 
models showed that daily outdoor traffic-related air pollutants were associated with the 
expression of genes in several key a priori-selected pathways including Nrf2-mediated 
oxidative stress response, inflammation, and platelet activation (Figure 4.2). Many of the 
95% CIs for the fold change estimates included 1.0 (i.e., p-values were not < 0.05).  
Nevertheless, associations were consistent with respect to their magnitude and direction 
(positive) across each of the genes within the pathways.  In particular, we found positive 
associations of primary pollutants (EC, BC, OCpri, and NOX) with the Nrf2 gene (NFE2L2) as 
well as the Nrf2-mediated or linked genes (HMOX1, NQO1, and SOD2).  The largest 
association of these air pollutants with NFE2L2 was for the 7-day average of OCpri (per IQR 
increase there was a 2.51 fold-change, 95% confidence interval [CI]: 1.18-5.53,).  Traffic-
related air pollutants were also positively associated, and often significantly so, with 
increased expression of IL1B, SELP, and CYP1B1 whose transcription is not directly Nrf2-
mediated. The largest associations found for SELP and CYP1B1 were again with OCpri.  Per 
IQR increase in 5-day OCpri there was a 1.53 fold-change in SELP (95% CI: 1-2.35), and a 
1.96 fold-change in CYP1B1 (95% CI: 1.01-3.80).  

Figure 4.3 shows relations of gene expression fold-change estimates with PM 
outdoor concentrations from the 5-day size-fractionated PM composite samples (from Tasks 
1-2), including total mass concentrations, chemical components, and the oxidative potential 
of particle extracts.  Findings for PAH from particle extracts in Figure 4.3 are consistent with 
findings for the other markers of exposure to products of fossil fuel combustion (EC, BC, and 
primary OC) (Figure 4.2).  Generally we found that PAH was positively associated with gene 
expression levels of CYP1B1, HMOX1, IL1B, NQO1, NFE2L2, SELP, and SOD2.  There did 
not appear to be substantial differences in association by PAH molecular weight (low, 
medium and high).  The fold change for an IQR increase were not particularly large with the 
strongest of these associations between IL1B expression and exposure to PM0.25 PAH 
showing a 1.33 fold change in IL1B (95% CI: 1.08-1.64) per IQR increase in PM0.25 high 
molecular weight PAH.  Accumulation mode high molecular weight PAH was significantly 
and positively associated with NQO1 (1.18 fold-change, 95% CI: 1.06-1.31, per IQR 
increase) and NFE2L2 (1.34 fold-change increase, 95% CI: 1.01-1.77, per IQR increase). 
Although non-significant, accumulation mode high molecular weight PAH was also positively 
associated with CYP1B1, HMOX1, and SELP.   

Figure 4.3 also shows that PM0.25 in vitro ROS was associated with increases in 
NFE2L2 gene expression (1.15 fold-change per IQR increase in PM0.25 ROS, 95% CI: 0.98 – 
1.34).  NQO1 and CYP1B1 were also positively associated with PM0.25 in vitro ROS, 
whereas PM0.25-2.5 ROS was only associated with CYP1B1.  PM from biomass burning was 
significantly associated with HMOX1 (not shown), and was positively, but not significantly, 
associated with expression of several other genes in pathways including Klf2-mediated 
immune response (KLF2 and IL1B), endoplasmic reticulum stress (ATF6 and XBP1), 
endogenous ROS production (MPO) and other genes that like HMOX1 are also involved in 
Nrf2-mediated oxidative stress response (ATF4 and GCLM).  Secondary air pollutant 
exposures were not associated with gene expression, including size-fractionated particle 
components (SOA estimated from WSOC, and organic acids), PM2.5 SOC, and O3 (Table 
4.9).  Other air pollutants measured (metals, total OC and CO) were not associated with the 
expression of the target genes (not shown).  We also found no trends in association with any 
pollutants suggesting the down regulation of genes.  

Models including the indoor exposures were largely consistent with associations 
found for outdoor exposures discussed above, but with generally wider confidence intervals 
(Figures 4.4 and 4.5).  For the traffic-related exposures, there was consistency between 
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models for associations with indoor primary OC of outdoor origin and with outdoor primary 
OC as well as with indoor and outdoor NOx (Figure 4.4). There was less consistency for 
associations with indoor EC of outdoor origin and with outdoor EC.  Indoor EC of outdoor 
origin was not more strongly positively associated with gene expression than total indoor EC 
and both were largely nonsignificant.  

Figure 4.5 shows relations of gene expression fold-change estimates with PM 
exposures from the 5-day size-fractionated PM composite samples.  Again, findings of 
positive associations of gene expression (NFE2L2, SELP, SOD2, IL1B, NQO1 and CYP1B1) 
with PM0.25 PAH and PM0.25 in vitro ROS from indoor particle extracts are consistent with 
findings for outdoor models of the same exposures and are consistent with findings for other 
markers of indoor exposure to products of fossil fuel combustion (EC and primary OC of 
outdoor origin and NOx). However, most 95% confidence intervals contained zero.  As with 
outdoor exposures, indoor secondary air pollutant exposures were generally not associated 
with gene expression, including size-fractionated particle components (SOA and organic 
acids), PM2.5 SOC, and O3 (not shown).  As with outdoor measurements, other indoor air 
pollutants measured (metals, total OC and CO) were also generally not associated with the 
expression of the target genes (not shown). 

Finally, none of the air pollutant exposures were associated with expression of the 
following 15 genes: AHR, CCL2, CXCL1, DUSP1, F3, GCLC, GPX-1, GSTP1, HSPA8, IL6, 
IL6R, IL8, PTGS2, TNF, TNFRS1B.  These genes were in all of the studied pathways 
(Figure 4.1, Table 4.1) except endogenous ROS production (MPO). 
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Figure 4.2. Fold-Change and 95% confidence interval for qPCR expression level of  CYP1B1 (A), HMOX1 (B), IL1B (C), NQO1 (D), NFE2L2 
(E), SELP (F), and SOD2 (G) in association with outdoor traffic-related air pollutants measured hourly (elemental carbon, black carbon, primary 
organic carbon, and NOx). 
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Figure 4.3. Fold-Change and 95% confidence interval for qPCR expression level of CYP1B1, HMOX1, IL1B, NQO1, NFE2L2, SELP, and 
SOD2 in association with outdoor particulate matter size fractions, polycyclic aromatic hydrocarbons and oxidative potential (measured as 
macrophage ROS production in vitro). 
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Figure 4.4. Fold-Change and 95% confidence interval for qPCR expression level of  CYP1B1, HMOX1, IL1B, NQO1, NFE2L2, SELP, and 
SOD2 in association with indoor traffic-related air pollutants measured hourly (elemental carbon, elemental carbon of outdoor origin, primary 
organic carbon of outdoor origin, and NOx). 
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Figure 4.5. Fold-Change and 95% confidence interval for qPCR expression level of CYP1B1, HMOX1, IL1B, NQO1, NFE2L2, SELP, and 
SOD2 in association with indoor particulate matter size fractions, polycyclic aromatic hydrocarbons and oxidative potential (measured as 
macrophage ROS production in vitro). 
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Table 4.9. Gene expression model estimates for markers of outdoor secondary organic aerosols. Fold change in gene expression (95% CI).a  
Air Pollutant  CYP1B1 HMOX1 IL1B NQO1 NRF2 SELP SOD2 
O3        

1-day average 0.70 
(0.63, 1.03) 

0.67 
(0.49, 0.93) 

0.64  
(0.47, 0.88) 

0.93 
(0.8, 1.07) 

0.77 
(0.53, 1.10) 

0.74 
(0.58, 0.94) 

0.89 
(0.72, 1.09) 

2-day average 0.58 
(0.37, 0.92) 

0.53 
(0.35, 0.81) 

0.51 
(0.34, 0.77) 

0.95 
(0.79, 1.14) 

0.77 
(0.48, 1.23) 

0.73 
(0.54, 0.98) 

0.91 
(0.70, 1.18) 

3-day average 0.69 
(0.43, 1.09) 

0.60 
(0.40, 0.92) 

0.51 
(0.34, 0.77) 

0.99 
(0.84, 1.18) 

0.83  
(0.51, 1.33) 

0.77  
(0.58, 1.02) 

0.85 
(0.65, 1.11) 

5-day average 0.89  
(0.55, 1.43) 

0.70  
(0.46, 1.07) 

0.63 
(0.42, 0.95) 

1.09 
(0.93, 1.29) 

0.95 
(0.59, 1.54) 

0.80 
(0.60, 1.05) 

0.80 
(0.61, 1.05) 

7-day average 1.16  
(0.72, 1.88) 

0.77  
(0.50, 1.17) 

0.75  
(0.50, 1.11) 

1.17 
(0.99, 1.38) 

0.86 
(0.53, 1.39) 

0.81 
(0.61, 1.08) 

0.79 
(0.60, 1.03) 

PM2.5 Secondary Organic Carbon 

1-day average  0.96  
(0.79, 1.18) 

 0.93  
(0.79, 1.10) 

 0.99  
(0.84, 1.16) 

 1.02  
(0.95, 1.09) 

 0.98  
(0.81, 1.18) 

 0.93  
(0.83, 1.04) 

 1.02  
(0.92, 1.14) 

2-day average  0.93  
(0.73, 1.17) 

 0.92  
(0.76, 1.12) 

 0.97  
(0.81, 1.18) 

 1.00  
(0.92, 1.09) 

 0.98  
(0.79, 1.22) 

 0.91  
(0.79, 1.04) 

 1.04  
(0.92, 1.19) 

3-day average  0.93  
(0.72, 1.18) 

 0.91  
(0.74, 1.11) 

 0.92  
(0.75, 1.11) 

 0.99  
(0.91, 1.08) 

 0.97  
(0.77, 1.22) 

 0.91  
(0.79, 1.05) 

 1.04  
(0.91, 1.18) 

5-day average  1.01  
(0.77, 1.34) 

 0.95  
(0.76, 1.20) 

 0.96  
(0.77, 1.19) 

 0.97 
(0.88, 1.07) 

 0.99  
(0.76, 1.29) 

 0.92  
(0.79, 1.08) 

 1.05  
(0.90, 1.22) 

7-day average  1.12  
(0.78, 1.60) 

 0.96  
(0.70, 1.30) 

 0.89  
(0.66, 1.20) 

 1.01  
(0.89, 1.14) 

 0.98  
(0.70, 1.39) 

 1.00  
(0.82, 1.23) 

 1.10  
(0.91, 1.34) 

Organic PM0.25 Components (5-Day) 
Water soluble organic 

carbon 
1.05 

(0.83, 1.33) 
0.97 

(0.80, 1.19) 
1.02 

(0.84, 1.24) 
1.00 

(0.92, 1.09) 
0.89 

(0.71, 1.12) 
0.82 

(0.71, 0.95) 
0.93 

(0.82, 1.06) 

Organic Acids 1.09 
(0.89, 1.33) 

1.00 
(0.84, 1.18) 

0.99 
(0.84, 1.17) 

1.02 
(0.94, 1.10) 

0.99 
(0.82, 1.20) 

0.94 
(0.82, 1.07) 

0.99 
(0.89, 1.10) 

Macrophage ROS 1.13 
(0.96, 1.33) 

1.06 
(0.92, 1.22) 

0.96 
(0.83, 1.10) 

1.07 
(1.01, 1.14) 

1.15 
(0.98, 1.34) 

1.03 
(0.93, 1.13) 

1.03 
(0.94, 1.13) 

Organic PM0.25-2.5 Components (5-Day) 
Water soluble organic 

carbon 
1.07 

(0.94, 1.21) 
0.94 

(0.84, 1.05) 
0.97 

(0.87, 1.08) 
1.03 

(0.98, 1.08) 
1.03 

(0.90, 1.17) 
1.02 

(0.93, 1.12) 
0.97 

(0.90, 1.04) 

Organic Acids 1.09 
(0.95, 1.25) 

0.98 
(0.87, 1.10) 

1.02 
(0.91, 1.15) 

1.01 
(0.96, 1.07) 

1.02 
(0.89, 1.16) 

1.01 
(0.92, 1.10) 

0.97 
(0.90, 1.05) 

Macrophage ROS 1.19 
(0.92, 1.53) 

0.93 
(0.75, 1.16) 

0.98 
(0.79, 1.21) 

1.04 
(0.94, 1.14) 

1.00 
(0.78, 1.27) 

0.97 
(0.82, 1.16) 

0.97 
(0.84, 1.12) 

 
a Estimates in bold were significant at two-side p-values < 0.05.
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Given the results, we were interested in assessing the significance of the inference that 
genes whose transcription is mediated by Nrf2 were differentially expressed relative to those 
that are not.  To accomplish this we performed a post hoc pathway analysis based on the 
Gene Set Analysis methods proposed by Efron and Tibshirani (Efron and Tibshirani, 2007). 
This method involved permuting the pathway designation (indicating if a gene is Nrf2-
mediated or not) of the Zobs from our models, where Z equals regression coefficient divided 
by standard error. We used the maxmean statistic for the observed data and for each 
permutation. The maxmean is the larger of the absolute values of the average positive Z or 
the average negative Z. This statistic minimizes the effect of up- and down-regulation of a 
gene’s averaging to insignificant pathway results. This was done 5000 times to generate a 
distribution of maxmean statistics under the null hypothesis that the associations with 
pollutants are equivalent for genes mediated by Nrf2 (AHR, ATF4, CAT, CYP1B1, DUSP1, 
GCLC, GCLM, GSTP1, HMOX1, NQO1, NFE2L2, SOD2, TXNRD1) and those that are not 
(17 remaining measurable genes). We included AHR and CYP1B1 among the Nrf2-
mediated genes on the basis of the established cross-talk between aryl hydrocarbon 
receptor xenobiotic response element and Nrf2 antioxidant response element pathways 
(Shin et al, 2007). All 30 measurable genes were included in this analysis. We then 
compared the observed maxmean for the Nrf2-mediated genes (0.786105) with the 
permuted distribution to evaluate the overall significance of the associations of the group of 
genes in the pathway. The p-value for the differential effect of the Nrf2 pathway was non-
significant at 0.28, which is likely a reflection of our limited sample size.  

4.3 Discussion  
We followed a cohort panel of elderly subjects with CAD living in the Los Angeles air 

basin and found positive associations between candidate gene expression levels from whole 
blood with exposure to traffic-related air pollution exposures. This included 15 of the 30 
candidate genes selected based on the literature that had quantifiable gene expression 
levels (five others did not).  Results revealed numerous positive associations of air pollution 
exposure with gene expression among genes that are part of the Nrf2-mediated oxidative 
stress response pathway.  Although many associations were not statistically significant, they 
were consistent in the direction (positive) and often the magnitude of the estimated effects 
across markers of traffic-related air pollution and across pollutant averaging times.  Overall, 
findings support our hypothesis that traffic-related air pollutant exposures would be 
associated with the expression of genes in pathways that are relevant to the adverse effects 
of pro-oxidant air pollutant exposures.  The present hypothesis-driven analysis produced 
informative epidemiological results that support the experimental data (in vivo and in vitro 
toxicological studies).  Findings also support the need for further studies employing the 
present panel-study approach but with a larger sample size and more genes in the 
biopathways of interest.  Our group is currently doing just that in an NIH, NIEHS-funded 
study of over 100 elderly Californian subjects (R01 ES-012243, years 06-10). 

Our novel findings for the Nrf2 gene (NFE2L2) are important.  The Nrf2 transcription 
factor regulates Phase II and other antioxidant genes by binding to antioxidant response 
elements (ARE) of their promoter regions.  An in vitro study by Zhu et al (2005) showed that 
in cardiac fibroblasts Nrf2 expression was critical for total enzymatic activity of both SOD and 
NQO1.  Further in vitro evidence revealed that Nrf2 protein expression was increased with 
diesel exhaust particles (Li et al. 2004).  Huang et al. 2011 found that urban fine and ultrafine 
PM induced expression of both oxidative stress response pathway genes mediated by Nrf2 
as well as genes in the xenobiotic metabolism signaling pathway. Araujo et al. (2008) used a 
mouse model to demonstrate that ultrafine PM exposure increased NFE2L2, SOD2, CAT, 
NQO1 and ATF4 gene expression.  

The positive associations of NFE2L2 expression with PAHs that we found are 
consistent with expectations based upon experimental data.  PAHs are most clearly markers 
of traffic-related air pollution in the region of the present study.  PAHs are known to activate 
the aryl hydrocarbon receptor (AHR) that when bound leads to AHR interaction with the 
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xenobiotic response elements (XRE) in the promoter regions of genes coding for phase I 
and phase II metabolic enzymes.  This first initiates the metabolism of PAH to pro-oxidant 
compounds (importantly to quinones) by phase I oxygenases (e.g., cytochrome P450s), and 
then detoxification by phase II conjugating enzymes.  In this manner, Nrf2-ARE pathways 
are triggered by PAH metabolites.  On the other hand, Shin et al 2007 showed that Nrf2 
binds to a functional ARE in the promoter region of AHR in mouse embryonic fibroblasts.  
Thus, NFE2L2 expression can activate AHR-XRE that were previously considered to be 
separate response pathways from Nrf2-ARE pathways.  This recent evidence suggests that 
there is crosstalk between the xenobiotic and antioxidant response pathways.  Indirect 
support for this mechanism is evident in the increased NFE2L2 expression along with 
increases in gene expression of downstream genes in both Nrf2-ARE and AHR-XRE 
pathways found in this study.  Our novel findings here are in agreement with the existing 
experimental literature that describes Nrf2 as a master regulator of antioxidant response 
(Zhu et al 2005).  

We previously published results from the present cohort panel showing significant 
and large increases in ambulatory blood pressure with exposure to PM markers of traffic-
related air pollutants (Delfino et al. 2010).  We also showed that the same air pollutants were 
associated with ambulatory electrocardiographic evidence of cardiac ischemia (ST segment 
depression ≥1 mm) (Delfino et al. 2011a) and ventricular arrhythmia (Bartell et al. 2013). The 
involvement of the Nrf2 pathway in the associations we observed between gene expression 
and air pollution exposure supports the view that oxidative stress is a potential mode of 
action by which exposure to traffic-related air pollutants increases the risk of adverse 
cardiovascular responses we have observed as well as the many other air pollution studies 
that are consistent with our findings in CHAPS (Brook et al. 2010). 

An isolated finding was the association of biomass burning PM with increased 
expression of several other genes that were not associated with traffic-related air pollution. It 
is unclear whether this set of findings represents an underlying effect of biomass smoke 
exposure and further work is needed.  However, our positive associations of HMOX1 and 
MPO with biomass smoke suggest that oxidative stress is also involved in the consistent 
associations of adverse respiratory outcomes with smoke from biomass burning (Naeher et 
al. 2007). 

Other key findings are the positive associations of IL1B and SELP with traffic-related 
air pollutant exposure. In the present panel we previously found positive associations 
between air pollution exposure and the circulating protein marker of platelet activation 
(soluble platelet selectin) that is encoded by SELP.  This finding is of clinical importance in 
that subjects with higher air pollution exposures had increased potential for a thrombotic 
event (Delfino et al. 2009).  Platelet selectin has an established role in vascular disease 
progression (Woollard and Chin-Dusting 2007).  IL-1β contributes to atherosclerosis 
progression by mediating vascular injury responses (Galea et al. 1996).  Given this evidence 
in the literature it is reasonable to infer that the air pollutant-related increases in the 
expression of IL1B and SELP genes that we found herein may represent endothelial 
dysfunction or damage that could trigger heightened coagulation and/or plaque progression.  
Induction of these genes may occur via non-oxidative stress mechanisms because they do 
not rely on the Nrf2-mediated oxidative stress response and neither gene showed a clear 
association with PM oxidative potential.  

Our study has several limitations.  First is the limited number of subjects (N=43), who 
all were very elderly on average and all had CAD. This limits the generalizability of results to 
the larger general population.  Nevertheless, the use of many repeated measures for each 
individual (≤12) allowed us study within-individual associations while limiting between-
subject confounding and this likely enabled us to detect trends in expression at low fold-
change levels.  However, our results did not retain significance with an adjustment for 
multiple comparisons, as our study is likely underpowered for the number of models we 
analyzed.  A larger sample size may have increased the precision of the estimates since 
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many 95% CIs for the fold change estimates included 1.  Nevertheless, there was overall 
consistency in the direction of the associations for each gene and exposure group (namely 
primary air pollutants).  This included multiple positive associations of similar magnitude 
(despite some being nonsignificant) and consistent findings for models using different 
averaging times.  This provides support for an overall relationship between a given gene and 
air pollutant.  Although the multiple relationships tested increases the likelihood of multiple 
testing bias, if our findings resulted from chance we would not expect to see trends within 
pollutant classes or grouping of results by hypothesized biological pathways.  Furthermore, 
we developed a priori hypotheses regarding specific candidate gene expression changes.  
Therefore, as previously reviewed, our inferences regarding the results are supported by 
biological plausibility and experimental evidence.  However, air pollutants were not 
associated with quantifiable gene expression levels of 15 of the 30 genes studied (AHR, 
CCL2, CXCL1, DUSP1, F3, GCLC, GPX-1, GSTP1, HSPA8, IL6, IL6R, IL8, PTGS2, TNF, 
TNFRS1B).  These genes were in all of the studied pathways (Figure 4.1) except 
endogenous ROS production.  It is possible that some of these genes reflect downstream or 
upstream effects and thus, on the day of blood draw were at basal expression levels.  Recall 
that many of the experimental studies used to select our candidate genes, examined other 
cell types, including endothelial and epithelial cells, and macrophages, or blood cells in 
isolation, namely monocytes. Therefore, whole blood may not be the optimum biospecimen 
to reveal effects of pollutants on expression of these genes.  However, the lack of 
association for these genes does not signify that these gene products are unimportant in air 
pollution-associated health outcomes, as there may be more substantial regulatory effects at 
the level of protein activation, rather than gene expression.  

Another limitation in the exposure measurement methods used to assess subject  
exposures is that although measurements were made in the subject’s retirement community, 
subjects could have different personal exposures within their own residence or while 
traveling outside of the community. 

Between-subject differences in time invariant factors (e.g., gender) are unlikely to 
confound associations as we modeled random intercepts in mixed models to account for 
time-invariant subject differences.  Nevertheless, some of the observed associations could 
have resulted from unmeasured confounding from temporal factors such as time-varying 
factors that could differ between individuals (e.g. diet).  Many of the factors affecting 
variability in blood cell gene expression identified by Dumeaux et al. (2010) were either not 
relevant or controlled for in our study.  Other unmeasured factors include the complex 
systems that underlie the biological responses leading to gene expression, including 
feedback pathways and compensatory mechanisms such as the balance between pro-
oxidant and antioxidant enzyme responses (Delfino et al. 2011b).  These could have 
affected the dose-response relationships between pollutants and gene expressions 
outcomes.  Finally, given the elderly largely white population with CAD studied we cannot 
generalize our results to younger, more racially diverse, and healthier populations.  
Geographic variation in air pollutant composition also limits our ability to generalize results 
beyond this southern California region.  Nevertheless, the sources of air pollution in the 
present study, primarily traffic, are common to most urban communities.   

Finally, the study is limited by the fact that gene expression data was derived from a 
complex tissue (whole blood) that carries a variety of heterogeneous cell types that may be 
distributed differently from week to week and there may be dilution effects whereby a 
particular gene may only be expressed in a small subset of cells (Wurmbach et al. 2002; Fan 
and Hegde 2005).  Changes in inflammatory cell populations are also expected to change 
expression levels. The pilot study testing the use of cell surface markers as a surrogate of 
cell differentials was unsuccessful, suggestion that future studies collect repeated complete 
blood cell counts with differentials along with preserved RNA. Nevertheless, our aim though 
was not to assess expression levels in particular cell types, but to instead to characterize 
overall expression levels in peripheral blood.   
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4.4 Summary and Conclusions  
To our knowledge, this is the first cohort panel study to report the association of gene 

expression with exposure to air pollution exposures in an urban home environment. We 
found increased expression of genes in key biological pathways in association with 
increased exposure to traffic-related air pollution exposures in a Los Angeles cohort of 
elderly subjects with CAD.  These associations are coherent with experimental reports of 
various potential mechanisms and with published reports showing associations between 
traffic-related air pollution exposure and adverse cardiovascular outcomes, including hospital 
admissions and mortality (Brook et al. 2010).   

We confirmed our hypothesis that expression levels of key genes would be more 
strongly associated with markers of primary (combustion-related) organic aerosols than with 
secondary (photochemically-related) organic aerosols.  Also, although there did not appear 
to be any clear difference in associations by particle size when using total mass 
concentrations, there were generally stronger associations for PM0.25 PAH and/or ROS than 
for PM0.25-2.5 PAH and ROS.  This supports the use of size-fractionated particle composition 
data in epidemiologic studies, which have historically been heavily reliant on PM mass data, 
in part due to the availability of data from government air monitoring stations.  The potential 
importance of ultrafine or quasi-ultrafine PM to human health is once again demonstrated in 
this study.  

Most importantly, the role of Nrf2 in the adverse health effects of air pollution is 
supported by the present panel study results (both gene expression and effect modification 
by the -617 A risk allele).  The inferred causality of our findings for NFE2L2 gene expression 
is supported by experimental data as discussed above.  Overall, our results suggest that 
NFE2L2 gene expression may link effects of traffic-related air pollution on phase I and phase 
II enzyme genes via pathway crosstalk at the promoter transcription level.   

The results of the present study need to be confirmed by additional research in other 
more diverse populations.  Experimental designs are also needed to clearly characterize the 
causal role of the Nrf2-mediated oxidative stress response pathway in cardiovascular 
responses to traffic-related air pollutant exposure.  
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5.  CHAPTER 5. SUPPLEMENTAL ANALYSES: GENE-ENVIRONMENT INTERACTIONS 
 
Introduction: 

Although not originally proposed, it was considered highly relevant to evaluate gene 
expression models for the modifying effects of potentially important genetic variants of 
selected genes. This was relevant to the original project goals since finding evidence that a 
genetically susceptible subset of the population has different gene expression responses to 
air pollution can provide biological plausibility to the overall findings.  Specifically, there is an 
emerging literature on how known functional genetic variants affect gene expression in 
human populations (e.g., Göring et al. 2007).  These studies are primarily genome-wide 
studies of between-subject differences in expression quantitative trait loci.  We had the 
opportunity to assess whether known functional genetic variants affect gene expression and 
how variants might modify the effects of air pollutants on gene expression.  Where relevant, 
we also analyzed modifying effects of genetic polymorphisms on protein expression using 
available biomarker data in CHAPS. The following briefly summarizes methods and results 
for these supplemental analyses for each gene.  Another analysis involved mitochondrial 
genetics that utilized the exposure data generated in the present study.  This work is only 
cited under Presentations and Publications produced (Wittkopp et al. 2013).  

 
SELP:  

Background: Epidemiological and toxicological studies support an adverse effect of 
air pollution exposure on cardiovascular outcomes, and proposed mechanisms include 
increased thrombosis and coagulation. Previously, we showed higher air pollution exposure 
is associated with increased plasma levels of soluble platelet selectin (sP-selectin) (Delfino 
et al. 2009) and increased expression of the platelet selectin gene (SELP) (Wittkopp et al. in 
preparation) as described above; both findings indicate a probable increase in platelet 
activation and thus thrombosis from air pollutant exposures. A functional polymorphism 
(rs6136) in the gene that codes for sP-selectin (SELP) is of interest in its potential to modify 
these associations.  This polymorphism (Thr715Pro) results in proline at position 715 in the 
protein, instead of the wildtype threonine. Carter et al. (2003) found that subjects with the 
Pro715 allele polymorphism have been shown to have lower circulating levels of sP-selectin 
and they could thus have decreased risk for venous thromboembolism compared to those 
homozygous for the Thr715 allele).  Another way of saying this is that the Thr715 allele is 
believed to increase risk of thrombosis. Pro715 may thus be protective for myocardial 
infarction, however, Carter et al 2003 did not find any association with myocardial infarction 
history of stenosis ≥50% in the coronary arteries.  Another large study found no associations 
with risk of CAD or ischemic stroke (Volcik et al. 2006). We hypothesized that carriers of the 
Pro allele would have weaker associations of gene expression and related protein levels with 
air pollution exposure versus non-carriers.  

 
Methods: As previously described (Delfino et al. 2009), we measured plasma sP-

selectin levels weekly for all 60 subjects using an ELISA assay. The SELP Thr715Pro 
genotypes were determined using restriction fragment length polymorphism analysis as 
described by Carter et al. (2003). Whole blood gene expression levels were measured using 
quantitative polymerase chain reactions, for a subset of 40 subjects as described above (3 
subjects had insufficient DNA for analysis).  Air pollutant exposures measured at subject 
residences were as described above. T-tests were used to assess between-gene group 
differences in outcomes.  Linear mixed effects models were used to analyze effect 
modification of air pollution exposure-response relations by the polymorphism.  This was 
accomplished with an interaction term between each air pollutant and the SELP genotype, to 
determine if variation at position 715 of the genotype was an effect modifier of the 
relationship between gene expression and air pollutant exposure. 
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Results: We determined that out of 63 subjects in CHAPS overall, 12 subjects were 

carriers of the protective, Pro715 allele, and they had lower sP-selectin levels versus Thr715 
homozygotes (34.78 ng/mL vs 42.03 ng/mL, p < 0.001 by t-test).  Pro715 allele carriers in 
the gene expression analysis (N=9) also had 39% lower SELP expression versus Thr715 
homozygotes (p < 0.005).  However, in mixed effects regression models including a product 
term between the SELP genotype and air pollutant exposure, there was no significant 
interaction between carrier status and air pollutant exposures (p-value = 0.1 or greater), 
except for an increase in SELP expression with PM0.25-2.5 mass in Pro715 carriers, which is 
the opposite of what was expected (Figures 5.1-5.3). 

 
Conclusions: While it appears that both SELP gene expression and protein 

expression increase in association with air pollution exposure and these levels are lower in 
Pro715 carriers, we found no effect modification of exposure-response relationships by 
genotype except for a counterintuitive finding for PM0.25-2.5 mass.  Recent data suggest that 
lower plasma sP-selectin in 715Pro carriers results from decreased N-glycosylation and 
subsequent sequestration in the Golgi apparatus (Subramanian et. al. 2012).  To our 
knowledge, there are no research data indicating that N-glycosylation changes as a result of 
air pollution exposure.  We conclude that differences in the soluble protein levels due to the 
presence of this polymorphism are not altered as a result of changes in air pollution 
exposure.  

 

 
Figure 5.1. Relations between SELP gene expression and PM mass size fraction: effect 
modification by the SELP Pro715 allele genotype.  
UFP: PM0.25; Acc: PM0.25-2,5; Coarse: PM2.5-10. 
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Figure 5.2. Relations between SELP gene expression and traffic-related air pollutants (BC, 
CO and NOx): effect modification by the SELP Pro715 allele genotype.   
 

  
      OC         OCpri     SOC 

Figure 5.3. Relations between SELP gene expression and exposure to total organic carbon 
(OC), primary OC (OCpri), and secondary OC (SOC): effect modification by the SELP Pro715 
allele genotype. 
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NRF2:  

Background: The transcription factor called nuclear factor erythroid 2-related factor 2 
(Nrf2) also known as nuclear factor (erythroid-derived 2)-like 2 (NFE2L2) is a major factor in 
antioxidant-response element (ARE)-dependent gene expression and thus functions to 
inhibit oxidative stress and inflammation.  Therefore, a wide array of important genes and 
their protein products may be affected by polymorphisms in the Nrf2 gene.  A potentially 
important SNP at position -617 (rs6721961) is located in the promoter region of the Nrf2 
gene.  Constructs containing this SNP have lower promoter activity and binding in vitro, i.e., 
a reduction in Nrf2 transcriptional activity (Marzec et al 2007).  This SNP could lead to 
potential differences in gene induction following environmental exposures.  We have already 
shown above that increases in expression of the Nrf2 gene are associated with exposures to 
traffic-related air pollution.   

 
Methods: We performed PCR and Sanger sequencing of a portion of the Nrf2 gene.  

Our sequencing allowed us to determine the -617 SNP located in the promoter region of the 
Nrf2 gene.  Whole blood gene expression levels were measured using quantitative 
polymerase chain reactions, for a subset of 40 subjects as described above (3 subjects had 
insufficient DNA for analysis).  Air pollutant exposures measured at subject residences were 
as described above.  T-tests were used to assess between-gene group differences in gene 
expression outcomes.  Linear mixed effects models were used to analyze effect modification 
of air pollution exposure-response relations by the polymorphism.  This was accomplished 
with an interaction term between each air pollutant and the Nrf2 genotype, to determine if 
variation at position -617 of the genotype was an effect modifier of the relationship between 
gene expression and air pollutant exposure.  We tested this for Nrf2 expression itself along 
with genes whose transcription is Nrf2-mediated.  This included: HMOX1, SOD2, NQO1, 
GCLC, GCLM, CAT, GSTP1, and Cyp1b1.  We also tested Nrf2 gene effect modification on 
IL1B1 and SELP gene expression, which showed significant associations with air pollutant 
exposures in our gene expression analysis as described above.  

 
Results: We identified 8 carriers of the -617 A (risk) allele among those subjects for 

whom we have gene expression data.  The distribution of alleles did not differ significantly 
from Hardy-Weinberg equilibrium.  Surprisingly, we found subjects who were carrying the     
-617A risk allele to have higher average Nrf2 expression (1.9 fold higher among carriers 
versus non-carriers, p =0.002).  We can only speculate that chronically low Nrf2 due to the    
-617A SNP leads to a compensatory increase in basal transcription, and reduced capacity to 
increase transcription in times of oxidative stress (e.g., during times of high pollutant 
exposures). 

In mixed effects regression models including a product term between the Nrf2 
genotype and air pollutant exposure we found carriers as compared with non-carriers to 
have significantly lower Nrf2 gene expression in association with quasi-ultrafine particles 
(UFP, PM0.25) (Figure 5.4).  Although the differences were not significant, this was also found 
for PM0.25 PAH but not accumulation mode PAH or any of the other markers of traffic-related 
air pollutants including EC and black carbon BC (Figure 5.5).  However, carriers had higher 
expression in association with OC, primary organic carbon and secondary organic carbon 
(Figure 5.6). The reason for this difference in association is unclear.  Given that Nrf2 is a 
transcription factor, we expect that small differences in Nrf2 level will show larger 
downstream effects of increased transcription of Nrf2-mediated genes. And since Nrf2 can 
bind its own promoter region, these effects would not be exclusive to downstream genes.  

We found subjects carrying the -617 A risk allele as compared with non-carriers had 
significantly higher SOD2 gene expression in association with accumulation mode particles 
(ACC) (Figure 5.7).  We found Nrf2 -617 to be an effect modifier of the relationship between 
SOD2 expression level and traffic-related air pollutants as well (Figure 5.8).  Many 
interaction terms were significant at p<0.01, showing -617A carriers had higher SOD2 gene 
expression in with exposure to traffic-related air pollutants including: PM0.25 hopanes and 
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PAH, and EC, BC, and NOx.  In addition, -617A carriers had higher SOD2 gene expression 
associated with exposure to OC and its two fractions, including the SOC fraction that is 
expected to be enriched in the accumulation mode (Figure 5.9).  The SOD findings indicate 
a possible increased inducibility of SOD2 among carriers of the Nrf2 -617A allele.  

Among genes whose transcription is not regulated by Nrf2, we found TRAP 
associations with increased IL1B gene expression (Figure 5.10) and SELP gene expression 
(Figure 5.11) were greater in Nrf2 -617 risk allele carriers, although this was apparent for 
only a limited number of models and was generally not a significant interaction.  We 
speculate that this may have occurred  because carriers of the Nrf2-617 risk allele may have 
increased oxidative stress in the presence of pollutant exposure that translates directly, likely 
via Nrf2 transcriptional regulation, as evidenced by increased expression of antioxidant 
enzymes such as SOD2 (as we have observed).  Although increased expression of 
antioxidant enzymes should decrease oxidative stress, unlike an experimental protocol the 
present observational findings are from a mixture of effects from different subjects and 
varying exposure concentration-time profiles.  This increased oxidative stress may also 
translate indirectly, via non-Nrf2-mediated pathways, to increases in other markers of 
oxidative stress, inflammation, and platelet activation, such as SELP and IL1B.  

Cyp1B1 had significantly decreased expression in association with TRAP and 
particulate matter among risk allele carriers versus non-carriers (Figures 5.12-5.14). This 
may indicate that Cyp1B1 gene induction in response to pollutant exposure may rely more 
heavily on signaling through the Nrf2-mediated pathway than the other genes we analyzed.  

Models of NQO1 gene expression showed some significant interaction terms: PM0.25 
induction of macrophage ROS and 7-day average NOx were associated with significantly 
higher NQO1 expression among Nrf2 risk allele carriers versus non-carriers (not shown). 
Other genes that could be Nrf2-mediated based on pathway analysis (ATF4, CAT, GCLC, 
GCML, GSTP1, HMOX1, MKP-1, and TXNRD1) showed no clear trend of differences 
between Nrf2 risk allele carriers versus non-carriers (not shown). These genes may have 
more substantial regulation through other pathways, or their pathways may have 
compensatory mechanisms that make the difference in Nrf2 baseline transcription less 
important in responses to air pollution exposures.  

 
Conclusions: We found important, novel findings for effect modification by the -617 A 

risk allele of the Nrf2 gene and its influence on Nrf2 gene expression.  We expect that 
polymorphisms in genes of pathways important to air pollution response such as Nrf2 will 
have significant effects while polymorphisms in less important pathways will not.  Therefore, 
these results support the probable importance of the Nrf2-mediated oxidative response 
pathway in air pollution exposure-response relationships.  Results also suggest a direct 
effect of this SNP on the translational regulation in Nrf2-mediated genes (e.g. CYP1B1) and 
indirect effects on genes not regulated by Nrf2 (e.g. IL1B and SELP) that are likely due to 
differences in oxidative stress in the presence of the Nrf2 -617 A risk allele.  Many other 
stratified estimates were significant for expression of many of the genes evaluated, while the 
interaction terms were not.  Larger sample sizes may be necessary to find significant effect 
modification among these genes. 
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Figure 5.4. Relations between Nrf2 gene expression and PM mass size fraction: effect 
modification by Nrf2 -617 A risk allele genotype.  
UFP: PM0.25; Acc: PM0.25-2,5; Coarse: PM2.5-10. 

 

 
Figure 5.5. Relations between Nrf2 gene expression and traffic-related air pollutants: effect 
modification by Nrf2 -617 A risk allele genotype.  Averaging time for hopanes, and PAH are 
5 days (from 5-day PM filter composites). UFP: PM0.25; Acc: PM0.25-2,5. 
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Figure 5.6. Relations between Nrf2 gene expression and exposure to total organic carbon 
(OC), primary OC (OCpri), and secondary OC (SOC): effect modification by Nrf2 -617 A risk 
allele genotype.   

 

 
Figure 5.7. Relations between SOD2 gene expression and PM mass size fraction: effect 
modification by Nrf2 -617 A risk allele genotype.  
UFP: PM0.25; Acc: PM0.25-2,5; Coarse: PM2.5-10. 
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Figure 5.8. Relations between SOD2 gene expression and traffic-related air pollutants: 
effect modification by Nrf2 -617 A risk allele genotype.  Averaging time for hopanes, and 
PAH are 5 days (from 5-day PM filter composites). UFP: PM0.25; Acc: PM0.25-2,5. 

 

 
Figure 5.9. Relations between SOD2 gene expression and exposure to total organic carbon 
(OC), primary OC (OCpri), and secondary OC (SOC): effect modification by Nrf2 -617 A risk 
allele genotype.   
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Figure 5.10. Relations between IL1B gene expression and traffic-related air pollutants: effect 
modification by Nrf2 -617 A risk allele genotype.  Averaging time for hopanes, and PAH are 
5 days (from 5-day PM filter composites). UFP: PM0.25; Acc: PM0.25-2,5. 

 

 
Figure 5.11. Relations between SELP gene expression and traffic-related air pollutants: 
effect modification by Nrf2 -617 A risk allele genotype.  Averaging time for hopanes, and 
PAH are 5 days (from 5-day PM filter composites). UFP: PM0.25; Acc: PM0.25-2,5. 
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Figure 5.12. Relations between CYP1B1 gene expression and PM mass size fraction: effect 
modification by Nrf2 -617 A risk allele genotype.  
UFP: PM0.25; Acc: PM0.25-2,5; Coarse: PM2.5-10. 
 

 
Figure 5.13. Relations between CYP1B1 gene expression and traffic-related air pollutants: 
effect modification by Nrf2 -617 A risk allele genotype.  Averaging time for hopanes, and 
PAH are 5 days (from 5-day PM filter composites). UFP: PM0.25; Acc: PM0.25-2,5. 
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Figure 5.14. Relations between CYP1B1 gene expression and exposure to total organic 
carbon (OC), primary OC (OCpri), and secondary OC (SOC): effect modification by Nrf2 -
617 A risk allele genotype.  

 
Mn-SOD (SOD2):  

Background: We studied a polymorphism in an important gene that codes for a 
protein involved in antioxidant defense, manganese (Mn) superoxide dismutase (Mn-SOD or 
SOD2).  SOD2 is a member of the superoxide dismutase family and functions to protect 
against reactive oxygen species by converting superoxide to the less reactive hydrogen 
peroxide.  The Mn-SOD protein’s active site contains manganese and functions within 
mitochondria.  We studied the rs4880 SNP (SOD2 Ala16Val genotype) that substitutes a 
C>T at position 2734, resulting in a change of an amino acid in MnSOD from alanine (Ala) to 
valine (Val) at position 16.  This results in reduced gene expression, production of an 
unstable mRNA, and consequent reduced import into mitochondria (Sutton et al. 2005).   For 
this reason the SNP has been intensively studied (Crawford et al. 2012).  We have 
determined that expression of the SOD2 gene is increased with exposure to traffic-related air 
pollution as described above.  It is therefore of interest to identify subjects with the risk allele 
(Val), and investigate effect modification of the observed association between SOD2 gene 
expression and air pollution exposure.  It is also of interest to evaluate whether this risk allele 
affects gene expression of other genes as well as expression of proteins that likely increase 
under conditions of higher oxidative stress.    

 
Methods:  To genotype our cohort we used polymerase chain reaction with restriction 

fragment length polymorphism analysis (adapted from Shimodo-Matsubayashi et. al. 1996). 
We amplified a 174 base pair region using forward primer (5'-
CAGCCCAGCCTGCGTAGACGG-3') and reverse primer (5'- 
GATCTGCGCGTTGATGTGAG-3') and an annealing temperature of 64.7°C. We digested 
products with BsaWI (New England Biolabs) at 60°C for 1 hour. The number of the Val 
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variant alleles was determined for each subject by the amount of cleaved product (0% for 2 
wildtype alleles, 50% cut for heterozygotes and 100% cut for two Val alleles). A subset of 
10% of subjects were repeated for validation with 100% agreement between replicates.  
Whole blood gene expression levels were measured using quantitative polymerase chain 
reactions, for a subset of 40 subjects as described above (3 subjects had insufficient DNA 
for analysis).  Air pollutant exposures measured at subject residences were as described 
above. T-tests were used to assess between-gene group differences in outcomes. Linear 
mixed effects models were used to analyze effect modification of air pollution exposure-
response relations by the polymorphism (i.e., gene-environment interaction using product 
terms). 

 
Results:  We found 13 non-carriers (genotype AA) and 47 carriers of the Val16 allele 

(29 with AV and 18 with VV). The genotypes were in Hardy-Weinberg Equilibrium in this 
population.  We estimated the effect that carrier status had on biomarkers of inflammation 
using linear mixed effects models.  Preliminary models showed that carriers, versus non-
carriers, had increased plasma CRP (678.89 ng/mL higher than non-carriers, p=0.0373), 
MPO (11.9 mg/mL higher in carriers vs. non carriers, p=0.0004), TNFα (0.6603pg/mL higher 
in carriers, p<0.0001), sTNF-rII (669.6 pg/mL higher in carriers vs. non-carriers, p<0.0001) 
and sP-selectin (11.6749 ng/mL higher among carriers versus non-carriers, p<0.0001); and 
had increased erythrocyte GPx-1 activity (3.8867 U/gHb higher among carriers versus non-
carriers, p<0.0001) and increased but non-significant erythrocyte Cu,Zn-SOD (SOD1) 
activity (288 U/gHb higher among carriers versus non-carriers, p=0.127).  In contrast to the 
other inflammatory biomarkers (CRP, TNFα, and sTNF-rII), the levels of IL-6 were lower by 
0.8177 pg/mL among carriers (p<0.0001) and there was no significant difference in IL6sR 
levels between the groups.  

Most pollutant interaction models for gene expression showed few interactions 
between pollutant exposure and the SOD2 polymorphism (not shown).  However, models of 
sP-selectin protein expression showed significant interactions of the SOD2 genotype with 
EC, primary OC, 5-day average PM0.25 and 1- to 3-day average PM0.25-2.5 among carriers 
versus non-carriers (Figure 5.15). Selected estimates in Figure 5.15 are shown for multiple 
moving average times, as indicated by the number of days on the x-axis.  Expression of 
other protein biomarkers in relation to air pollution exposures was not modified by the SOD2 
genotype.  The other biomarkers were simply predicted by allele carrier status as stated in 
results above. 
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Figure 5.15.  Relations between sP-selectin protein expression and selected air 

pollution exposures: effect modification by SOD2 Val16 risk allele genotype. 
 
 
Conclusions: We found that being homozygous for the Ala16 variant, and therefore 

having both higher levels of Mn-SOD import into mitochondria and Mn-SOD enzymatic 
activity, increases levels of several inflammatory biomarkers (plasma CRP, MPO, TNFα, 
sTNF-rII, and sP-selectin, but not IL-6), as well as erythrocyte GPx-1 and Cu,Zn-SOD 
activity. This could be due to the consequent increases in levels of hydrogen peroxide, which 
can diffuse out of the mitochondria to damage other cellular structures.  In addition, models 
for the interaction between this SOD2 gene variant and air pollution exposure in relation to 
the circulating levels of sP-selectin showed that carriers of the Val16 allele had significantly 
lower levels of sP-selectin in association with the air pollutant exposures.  We also saw that 
relationships between both SOD2 and SELP gene expression and air pollutant exposures 
were increased by the -617A (risk) allele of the gene for Nrf2, an important oxidative stress 
response mediator (discussed above).  This combined evidence of effect modification by 
SNPs in genes relevant to oxidative stress (SOD2 and Nrf2) could signify that sP-selectin 
gene and protein expression (which is involved in platelet activation), may be particularly 
sensitive to the increased oxidative stress thought to be induced by pro-oxidant air pollutant 
exposures.  Overall, the effects of these gene variants were complex and suggested that 
multiple gene-gene interactions may be involved, including many genes we did not assess. 
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6.  CHAPTER 6. OVERALL SUMMARY AND CONCLUSIONS 
 

This is the first cohort panel study to report the association of gene expression with 
exposure to air pollution exposures in an urban home environment. We found increased 
expression of genes in key biological pathways in association with exposures to traffic-
related air pollution in a Los Angeles cohort of elderly subjects with coronary artery disease.  
Associations were particularly clear for genes that are part of the Nrf2-mediated oxidative 
stress response pathway.  Effect modification by the Nrf2 -617 A risk allele further confirms 
the importance of this pathway and suggests there is a more genetically susceptible 
population.  This supports our hypothesis that traffic-related air pollutant exposures would be 
associated with the expression of genes in pathways that are relevant to the adverse effects 
of pro-oxidant air pollutant exposures.  We confirmed our hypothesis that expression levels 
of key genes would be more strongly associated with markers of primary (combustion-
related) organic aerosols than with secondary (photochemically-related) organic aerosols.  
Also, although there did not appear to be any clear difference in associations by particle size 
when using total mass concentrations, there were generally stronger associations for PM0.25 
PAH and/or ROS than for PM0.25-2.5 PAH and ROS.  Associations with the indoor air pollutant 
measurements were largely consistent with associations for the outdoor measurements.  
This is consistent with findings from the source apportionment work using detailed PM 
chemical speciation showing that although the elderly retirees of the studied communities 
generally spend most of their time indoors, a sizeable portion of PM2.5 particles to which they 
are exposed likely originate from outdoor mobile sources.   

 
 

7.  CHAPTER 7. RECOMMENDATIONS 
 

Future studies are warranted to examine gene expression associations in other 
cohorts, including other geographic regions, and younger, more racially diverse, and 
healthier populations.  This would also include other potentially susceptible populations 
including individuals with other important gene variants and individuals with chronic diseases 
such as diabetes and asthma.  Experimental designs are also needed to further characterize 
the causal role of the Nrf2-mediated oxidative stress response pathway in cardiovascular 
responses to traffic-related air pollutant exposure.  Our findings in Task 3 using detailed 
exposure data from Tasks 1-2 support the use of size-fractionated particle composition data 
in epidemiologic and experimental studies, including ultrafine or quasi-ultrafine PM organic 
components.  This is relevant to potential future regulations. Ambient air quantity standards, 
do not include ultrafine PM or the general class of organic components from fossil fuel 
combustion sources that have been associated with gene expression outcomes in this study 
as well as cardiovascular outcomes in other analyses involving the same cohort, although 
many of the regulations of the Air Resources Board are designed to reduce traffic pollution.  
This is important to vulnerable populations because we found that mobile sources were the 
dominant contributor to both indoor and outdoor PM2.5 at all community sites. 
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9. Abbreviations 
 
AER: air exchange rates  
BAM: Beta-Attenuation Mass  
BC: black carbon   
CAD: coronary artery disease  
cDNA: complementary DNA 
CHAPS: Cardiovascular Health and Air Pollution Study  
CI: confidence interval 
CMB: chemical mass balance model 
CO: carbon monoxide 
CPI: carbon preference index 
EC: elemental carbon 
ER : endoplasmic reticulum 
Finf: infiltration factors  
G1-4: Groups 1-4HDV: heavy-duty vehicles 
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I/O: indoor/outdoor ratio  
IQR: interquartile range 
LDV: light-duty vehicles NO2: nitrogen dioxide 
NOx: nitrogen oxides 
O3: ozone 
OC: organic carbon 
OCpri: organic carbon attributed to primary organic carbon   
PAH: polycyclic aromatic hydrocarbons 
PCR: polymerase chain reaction  
PM: particulate matter 
PM0.25: quasi-ultrafine particulate matter < 0.25 micrometers in aerodynamic diameter  
PM0.25-2.5: accumulation particulate matter 0.25-2.5 micrometers in aerodynamic diameter  
PM2.5-10: coarse mode particulate matter 0.25-2.5 micrometers in aerodynamic diameter  
PM10: particulate matter < 10 µm in aerodynamic diameter 
PM2.5: particulate matter < 2.5 µm in aerodynamic diameter 
PN: particle number  
POA: primary organic aerosols 
RNA: ribonucleic acid  
ROS: reactive oxygen species 
SOA: secondary organic aerosols 
SOC: organic carbon attributed to secondary organic carbon  
UFP: ultrafine particles, PM < 0.1 µm in aerodynamic diameter 
UPR: unfolded protein response 
WIOM: water-insoluble organic matter  
WSOC: water soluble organic carbon 
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10. Appendix. Permutation Analysis Results for NFE2L2. 
 

 

Figure S1. Distribution of simulated Z values from permutation analysis. Z = 
regression coefficient divided by standard error.  
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Table S1. Zobserved for several NFE2L2 model coefficients 

 

Pollutant 
Regression  

Estimate Z observed 
Unadjusted 

 p-value 
Adjusted  
p-value 

Elemental Carbon     
1-day 1.1604 1.4408 0.1508 0.9007 
2-day 1.1840 1.5001 0.1348 0.8710 
3-day 1.1841 1.5266 0.1280 0.8619 
5-day 1.2152 1.4575 0.1461 0.8938 
7-day 1.4922 2.2322 0.0264 0.4006 

Black Carbon     
1-day 1.2247 2.3411 0.0199 0.3310 
2-day 1.1947 1.9440 0.0529 0.5989 
3-day 1.1938 1.6391 0.1023 0.8002 
5-day 1.2030 1.2295 0.2199 0.9638 
7-day 1.3112 1.4343 0.1526 0.9033 

Primary Organic Carbon     
1-day 1.5306 1.7300 0.0848 0.7439 
2-day 1.6671 1.8178 0.0703 0.6853 
3-day 1.6281 1.7779 0.0765 0.7132 
5-day 1.7582 1.6811 0.0938 0.7759 
7-day 2.5108 2.4097 0.0166 0.2946 

NOX     
1-day 1.2435 2.2249 0.0269 0.4054 
2-day 1.1857 1.6888 0.0923 0.7712 
3-day 1.1853 1.5373 0.1253 0.8561 
5-day 1.1549 0.9819 0.3270 0.9951 
7-day 1.2531 1.2127 0.2262 0.9675 

Size Fractionated PM mass     
PM0.25 1.0902 0.4160 0.6777 1.0000 

PM0.25-2.5 1.1110 0.9887 0.3236 0.9948 
PM2.5-10 1.1473 1.2292 0.2200 0.9639 

PM0.25 PAH     
Total 1.1173 1.0108 0.3130 0.9934 

Low Molecular Weight 1.0998 0.8569 0.3922 0.9987 
Medium Molecular Weight 1.1261 1.0172 0.3099 0.9928 

High Molecular Weight 1.1205 0.9187 0.3590 0.9977 
PM0.25 Macrophage ROS               1.1486 1.7282 0.0850 0.7451 
PM0.25-2.5 PAH     

Total 1.1898 1.9885 0.0477 0.5676 
Low Molecular Weight 1.0784 1.2161 0.2249 0.9666 

Medium Molecular Weight 1.1040 1.7442 0.0822 0.7345 
High Molecular Weight 1.3362 2.0115 0.0452 0.5514 

PM0.25-2.5 Macrophage ROS               0.9979 -0.0167 0.9867 1.0000 

Regression estimates are given as fold-change per IQR increase in pollutant level. NOX = nitrogen 
oxides, PM0.25 = particulate matter <0.25 μm in aerodynamic diameter, PAH = polycyclic aromatic 
hydrocarbons. 
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