
i 
 

 
 
 
 

Inverse Modeling to Verify California’s Greenhouse Gas Emission 
Inventory 

 
Report Version 1.3 

 
Contract Number 09-348 

 
 

Investigators: 
  

Marc L. Fischer and Seongeun Jeong 
California State University East-Bay 

and Lawrence Berkeley National Laboratory  
 

 
 
 

April, 2013 
 

Prepared for the  
California Air Resources Board and  

the California Environmental Protection Agency 
 
 
 
 
 
 
 
 



i 
 

 
 
 
 
 
 

DISCLAIMER 
 
The statements and conclusions in this Report are those of the contractor and not necessarily 
those of the California Air Resources Board.  The mention of commercial products, their source, 
or their use in the connection with material reported herein is not to be construed as actual or 
implied endorsement of such products.    



ii 
 

 
 
 
 
 
 

ACKNOWLEDGEMENT 
 
This report was submitted in fulfillment of California Air Resources Board (CARB) Contract 
number 09-348.  We thank Arlyn E. Andrews, Laura Bianco, James M. Wilczak, Dave Field, 
Dave Bush, Edward Wahl, Ken Reichl, Fabien Guerin, Yuchen Yi, and particularly Jon Kofler 
for assistance with measurements at Walnut Grove, California (WGC) and analysis of  data from 
radar wind profiler sites, John Lin, Christoph Gerbig, Steve Wofsy, Janusz Eluszkiewicz, 
Thomas Nehrkorn for sharing the Stochastic Time-Inverted Lagrangian Transport (STILT) code 
and providing advice, Chris Potter and William Salas for sharing modeled methane (CH4) 
emission for use as a priori estimates, Ed Dlugokencky and Colm Sweeney for sharing data for 
CH4 background estimates, Larry Hunsaker, Marc Vayssières, Joseph Fischer, and Webster 
Tassat for sharing CARB CH4 emissions information, Ying-Kuang Hsu and Patrick Vaca for the 
operation and data processing of CARB  greenhouse gas monitoring network, and Krishna 
Muriki for assistance running the Weather Research and Forecasting (WRF) and STILT models 
on the LBNL-Lawrencium computer cluster. We gratefully acknowledge the National Oceanic 
and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) for the use of the 
Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model underlying STILT, 
and the National Centers for Environmental Prediction (NCEP) for the provision of the North 
American Regional Reanalysis (NARR) meteorology. We also thank Jean Bogner, Eric Crosson, 
Guido Franco, Eileen McCauley, and Tony VanCuren for valuable comments. This work was 
predominantly supported by CARB, with additional support from the California Energy 
Commission, and the US Department of Energy.  



iii 
 

TABLE OF CONTENTS 
 

DISCLAIMER ............................................................................................................................................... i 

ACKNOWLEDGEMENT ............................................................................................................................ ii 

TABLE OF CONTENTS ............................................................................................................................. iii 

LIST OF FIGURES ..................................................................................................................................... iv 

LIST OF TABLES ....................................................................................................................................... vi 

ABSTRACT ................................................................................................................................................ vii 

1. Introduction ............................................................................................................................................. 10 

2. Approach ................................................................................................................................................. 10 

2.1. CH4 Measurements and Boundary Conditions ................................................................................ 12 

2.2. A priori CH4 Emission Maps ........................................................................................................... 15 

2.3. Atmospheric Transport Modeling .................................................................................................... 21 

2.4. Bayesian Inverse Model ................................................................................................................... 24 

2.5. Uncertainty Analysis ........................................................................................................................ 26 

3. Results and Discussion ........................................................................................................................... 30 

3.1. CH4 Mixing Ratio ............................................................................................................................ 30 

3.2. Footprints ......................................................................................................................................... 34 

3.3. Bayesian Inverse Analysis ............................................................................................................... 36 

3.3.1. Linear Analysis ......................................................................................................................... 36 

3.3.2. Bayesian Region Analysis ........................................................................................................ 38 

3.3.3. Bayesian Source Analysis ......................................................................................................... 41 

4. Conclusions and Recommendations ....................................................................................................... 45 

5. References ............................................................................................................................................... 47 



iv 
 

LIST OF FIGURES 
 

Figure 1. Inverse modeling approach used in the study. ............................................................. 12 

Figure 2. 3-hourly signal comparison: all measured CH4 signal (gray open circle), measured 
CH4 signal during noon - afternoon hours (black filled circle), WRF-STILT predicted CH4 
signal + WRF-STILT predicted CH4 background signal during noon – afternoon hours 
(blue open circle), and  WRF-STILT predicted CH4 background signal using the 3-D 
curtain (red dots). ................................................................................................................ 14 

Figure 3. California-specific CH4 emission (nmol m-2 s-1) maps (available at 
(http://calgem.lbl.gov/prior_emission.html) for source sectors: (a) LF, (b) WW, (c) DLS, 
(d) NDLS, (e) NG, and (f) PL. ............................................................................................ 16 

Figure 4. California-specific CH4 emission maps for source sectors that have seasonal 
components: (a) CP and (b) WL. ........................................................................................ 17 

Figure 5. Sub-region classification for the inverse analysis. Emissions from these regions are 
adjusted by the corresponding scaling factors estimated by the inverse model. ................. 18 

Figure 6. (a) California-specific total CH4 emissions (nmol m-2 s-1), and (b) EDGAR42 CH4 
total emissions (nmol m-2 s-1). ............................................................................................. 19 

Figure 7. Comparison between the California-specific and EDGAR42 emissions by region. ... 20 

Figure 8. Schematic diagram showing simulations of backward (opposite to the wind direction) 
particle trajectories from a tower that are used for footprint calculations. Footprints at the 
grid cells near the receptor are strong because more particles pass over those grid cells 
before they are advected and dispersed into different places. The particles above ½ PBLH 
(colored in gray) do not contribute to the footprint strength. .............................................. 22 

Figure 9. WRF modeling domain configuration with three-level nested domains (d01, d02, and 
d03 featuring 36, 12, and 4 km resolution, respectively). ................................................... 24 

Figure 10. Location of GHG measurement sites (black) and wind profiler sites (red) in the 
Central Valley with predicted monthly mean PBL heights (m) for June 2011, 14:00 local 
standard time (LST) shown in color.................................................................................... 29 

Figure 11. Comparison of measured and predicted Zi during the month of June for (a) CCO, (b) 
CCL, (c) LHS, and (d) SAC. For CCO, data from June 2011 data are used while the other 
sites use data from June 2010. For this summer month, the 5-L LSM scheme was used for 
all sites. In terms of the PBL scheme, the MYJ scheme was used for all sites except for 
LHS where the YSU scheme was used. .............................................................................. 30 

Figure 12. Time series of measured and predicted mixing ratios at the five network sites during 
September 2010 – June 2011. The measurements are shown for both day and night times 



v 
 

while the predictions are shown for only noon-afternoon well-mixed periods. The 
prediction was made based on the California-specific emission maps. .............................. 32 

Figure 13. 3-hourly time series of measured and predicted mixing ratios at the five network sites 
during noon-afternoon well-mixed periods. The prediction was made based on the 
California-specific emission maps. ..................................................................................... 33 

Figure 14. Averaged footprints during the noon-afternoon hours for (a) the WGC site and (b) all 
five sites during May – June 2011. ..................................................................................... 35 

Figure 15. Seasonal mean footprints during the noon-afternoon hours for (a) September – 
October 2010, (b) November – December 2010, (c) January – February 2011 and (d) 
March – April 2011. ............................................................................................................ 36 

Figure 16. Comparison of California-specific predicted vs. measured CH4 signals during May 
2011 before (left) and after (right) inverse optimization. The light blue circles indicate 
those removed after the first inversion. ............................................................................... 37 

Figure 17. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) by region and season based on 
the California-specific emission model.  Only regions with significant emissions are 
shown. The annual mean prior (gray bar) represents the annual average of seasonally 
varying emissions and is compared with posterior seasonal emissions (color bars). SO, 
ND, JF, MA, and MJ denote September-October, November-December, January-February, 
March-April, and May-June seasons, respectively. ............................................................ 39 

Figure 18. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) by region and season based on 
the EDGAR42 emission model.  Only regions with significant emissions are shown. ...... 40 

Figure 19. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) for California by source and 
season based on the California-specific emission model. WW, LF, DLS, NDLS, NG, PL, 
WL and CP represent wastewater, landfill, dairy livestock, non-dairy livestock, natural gas, 
petroleum, wetland, and crop agriculture sources, respectively. ........................................ 42 

Figure 20. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) for California by source and 
season based on the EDGAR42 emission model. AS, EF, GPD, MM, OPR, RT, SW, and 
WW represent agricultural soils, enteric fermentation, gas production and distribution, 
manure management, oil production and refineries, road transportation, solid waste, and 
wastewater, respectively. .................................................................................................... 43 



vi 
 

LIST OF TABLES 
 

Table 1. Measurement Sites and Periods .................................................................................... 13 

Table 2. Annual Average California-specific CH4 Emissions by Region and Sector (Tg CO2eq)
............................................................................................................................................. 17 

Table 3. Regions Used for Inverse Analysis and Corresponding California Counties and Air 
Basins .................................................................................................................................. 18 

Table 4. Comparison of CH4 Emissions by Source between CARB 2008 Inventory and 
EDGAR42 Emission Model (100-year GWP = 21 g CO2eq / g CH4) ................................ 21 

Table 5. Linear Analysis Results Before and After Bayesian Region Inversion ........................ 38 

Table 6. Comparison of Annual Posterior CH4 Emissions (Tg CO2eq) between the EDGAR42 
and California-specific Emission Models Based on Bayesian Region Analysis ................ 41 

Table 7. Annual Posterior CH4 Emissions (Tg CO2eq) for California by Source Based on the 
California-specific Emission Model ................................................................................... 42 

Table 8. Annual Posterior CH4 Emissions (Tg CO2eq) for California by Source Based on the 
EDGAR42 Emission Model ................................................................................................ 44 

Table 9. Summary of Estimated Annual CH4 Emissions (Tg CO2eq; 100-year GWP = 21 g 
CO2eq / g CH4) for California ............................................................................................. 45 



vii 
 

ABSTRACT 
 
 
We estimate regionally resolved methane (CH4) emissions for California by comparing CH4 
mixing ratios measured at a network of measurement sites in the Central Valley with transport 
model predictions based on two independent emission maps: a 0.1 degree seasonally varying 
“California-specific” emission map, calibrated to state-wide by CH4 emission totals, and the 0.1 
degree global EDGAR42 CH4 emission map. Atmospheric particle trajectories and surface 
footprints (sensitivity of CH4 signals to surface emissions) are computed using the Weather 
Research and Forecasting (WRF) and Stochastic Time-Inverted Lagrangian Transport (STILT) 
models. Uncertainties due to wind velocity and boundary layer mixing depth are evaluated using 
measurements from radar wind profilers. Bayesian region analyses of data from the tower 
network constrains annual average CH4 emissions from California’s Central Valley to between 
31.43±2.07 and 28.27±2.00 Tg CO2eq (assuming a global warming potential of 21 Tg CO2eq/ Tg 
CH4) for the California-specific and EDGAR42 emission models respectively, showing 
consistency between the two independent models. Extrapolating results to annually averaged 
CH4 emissions across all of California totals 1.44±0.15 and 1.94±0.28 times larger than the 
current inventory estimate for State annual total CH4 emissions (32 Tg CO2eq) for the California-
specific CH4 and EDGAR42 CH4 emission maps, respectively. When emissions from large urban 
areas are estimated based on a recent study in the larger Los Angeles metropolitan region to 
better constrain urban emissions, State total CH4 emissions are estimated to be 1.30 – 1.74 times 
larger than the current State total CH4 emissions. These results based on the multiple emission 
models suggest that the California total of CH4 emissions would account for approximately 8% - 
13% of the State’s total greenhouse gas (GHG) emissions, which is significantly higher than the 
CARB inventory (~6% of total GHG emissions). Spatial resolution of emissions within the 
influence region reveal seasonality expected from several biogenic sources, including rice 
agriculture. We expect that additional tower measurements in urban regions (e.g., South Coast 
Air Basin) will provide the data necessary for a complete analysis of California’s CH4 budget. 
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EXECUTIVE SUMMARY  

Background  
Methane (CH4) is the second highest contributor to climate change among greenhouse gases 
(GHGs) behind carbon dioxide (CO2), based on its concentration changes in the atmosphere since 
the start of the industrial revolution and its ability to absorb infrared radiation. At the regional 
scale, California currently emits approximately 500 Tg (1 Tg = 1 million metric ton) of CO2 
equivalent (CO2eq) GHGs, with CH4 currently estimated to contribute approximately 6% of the 
total [California Air Resources Board (CARB), 2011]. 
 
Methods 
This report quantifies regional CH4 emissions within California with a Bayesian inverse 
modeling approach, representing the first analysis of CH4 emissions across a large swath of 
California and across different seasons using atmospheric observations from multiple sites. The 
inverse modeling approach follows the approach taken in Zhao et al. [2009], Jeong et al. [2012a] 
and Jeong et al. [2012b]. We calculate predicted CH4 signals using two relatively high resolution 
(0.1 degree) emissions models, a California-specific model and the EDGAR4.2 global emission 
model. Central to this approach, we quantify model-measurement uncertainties by estimating 
errors in transport variables (e.g., wind velocities and planetary boundary layer depth) that affect 
footprints (sensitivity of CH4 signals to surface emissions in units of concentration/flux) and 
propagating those errors to produce uncertainty in predicted CH4 signals. The Bayesian inverse 
analysis then estimates posterior (optimized) CH4 emissions for regions (region analysis) and 
source sectors (source analysis). 
 
Results 
This study shows that actual CH4 emissions based on inverse region analyses are 1.44±0.15 - 
1.94±0.28 times larger than the current inventory estimates (32 Tg CO2eq yr-1). When emissions 
from large urban areas (e.g., Southern California region) are estimated based on a recent study 
[Wennberg et al., 2012] in the larger Los Angeles metropolitan region and combined with the 
emissions from the Central Valley and other non-urban regions, State total CH4 emissions are 
1.30 – 1.74 times larger than the current State total CH4 emissions. A Bayesian region analysis 
suggests that the relatively large range of total emissions reflects a current limitation to uniquely 
resolve urban versus rural CH4 emissions, particularly from Southern California. A similar 
source sector analysis suggests that the dominant CH4 emissions are derived from livestock and 
landfills, though as with the region analysis, significant differences are obtained with the 
California-specific and EDGAR42 prior emission maps. 
 
Conclusions 
Atmospheric CH4 measurements can be combined to estimate total CH4 emissions at regional 
scales using the inverse modeling approach. Combining results from these tower measurements 
with results from urban area, California’s CH4 emissions are estimated to be 1.30 – 1.74 times 
larger than the current State total CH4 emissions.   
 
Recommendations for work that will likely reduce these uncertainties include: 
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• While CH4 emissions from California’s Central Valley are well constrained by the 
current network of measurement sites, emissions from coastal (and predominantly urban) 
regions remain uncertain. We suggest additional tower measurements in the San 
Francisco Bay and Southern California areas will be effective in constraining those 
emissions. 

• Data from the current CH4 measurement network are effective for use in constraining 
emissions from different regions of California’s Central Valley, but cannot be used to 
uniquely attribute emissions to specific source sectors (e.g., landfills, livestock, 
petroleum and natural gas). We expect measurements of additional source specific tracers 
(e.g., VOCs, CO, and potentially CH4 isotopes) help separate different sources of 
methane. 

• Remaining uncertainty in the inverse model estimates of CH4 emissions for regions 
containing measurement sites are dominated by the combination of uncertainty in 
meteorological modeling of trace gas transport (in winter) and estimation of background 
signals (in summer). We suggest that further work on meteorological modeling and 
background estimation will be effective in identifying and reducing these sources of 
uncertainty. 
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PROJECT REPORT 

1. Introduction 
 

Methane (CH4) is the second highest contributor to climate change among greenhouse gas 
(GHG) behind carbon dioxide (CO2), based on its concentration changes in the atmosphere since 
the start of the industrial revolution, the long residence time of CH4 and its ability to absorb 
infrared radiation. Earth's CH4 has increased by about 150% since 1750 in concentration, and 
accounts for ~ 25% of the global total radiative forcing from all long-lived and globally mixed 
GHGs [Hofman et al., 2006; Montzka et al., 2011].  Given the importance of CH4 as a GHG it is 
important to be able to quantify changes in emissions. However, there exists a large uncertainty 
in bottom-up emission inventory models that take known natural and anthropogenic sources of 
CH4 to produce emission estimates due to lack of understanding of emission processes and 
driving data. Mathematical inversion models, which use concentration changes in CH4 and 
transport to infer sources, provide an effective tool for understanding CH4 emissions. 
Correspondingly, attention has focused on inverse model assessment of global [Gimson and 
Uliasz, 2003; Houweling et al., 1999], and regional [Kort et al., 2008; Zhao et al., 2009; Jeong et 
al., 2012a] CH4 sources.  
 
At the regional scale, California currently emits approximately 500 Tg (1 Tg = 1 million metric 
ton) of CO2 equivalent GHGs, with CH4 currently estimated to contribute approximately 6% of 
the total [California Air Resources Board (CARB), 2011].  Because California has committed to 
an ambitious plan to reduce GHG emissions to 1990 levels by 2020 through Assembly Bill 32 
(AB-32), verifying the success of control strategies will require accounting for CH4 emissions.  
 
This report quantifies regional CH4 emissions from California within a Bayesian inverse 
modeling framework, representing the first analysis of CH4 emissions in California using 
atmospheric observations from multiple sites across different seasons during 2010 - 2011. The 
work expands on studies by Zhao et al. [2009] and Jeong et al. [2012a] that quantified CH4 
emissions from central California using a single tower near Walnut Grove, California (WGC). In 
Section 2, we describe the methods we employed, including atmospheric measurements, a priori 
CH4 emissions inventories, mesoscale meteorology and trajectory transport modeling, and the 
Bayesian inverse method. Section 3 describes results, including the seasonal variations in 
calculated footprints, and the inferred surface emissions of CH4 from California for different 
regions and sources based on simple correlation analysis and a Bayesian inverse analysis. 
Section 4 summarizes the results and presents the recommendations for CH4 inverse modeling at 
the regional scale, highlighting the importance of uncertainty in the spatial distribution of a 
priori emissions, and the value of multiple measurement stations. 

2. Approach 
The inverse modeling framework employed in this multi-site study builds on the approach taken 
in Zhao et al. [2009], Jeong et al. [2012a] and Jeong et al. [2012b] where GHG measurements 
from a single tower were used. The inverse modeling approach used in this study is illustrated in 
Figure 1. As shown in the figure, the Bayesian inverse model requires two direct inputs (two 
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arrows are directed to the “Bayesian Inversion” box): 1) CH4 tower measurements (measured 
signals), and 2) predicted signals. By comparing measured signals with predicted signals, the 
Bayesian inverse model estimates scaling factors for surface emissions (i.e., spatially/temporally 
resolved emission inventory) such that the scaled surface emissions yield predicted signals that 
are statistically consistent with measurements. Predicted signals are calculated as a linear 
combination of 1) footprints, which represent the sensitivity of signals measured at different sites 
to emissions across the landscape, and 2) surface emissions (see Section 2.3 for details on 
footprint calculations).  
 
Because predicted signals represent local enhancements of emissions, upwind background 
signals entering the study domain are needed to compare predicted signals with measured 
signals, which include both local and background signals. CH4 boundary values are the initial 
CH4 mixing ratios that represent the upstream concentrations at the western domain boundary 
(130°W) and often called CH4 background concentrations (see Section 2.1 for boundary values). 
Footprints are quantified using a Lagrangian model for air parcels arriving at a tower. Such 
footprints link the observed concentrations at a specific location and height (e.g., measurement 
tower) to surface fluxes within a large area. Numerical meteorological model outputs are used to 
define paths traveled by parcels of air, or trajectories, which are a basis for footprint estimates. In 
this study we use the coupled WRF-STILT model for trajectory calculations. The WRF-STILT 
model has been used to constrain GHG emissions in several studies including airborne 
measurement-based (e.g., Gerbig et al., 2003; Kort et al., 2008) and tower measurement-based 
inversions (e.g., Zhao et al., 2009; Miller et al., 2012; Jeong et al., 2012a; Jeong et al., 2012b). 
Errors in modeling footprints due to uncertainties in winds and planetary boundary layer (PBL) 
heights contribute to uncertainties in inversion results and confidence levels associated with 
optimized emissions values. The result of the Bayesian inverse model is a set of optimized 
scaling factors for region or source emissions (see Section 2.4 for details on Bayesian inversion). 
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Figure 1. Inverse modeling approach used in the study. 

 

2.1. CH4 Measurements and Boundary Conditions 
CH4 measurements were made at the collaborative five-site GHG network in California’s Central 
Valley. In addition to the Central Valley sites, CH4 measurements were also made at Mt. Wilson, 
but these measurements are not employed in this study because we have not developed a well-
tested meteorological model for atmospheric transport at Mt. Wilson at this time. Table 1 
summarizes the information for the measurement sites in the measurement network and the 
measurement periods used in the inverse analysis. The Arvin (ARV) site is located at the 
southern end of the San Joaquin Valley and constrains emission sources from livestock, and gas 
and petroleum production fields. The Madera (MAD) and Tranquility (TRA) sites are located in 
the center of the San Joaquin Valley, constraining emission sources mainly from livestock. The 
Sutter Buttes (STB) site located in the Sacramento Valley represents an emission region that has 
dominant CH4 emissions from rice agriculture. As described in detail in Zhao et al. [2009] and 
Jeong et al. [2012a], the Walnut Grove (WGC) site represents an emission region with mixed 
CH4 emission sources such as crop agriculture, livestock, natural gas fields, wetlands and urban 
emissions.  
 
CH4 measurements at WGC were made at 91 and 483 m above ground level on a tall tower, 
beginning in September 2007. The CH4 mixing ratios at each height are measured every 15 
minutes and averaged into the 3-hour means used in this study. CH4 mixing ratio is defined as 
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the amount (usually in mole) of CH4 divided by the total amount of an air mixture and expressed 
as (nano mol) / mol or parts per billion (ppb). As in Zhao et al. [2009] and Jeong et al. [2012a], 
CH4 measurements at 91 m are used for inverse modeling. Detailed information about these 
measurements is described by Zhao et al. [2009] and Jeong et al. [2012a]. All other stations are 
measured at 10 meters above the ground using the same type of instruments and calibrated with 
standard gases from NOAA every six months.  Each instrument is programmed to measure from 
precision check standard gases every 11 hours to ensure data quality.  After examining precision 
checks and removing special events (e.g., changing filters), raw data collected every few seconds 
are averaged into 3-hourly measurements for inverse modeling. 

 
Table 1. Measurement Sites and Periods 

Site Name Heighta Elevationb Latitude Longitude Measurement Period 
(yyyymm) 

Arvin (ARV) 10 m 158 m 35.24°N 118.79°W 201009 - 201106 

Madera (MAD) 10 m 81 m 36.87°N 120.01°W 201009 - 201106 
Sutter Buttes (STB) 10 m 640 m 39.21°N 121.82°W 201105 - 201106 
Tranquility (TRA) 10 m 59 m 36.63°N 120.38°W 201009 - 201106 
Walnut Grove (WGC) 91 m 0 m 38.27°N 121.49°W 201009 - 201106 
aAbove ground level (a.g.l.) 
bAbove sea level (a.s.l.) 
 
As described previously, the measured signals at each measurement site include both CH4 
enhancements and upwind boundary conditions while the WRF-STILT model simulates only 
local CH4 enhancements. Therefore, upstream CH4 boundary conditions need to be estimated to 
compare local measured CH4 signals with predicted CH4 in inverse modeling. The CH4 upstream 
boundary product used in this study is similar to the one used in Jeong et al., [2012b]. CH4 
boundary values were estimated using data from the Pacific coast aircraft network CH4 profiles 
(http://www.esrl.noaa.gov/gmd/ccgg/aircraft/) and remote Pacific marine boundary layer 
sampling sites (http://www.esrl.noaa.gov/gmd/ccgg/flask.html) within the NOAA Earth System 
Research Laboratory (ESRL) Cooperative Air Sampling Network. The data were smoothed and 
interpolated to create a three-dimensional (3-D) curtain, varying with latitude, height and time. 
Therefore, this 3-D background curtain provides estimates for CH4 background concentrations at 
a given latitude (at an upwind longitude), elevation, and time. As in Zhao et al. [2009] and Jeong 
et al. [2012a], predicted background values are computed for each footprint simulation by 
sampling the curtain at each of the 500 STILT trajectory endpoints (near 130°W) and calculating 
the average value.  
 
Figure 2 shows the 3-hourly measured signal, background signal and predicted signal using the 
California-specific a priori CH4 emissions for the five network sites. Predicted signals are shown 
only for the well-mixed periods (noon – afternoon). For inverse analysis, the hourly 
measurements and predicted background signals are aggregated into 3-hourly time periods as in 
Jeong et al. [2012a]. Unlike WGC, the other sites do not have multiple measurement levels. 
Therefore, it is difficult to identify well-mixed periods without using vertical CH4 gradients from 
multiple-level measurements. For inverse analyses, we use data during 12 – 17 hours (local 
standard time or LST) except for winter (11 – 16 LST) during which we found that WRF-

http://www.esrl.noaa.gov/gmd/ccgg/aircraft/
http://www.esrl.noaa.gov/gmd/ccgg/flask.html
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simulated PBL heights tend to collapse earlier compared to wind profiler measurements. As can 
be seen in the figure, most of the high mixing ratios are observed during the night time when the 
PBL height is low. In general, the variability in measured CH4 is larger in winter than the other 
seasons for most of the sites. The minimum measured signals approximate the predicted 
background CH4, suggesting that the estimated background signals are reasonable and there is no 
significant bias in the measured signals. 

 

Figure 2. 3-hourly signal comparison: all measured CH4 signal (gray open circle), 
measured CH4 signal during noon - afternoon hours (black filled circle), WRF-STILT 
predicted CH4 signal + WRF-STILT predicted CH4 background signal during noon – 
afternoon hours (blue open circle), and  WRF-STILT predicted CH4 background signal 
using the 3-D curtain (red dots). 
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2.2. A priori CH4 Emission Maps 
This work adopts the a priori CH4 emission model from Jeong et al. [2012a], which provides a 
high spatial resolution (0.1º × 0.1º) for California and has seasonal components for wetlands and 
crop agriculture. As described in Jeong et al. [2012a], the high resolution emission model was 
prepared by scaling to the CARB 2008 inventory by sector [CARB, 2010]. The considered 
sectors include: crop agriculture (CP), landfills (LF), dairy livestock (DLS), non-dairy livestock 
(NDLS), natural gas (NG), petroleum (PL), wastewater (WW), and wetlands (WL). Figure 3 
shows California-specific CH4 emission maps for sectors without temporal variation. 
 
Because there is no specific emission estimate for wetlands from CARB, wetland CH4 
emissions are taken from monthly averages of the Carnegie-Ames-Stanford-Approach CH4 
(CASA-CH4) model from Potter et al. [2006]. Also, seasonally varying CH4 emissions for 
CP CH4 sources were taken from the denitrification and decomposition model (DNDC) 
output (assuming the 1983, high irrigation case) described by Salas et al. [2006]. Monthly 
averaged CH4 emission maps for county level agricultural CH4 fluxes are used. The 
temporally-varying emission maps for CP and WL are averaged annually and shown in 
Figure 4.  
 
Table 2 summarizes the annual mean CH4 emissions for the California-specific emission 
model, which is calibrated to the CARB 2008 inventory [CARB, 2010], by region and 
sector. In this study, CH4 emissions are scaled to CO2 equivalent using a 100-year global 
warming potential (GWP) of 21 g CO2 eq / g CH4 [IPCC, 1995]. The sub-regions (shown 
in Figure 5) in Table 2 were classified by considering the emission sources and 
measurement sites, and roughly follow the California Air Basins. Large California Air 
Basins such as the Sacramento Valley Basin and the San Joaquin Valley Basin were divided 
into two basins. For example, the Sacramento Valley Basin was divided into Region 6 and 
Region 11, considering emissions sources; emissions from rice agriculture are concentrated 
in Region 6 while rice agriculture emissions in Region 11 are small. On the other hand, due 
to weak footprint influence from the measurement sites located in the Central Valley, we 
combined the basins (Mojave Desert, South Coast, San Diego, Salton Sea) in the Southern 
California region into Region 10. Regions used for inverse analysis and corresponding 
California counties and air basins are shown in Table 3. 
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Figure 3. California-specific CH4 emission (nmol m-2 s-1) maps (available at 
(http://calgem.lbl.gov/prior_emission.html) for source sectors: (a) LF, (b) WW, (c) DLS, (d) 
NDLS, (e) NG, and (f) PL. 

http://calgem.lbl.gov/prior_emission.html
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Figure 4. California-specific CH4 emission maps for source sectors that have seasonal 
components: (a) CP and (b) WL. 
 

Table 2. Annual Average California-specific CH4 Emissions by Region and Sector (Tg 
CO2eq)  

Sector/ 
Regiona  R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 Sector 

Total 
CP 0.00 0.00 0.00 0.01 0.00 0.50 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.54 
LF 0.02 0.04 0.11 0.08 0.03 0.46 0.87 0.19 0.34 4.00 0.10 0.29 0.06 6.60 

DLS 0.00 0.00 0.01 0.10 0.01 0.36 0.08 3.79 0.02 1.71 0.03 5.77 0.01 11.90 
NDLS 0.03 0.10 0.11 0.06 0.17 0.19 0.12 0.54 0.11 0.64 0.07 1.00 0.03 3.17 

NG 0.00 0.01 0.04 0.02 0.01 0.33 0.33 0.10 0.05 0.91 0.02 0.11 0.03 1.95 
PL 0.00 0.00 0.05 0.00 0.00 0.03 0.05 0.02 0.07 0.19 0.00 0.71 0.00 1.13 

WW 0.00 0.09 0.02 0.01 0.00 0.03 0.17 0.08 0.06 1.33 0.01 0.11 0.01 1.92 
WL 0.01 0.00 0.00 0.00 0.22 0.18 0.03 0.27 0.01 0.03 0.01 0.02 0.01 0.79 

Region 
Total 0.07 0.24 0.34 0.30 0.44 2.08 1.65 4.99 0.67 8.80 0.25 8.02 0.16 28.00 

aSee Figure 5 for region classification in a map 
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Figure 5. Sub-region classification for the inverse analysis. Emissions from these regions 
are adjusted by the corresponding scaling factors estimated by the inverse model.   

 
Table 3. Regions Used for Inverse Analysis and Corresponding California Counties and 
Air Basins 

Regions Counties California Air Basinsa 
1 Mono, Inyo, Alpine Great Basin Valleys 
2 Calaveras,  Amador, Mariposa, Tuolumne Mountain Counties 
3 Monterey, San Benito, Santa Cruz North Central Coast 
4 Mendocino, Lake, Trinity, Del Norte, Humboldt North Coast 
5 Lassen, Siskiyou, Plumas, Modoc Northeast Plateau 
6 Colusa, Glenn, Butte, Yolo, Yuba, Sacramento, Solano, 

Sutter 
Sacramento Valley 

7 Alameda, Napa, Contra Costa, Santa Clara, Sonoma, 
San Mateo, Marin, San Francisco 

San Francisco Bay Area 

8 Merced, San Joaquin, Stanislaus San Joaquin Valley 
9 Ventura, Santa Barbara, San Luis Obispo South Central Coast 
10 San Diego, Los Angeles, Orange, San Bernardino, 

Imperial, Riverside 
Mojave Desert, South Coast, San 
Diego, Salton Sea 

11 Tehama, Shasta Sacramento Valley 
12 Fresno, Madera, Kern, Kings, Tulare San Joaquin Valley 
13 Sierra, Nevada, Placer, El Dorado Lake Tahoe, Mountain Counties 
aSome basins are divided or combined to represent an emission region for inversion 
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The EDGAR42 (European Commission Joint Research Centre (JRC) and Netherlands 
Environmental Assessment Agency, Emission Database for Global Atmospheric Research 
(EDGAR), release version 4.2, 2011, http://edgar.jrc.ec.europa.eu) CH4 emission model also 
provides high-resolution emission maps and its estimates are compared with estimates from the 
California-specific model (Figure 6). Compared with the California-specific model, EDGAR42 
generally shows a similar spatial distribution of CH4 emissions. However, EDGAR42 shows 
larger emissions in urban areas than the California-specific model. For the Central Valley, the 
California-specific model estimates higher emissions than EDGAR42, mainly due to the higher 
estimates of livestock emissions.  
 

 

 
Figure 6. (a) California-specific total CH4 emissions (nmol m-2 s-1), and (b) EDGAR42 CH4 
total emissions (nmol m-2 s-1). 
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Figure 7 shows the comparison between the California-specific and EDGAR42 emissions by 
region. As can be seen in the figure, EDGAR42 shows more weight in urban areas than the 
California-specific model. For example, for Regions 7 and 10, which include San Francisco Bay 
Area and the Southern California Air Basin, respectively, EDGAR estimates significantly higher 
CH4 emissions than the California-specific model. Currently, Region 10 is a single large sub-
region due to relatively weak sensitivity from the measurement sites in the Central Valley. 
However, Region 10 needs to be divided into smaller sub-regions when more measurements sites 
are available in the region. On the other hand, the California-specific model estimates higher 
emissions than EDGAR in the Central Valley. For example, the California-specific model has 
higher emissions than EDGAR42 in Region 8 where livestock is a dominant emission source 
(more than 80%). The annual total emissions for California from the California-specific model 
and the EDGAR42 model are 28.0 and 38.3 Tg CO2eq, respectively. Table 4 shows the 
comparison of CH4 emissions by source between the CARB 2008 inventory (used to scale the 
California-specific emissions; CARB, 2010) and the EDGAR42 emission model.  
 
 

 
Figure 7. Comparison between the California-specific and EDGAR42 emissions by region.  
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Table 4. Comparison of CH4 Emissions by Source between CARB 2008 Inventory and 
EDGAR42 Emission Model (100-year GWP = 21 g CO2eq / g CH4) 

CARB Category CARB  Emission 
(Tg CO2eq) EDGAR42 Category 

EDGAR42  
Emission 

(Tg CO2eq) 
Rice crop area 0.5 Agricultural soils 0.7 

Landfill 6.7 Solid waste 12.7 
Dairy cows 11.9 Enteric fermentation 7.3 

Non-dairy cows 3.2 Manure management 2.4 

Natural gas pipeline 1.9 Gas production and 
distribution 10.2 

Extraction, mobile, 
refining 1.1 Oil production and 

refineries 0.5 

Wastewater treatment 1.9 Waste water 3.2 
Others 1.2  1.4 

CARB Total 28.5 EDGAR Total 38.3 
 

2.3. Atmospheric Transport Modeling 
Predicted contributions to CH4 mixing ratios from emissions within the modeling domain 
are calculated as FE, where F is footprint strength (an n × m matrix), and E (an m × k 
matrix) is the a priori CH4 emissions (see Section 2.4 for details on predicted signal 
calculation). Footprints represent the sensitivity of the mixing ratio at the receptor location 
(i.e., measurement site) to surface sources, in units of ppb/(nmol m-2 s-1). Footprints are 
calculated from particle trajectories simulated using the STILT model [Lin et al., 2003, 
2004]. Figure 8 below shows particles moving from upwind locations to the measurement 
site using the STILT model. In the time-reverse sense, the STILT model transports 
ensembles (e.g., 500 particles) of particles (air parcels) backwards in time (e.g., 7 days) 
from a receptor point. By releasing particles backwards, we identify the origin of emission 
sources that contribute to the receptor. In general terms, GHG emission sources upwind 
produce GHG signals (in mixing ratio units of ppb) at the measurement site as the product 
of 1) the averaged (e.g., hourly) measurement sensitivity to emissions, or footprint, and 2) 
the emissions (in flux units of nmol m-2 s-1).  
 
As shown in Figure 8, footprints are estimated by counting the time the particle spends in 
the surface-influenced region, defined as ½ of the planetary boundary layer height (PBLH), 
and inversely weighted by dilution into the height of the boundary layer. In Figure 8, the 
dark colored particles within ½ PBLH are assumed to contribute to the footprint, while 
particles colored in gray above ½ PBLH are not. The footprint for each grid cell (~ 10 km 
× 10 km) is calculated by counting the number of particles that pass over the grid cell 
weighted by the amount of time the particles spend in the gird cell. Therefore, if more 
particles stay in a grid cell over a long period of time, the signal at the measurement site is 
more sensitive to the grid cell. In this study, 500 particles are released at location Xr and 
time tr, where r represents the receptor. The footprint as function of location and time 

),,|,( mjirr tyxtf X  links mixing ratios at the receptor ),( rr tc X  to discretized surface 
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emissions ),( ji yxE at location ),( ji yx . Here we assume that CH4 emissions are constant in 

time ( mt ) and mt  is factored out of E. In other words, the footprint converts the surface 
emissions to a mixing ratio enhancement observed at the measurement site. Therefore, the 
predicted local signals are ca-lculated by integrating the product of the footprint maps and 
the a priori emission maps over space and time (e.g., 7 days) as 
 

∑ ⋅=
mji

jimjirrrr yxEtyxtftc
,,

),(),,|,(),( XX  

where the local signal ),( rr tc X  is calculated by subtracting the background signal 
),( rrBG tc X  from the total measured signal ),( rrtot tc X . 

 
Figure 8. Schematic diagram showing simulations of backward (opposite to the wind 
direction) particle trajectories from a tower that are used for footprint calculations. 
Footprints at the grid cells near the receptor are strong because more particles pass over 
those grid cells before they are advected and dispersed into different places. The particles 
above ½ PBLH (colored in gray) do not contribute to the footprint strength. 

 
As in Jeong et al. [2012a], 500 particles are released hourly at each measurement site and 
transported backward in time 7 days to ensure that the majority of the particles reach positions 
representative of the upwind boundary conditions. This means that predicted signals are 
calculated for each hour although 3-hourly averaged predictions are used for inverse analysis. 
We use the coupled WRF-STILT (Weather Research and Forecasting and Stochastic Time-
Inverted Lagrangian Transport) model for particle trajectory simulations [Lin et al., 2003; 
Skamarock et al., 2008; Nehrkorn et al., 2010]. The WRF-STILT model has been used to 
constrain GHG emissions in many studies including airborne measurement-based (e.g., Gerbig et 
al., 2003; Kort et al., 2008) and tower measurement-based (e.g., Zhao et al., 2009; Jeong et al., 
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2012a; Jeong et al., 2012b) inversions. An ensemble of 500 STILT particles are run backwards in 
time for 7 days driven with meteorology from the WRF model (version 3.2.1) [Skamarock et al., 
2008]. Hourly predicted signals based on WRF-STILT are aggregated into 3-houly averages for 
inverse modeling. 
 
The WRF model simulations closely follow those described in Jeong et al. [2012a, 2012b] with 
some modifications, which are summarized here. We use version 3.2.1 of the WRF model 
[Skamarock et al., 2008] instead of WRF2.2. Five domains (d01 – d05) of 36, 12, 4, and two 1.3 
km resolutions were used in the WRF simulations. The 4-km domain (i.e., d03) was configured 
to represent most of California with the two 1.3-km nested domains (d04 and d05) that cover the 
San Francisco Bay Area and the metropolitan area of Los Angeles, respectively. In this study, we 
used the WRF meteorology within the d01, d02 and d03 domains to drive the STILT model 
because the GHG measurement sites are located in the Central Valley. Figure 9 shows the WRF 
d01, d02 and d03 domains used in this study. The WRF model was run with two-way nesting 
instead of one-way nesting used in Jeong et al. [2012a]. As in Jeong et al. [2012a], 50 vertical 
levels were employed to resolve planetary boundary layer (PBL) heights over complex terrain 
features of California. Initial and boundary meteorological conditions were provided by the 
North American Regional Reanalysis (NARR) dataset [Mesinger et al., 2006]. All simulation 
durations were 30 hours including 6 hours of model spin up. The model also incorporated 3-D 
analysis nudging every three hours in the 36-km domain.  
  
The specific combination of land surface models (LSMs) and PBL schemes that yielded the best 
comparison with PBL heights retrieved from the wind profilers [Bianco and Wilczak, 2002; 
Bianco et al. 2008] in the Central Valley varied with season and location. An evaluation of WRF 
meteorology was performed using data for the Sacramento (SAC), Chowchilla (CCL), Chico 
(CCO) and Lost Hills (LHS) (sites are shown in Figure 10). For summer and early fall, the 
combination of the five-layer thermal diffusion LSM (5-L LSM hereafter) and the Mellor-
Yamada-Janjic (MYJ) PBL scheme [Mellor and Yamada, 1982; Janjić, 1990] performed best. 
For example, for the summer month of June 2010 (due to profiler data availability, 2010 data are 
used for some sites and months), the 5-L LSM and MYJ combination (root mean square (RMS) 
errors = 280 - 290 m, also shown in Figure 11) performed better than the Noah LSM and MYJ 
combination (RMS errors = 400 - 450 m) for the SAC and CCL sites. This is likely due to the 
fact that the 5-L LSM includes irrigation to actively manage soil moisture as a function of land 
cover types. For winter, the Noah LSM and MYJ combination performed well because the more 
complicated Noah LSM handles energy balance better when precipitation is the dominant source 
of moisture. The one exception is that of the LHS site during summer and early fall where the 5-
L LSM and Yonsei University (YSU) PBL scheme combination performed better than the 5-L 
LSM and MYJ combination. For example, for June 2010, the RMS error for the 5-L LSM and 
MYJ combination (526 m) was significantly larger than that of the 5-L LSM and YSU 
combination (359 m). We speculate that the 5-L LSM may overestimate soil moisture at the LHS 
site, reducing PBL height in a manner that is compensated for by the overestimation of PBL 
height by the YSU scheme. However, we lack the data to test this hypothesis at this time. 
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Figure 9. WRF modeling domain configuration with three-level nested domains (d01, d02, 
and d03 featuring 36, 12, and 4 km resolution, respectively).  

 

2.4. Bayesian Inverse Model 
Seasonally varying regional (~10,000 km2) CH4 emissions from California’s Central Valley are 
estimated by scaling the high-resolution (~10 km) CH4 emission maps using a Bayesian 
inversion model to provide optimal agreement with aggregate mixing ratio data measured at the 
five-site network. This inversion approach expands on the earlier efforts by Zhao et al. [2009], 
Jeong et al. [2012a] and Jeong et al. [2012b] and is described here with some background 
information of Bayesian inversion. 
 
Bayesian inverse modeling for quantifying GHG emissions attempts to gain useful information 
from measured signals to infer most probable surface emissions based on known a priori 
emissions, which are usually available as bottom-up inventories (e.g., CARB GHG emission 
inventory). In many cases, inversion efforts are made to estimate optimal parameters such that 
when those estimated parameters are applied, predicted signals based on a priori emissions agree 
well with measured signals. In this study, the parameters optimized in the inversion are non-
dimensional emission factors (or scaling factors) which are multiplied by the a priori knowledge 
(i.e., a priori CH4 emissions) to best match atmospheric CH4 measurements. Therefore, the 
measured signal at the receptor can be related to the unknown scaling factor as 
 

measured signal ≅  predicted signal × scaling factor 
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where ≅ denotes relation, and the predicted signal is a product of footprints and a priori 
emissions and needs to be adjusted by scaling factors to be consistent with measured signals. 
 
This relationship can be formulated as in Gerbig et al. [2003], Lin et al. [2003], Zhao et al. 
[2009], and Jeong et al. [2012a] and be written as  
 

c = Kλ + v,    (1) 
 
where c, K, and λ represent the measured signal, predicted signal, and scaling factor, 
respectively. More precisely, c is an n × 1 measurement vector (n is the number of 
measurements; e.g., 3-hourly mixing ratios), K = FE (an n × k matrix), λ is a k × 1 state vector 
for scaling factors (k is the number of regions or sources), which is used to adjust emissions from 
sources or regions, and v is a vector representing the model-data mismatch with a covariance 
matrix R. We model R as a diagonal matrix to represent the total variance associated with all 
error sources such as the measurement error and the transport error. We describe the model-data 
mismatch matrix in detail in Section 2.5. 
 
As described previously, the footprint F is an n × m matrix, where m is the number of grid cells 
(~ 10 km × 10 km) in the emission maps. In this linear equation, F links the surface emissions E 
to the signal c at the measurement site. In other words, the footprint transforms the surface 
emissions to a mixing ratio enhancement observed at the measurement site. Each column (n × 1 
vector) of F (total number of columns = m) describes the contribution of surface emissions in a 
given grid cell (10 km × 10 km) to the signal at the measurement site during the entire prediction 
period. The emission map E is an m × k matrix where each column (m × 1 vector) has non-zero 
values only for the grid cells belonging to the kth region or source so that the kth column 
represents the emissions from the kth region or source. Therefore, K, product of F and E, 
represents the predicted signals. The kth column of K contains the contribution of the kth region 
or source to the total signal at the receptor for the entire prediction period (e.g., each month). 
Now, the product of K and λ yields an n × 1 vector of posterior (optimized) signals, which is the 
same size as c. 
 
Following the Gaussian assumptions, the posterior (optimized) estimate for λ is 
 

( ) ( )prior
TT

post λQcRKQKRKλ 11111 −−−−− ++= λλ   (2) 
 
where λprior is the a priori estimate for λ (initially set to one for all elements), and Qλ is the error 
covariance matrix (k × k) associated with λprior. The corresponding posterior covariance for λ is 

( ) 111 −−− += λQKRKV T
post .  
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Once the posterior (optimized) scaling factor λpost is solved using Equation (2), λpost is multiplied 
by a priori emissions to yield posterior emissions (i.e., adjusted emissions), which we use to 
evaluate the current State emission inventory (e.g., CARB inventory). For example, when λpost 

(13 × 1 vector or posterior scaling factors for 13 regions in Figure 5) from Bayesian region 
analysis is multiplied by the corresponding annual emissions (e.g., Table 2) for the 13 regions, 
we obtain the posterior emission for each region. Statistically, posterior emissions are the most 
probable emission estimates given the available data, prior knowledge, and assumptions we 
made. Summing the posterior emissions over all 13 regions yields posterior State total emissions. 
Similarly, posterior uncertainty can be obtained by multiplying the annual a priori emissions by 
the square root of the diagonal elements of Vpost. 

 
To determine optimal emissions, we use the inversion method at a monthly temporal scale based 
on the two CH4 a priori emission models. Because the measurements sites are located in 
California’s Central Valley that includes such uncertain CH4 emission sources as rice agriculture, 
livestock and natural gas fields, we use 50% uncertainty in our a priori emission models [Jeong 
et al., 2012a]. The inverse modeling approach is applied in two phases as in Bergamaschi et al. 
[2005] and Jeong et al. [2012a]. After a first inversion, the second (final) inversion uses data 
points that are accepted by applying the selection criteria |ci – (Kλ)i|2 < αRi, where α is a fixed 
value. In other words, after the first inversion the squared difference between measurements and 
scaled predicted signals should be less than a threshold (αRi). In this study we use 2 or 3 for α 
depending on the season although the choice of α does not make a significant difference in 
emission estimation. Described previously, K (n × k matrix) represents the predicted signals for k 
number of regions or sectors, and thus the product of K and λ yields an n × 1 vector of scaled or 
optimized predicted signals for n number of data points (n 3-hourly data in this study). The kth 
column of K contains the contribution of the kth region or source to the total signal at the 
receptor for the entire prediction period (e.g., each month). As in the first inversion, the final 
inversion is performed using the original a priori emission maps, and therefore the first inversion 
is used as a data selection tool for the atmospheric observations.  

 

2.5. Uncertainty Analysis 
The uncertainty in the model-measurement differences controls the relative weighting of the 
prior flux estimates and the measured data in the inversion, adjusting posterior CH4 emissions 
relative to a priori emissions. Following Gerbig et al. [2003], Zhao et al. [2009], Göckede et al. 
[2010], and Jeong et al. [2012a], the model-measurement mismatch matrix, R (an n × n matrix), 
is represented as the linear sum of uncertainties from several sources and modeled as a diagonal 
matrix: 

Ri = Spart + Saggr + Sbkgd + StransPBL + StransWIND, 
 

where the particle number error (Spart) is due to the finite number of released particles at the 
receptor location while the aggregation error (Saggr) arises from aggregating heterogeneous fluxes 
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within a grid cell into a single average flux. The background error (Sbkgd) is due to the 
uncertainty in estimating the background contribution to the CH4 measurements at the receptor. 
StransWIND and StransPBL represent the uncertainty in CH4 mixing ratios caused by the errors in wind 
speeds and directions, and the errors in PBL heights, respectively. For the aggregation error 
(Saggr), we adopt the result from Jeong et al. [2012a] and use 11% of the background-subtracted 
mean signal. The background error (Sbkgd) is estimated by combining (in quadrature) the RMS 
error in the estimation of the 3-D curtain (similar to that used in Jeong et al., 2012b) and the 
standard error of 500 WRF-STILT background samples, which were calculated as an average for 
each month during September 2010 – June 2011. Recall that we release 500 particles backwards 
in time for 7 days, and each particle is associated with a background value at its final location. 
The background errors were estimated to be 17 – 25 ppb depending on the season and 
measurement site. Only time points for which more than 80% of the particles reached the 
western boundary of the domain (130°W) were included in the study.  
 
 To estimate the uncertainty in predicted CH4 signals due to errors from modeled PBL heights 
(StransPBL) and winds (StransWIND), we evaluated WRF model errors in winds and PBL heights and 
then calculated the RMS difference in CH4 signals obtained from simulations with and without 
input of an additional stochastic component of wind and PBL errors in STILT. As described 
previously, we evaluated PBL heights (Zi) and winds at four profiler sites (Figure 10): CCO, 
SAC, CCL, and LHS. Wind and Zi measurements from the closest profiler to the GHG 
measurement site were used to evaluate WRF simulations. For example, most relevant to the 
ARV GHG measurement site, we compared Zi from WRF with measurements from the LHS 
profiler. For the MAD and TRA GHG sites, we used wind profiler data from the CCL site. As in 
Jeong et al. [2012a, 2012b], we assume that the RMS scatter in predicted versus measured Zi can 
be represented as the sum of squares of measurement uncertainty [~ 200 m, Dye et al., 1995] and 
WRF model uncertainty. For comparison between WRF and profiler measurements, we used 
data for May 2010, June 2010, October 2010, and January 2011 to represent spring, summer, 
fall, and winter seasons, respectively. Due to data availability we used 2010 data for spring and 
summer except for the CCO site for which May and June 2011 data were used. For the LHS site, 
we used September 2010 data for fall because the LHS profiler data were not available after 
September 2010. Thus, we used the result from the CCL site for the LHS site after September 
2010. The WRF simulated Zi was generally consistent with the measured Zi. As an example, 
Figure 11 shows the Zi comparison result between profiler measurements and WRF predictions 
for the month of June.  
 
Following Jeong et al. [2012a, 2012b], we computed CH4 signals (CCH4) based on the 
perturbation in Zi (20%) to estimate the sensitivity of CCH4 to Zi (i.e., dCCH4 /dZi) as a first order 
approximation. Then we applied the inferred RMS errors (in units of meter) in the WRF-STILT 
model to dCCH4/dZi to estimate errors (in ppb) associated with Zi for each season and each site. 
The estimated uncertainties ranged from ~5 ppb to over 200 ppb depending on the season and 
site, yielding large errors during winter and small errors during summer. For instance, the ARV 
and MAD sites with the mean background-subtracted signal of ~500 ppb in January showed 
large errors associated with Zi (~200 ppb). In June, the uncertainties due to Zi errors in the ARV 
and MAD sites were relatively small (56 and 35 ppb, respectively) although the mean signals 
were also low (125 and 105 ppb).  
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Uncertainty in modeled CH4 signals due to errors in modeled winds was estimated by comparing 
WRF-simulated winds and measured winds from the four wind profiler sites for a total of four 
selected months as in the case of Zi (Figure 10). When we compared WRF-simulated winds with 
profiler-measured winds at the available levels of profilers near the surface (~200 m above mean 
sea level), the RMS errors in the wind U and V components varied depending on the season and 
measurement location. For the SAC profiler site (most relevant to WGC), the RMS errors for the 
wind U/V components were 3.42 (fit slope = 1.00±0.03) / 2.95 (fit slope = 1.13±0.02), 2.89 
(1.39±0.11) / 4.96 (1.41±0.11), 3.37 (1.04±0.04) / 3.11 (1.15±0.02), and 2.87 (0.98±0.03) / 
2.88(1.05±0.03) m s-1 for October, January, May and June, respectively. For the CCL site (most 
relevant to MAD and TRA), we used data for October and January only because profiler data 
were not available for spring and summer 2011. The RMS errors for the U/V components were 
3.77 (fit slope = 0.96±0.03) / 3.48 (fit slope = 1.04±0.03) and 2.76 (1.01±0.04) /2.91 (1.32±0.05) 
m s-1 for October and January (later we used the SAC site results for the other months to perform 
STILT ensemble runs). We evaluated winds at the CCO site for the months of May and June 
2011 when CH4 measurements were made at the STB site near the CCO site. The wind U/V 
RMS errors were 4.22 (fit slope = 1.03±0.04) / 5.99 (fit slope = 1.14±0.03) and 3.17 (0.95±0.03) 
/ 4.45 (1.06±0.03) m s-1 for May and June, respectively. Since profiler wind data for the LHS site 
were not available after early September 2010, we used results from either SAC or CCL sites to 
run the STILT model for error quantification. For January when WRF overestimated wind 
speeds relative to profiler winds, we removed outliers (data points corresponding to > 2σ of 
measured wind speed) to avoid biases in inverse analyses.  
 
To estimate the effect of uncertainty in CH4 signals due to winds (StransWIND) and particle number 
(Spart), we ran the STILT model 10 times and computed ensemble signals for a given site and 
month (a total of four selected months as in the Zi case). Based on 10 ensemble runs, we 
estimated the RMS difference about the mean of the ensemble signals for each model time step 
and use the monthly average RMS as the combined uncertainty due to wind and particle number 
errors. Following the method in Jeong et al. [2012a; 2012b], propagating a random wind 
component of the wind velocity error through STILT yielded a signal variation of 1 – 15 ppb 
depending on the season and site. As with the Zi case, the errors due to winds were higher during 
winter (8 – 15 ppb) than during summer (~ 2 ppb).  
 
Following Zhao et al. [2009] and Jeong et al. [2012a; 2012b], we assumed that all of the errors 
are independent. The errors were combined in quadrature to yield a total expected model-data 
mismatch error. Depending on the month and measurement location, the errors ranged from 20 to 
230 ppb, which are approximately 30 – 60% of the background-subtracted mean signal. The total 
error was particularly large (100 – 230 ppb) during winter in the ARV and MAD sites where the 
mean signal was also high (220 - 520 ppb). 
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Figure 10. Location of GHG measurement sites (black) and wind profiler sites (red) in the 
Central Valley with predicted monthly mean PBL heights (m) for June 2011, 14:00 local 
standard time (LST) shown in color. 
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Figure 11. Comparison of measured and predicted Zi during the month of June for (a) 
CCO, (b) CCL, (c) LHS, and (d) SAC. For CCO, data from June 2011 data are used while 
the other sites use data from June 2010. For this summer month, the 5-L LSM scheme was 
used for all sites. In terms of the PBL scheme, the MYJ scheme was used for all sites except 
for LHS where the YSU scheme was used. 

3. Results and Discussion 

3.1. CH4 Mixing Ratio 
Figure 12 shows the 3-hourly background-subtracted CH4 mixing ratios and initial predictions 
using the a priori CH4 emissions for the five network sites. Predicted mixing ratios are shown 
only for the well-mixed periods which are used for inverse analyses. Overall, the predicted 
signals at all sites show underestimation of CH4 compared to the measurements although the 
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prediction captures the synoptic variation of the measured signals. Also, the daytime (noon – 
afternoon) comparison between the predicted and measured signals is shown in Figure 13. The 
result during the daytime suggests that there is a clear seasonal variation in CH4 signals with high 
variability in winter. The CH4 predictions at ARV and MAD are more consistent with the 
measurements than at the other measurement sites. It is likely due to the fact that the footprints 
contributing to ARV and MAD cover areas with CH4 emissions from dairy livestock and oil and 
gas extractions, for which the California-specific emission model estimate significantly higher 
emissions compared to EDGAR42. Note that based on the California-specific model, the CH4 
emission sum for Region 12, which includes ARV, is ~1.6 times higher than that of EDGAR42. 
This suggests that emission estimates for Region 12 from both emission models are low. The 
comparison result in STB indicates that late spring and summer emissions from rice agriculture 
are significantly lower than actual emissions. The DNDC model suggests that CH4 emissions 
from rice agriculture in Region 6 become strong starting in June with an emission sum of 3.4 Tg 
CO2eq yr-1 and peaking in August with emissions equating to 4.6 Tg CO2eq yr-1. For WGC, the 
predicted signals are significantly lower than the measurements, showing similar results to those 
shown in Jeong et al. [2012a].  
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Figure 12. Time series of measured and predicted mixing ratios at the five network sites 
during September 2010 – June 2011. The measurements are shown for both day and night 
times while the predictions are shown for only noon-afternoon well-mixed periods. The 
prediction was made based on the California-specific emission maps. 
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Figure 13. 3-hourly time series of measured and predicted mixing ratios at the five network 
sites during noon-afternoon well-mixed periods. The prediction was made based on the 
California-specific emission maps. 
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3.2. Footprints 
When footprints for all five sites are combined, the sensitivity of the measurement sites to 
surface emissions is significantly improved, as compared to the results with one site only. The 
combined footprints from multiple sites extend the sensitivity over most of the Central Valley. 
Figure 14 shows the average CH4 footprints for May – June 2011 and compares the average 
footprints between the cases using one site and multiple sites. The averaged footprint in each grid 
cell shown in Figure 14 is the average of all noon-afternoon footprint values for the grid cell 
during May – June 2011. Thus, this average footprint map represents the overall behavior of 
particles released from the measurement sites during the given period. In particular, the averaged 
footprints from the multiple sites show the combined sensitivity of measurements at the receptors 
to the surface emissions that contribute to measured signals (see Section 2.3 for details on 
footprint calculations). The significance is clear in Figure 14 where the averaged footprint from a 
single tower shows limited sensitivity (mostly strong in the Northern Central Valley) while the 
footprint from multiple sites shows strong sensitivity in the entire Central Valley. Recall that 
footprints (in units of concentration / surface emission flux) show how sensitive the signal at the 
measurement site is to the emission flux at each grid cell (~10 km × 10 km) within the domain of 
study. Therefore, strong sensitivity over a larger region suggests that the inverse model can 
constrain emissions for the extended region. One of the significant implications of this study is 
that the measurement sites in the Central Valley have limited ability to constrain CH4 emissions 
in the Southern California region due to weak sensitivity. 
 

Figure 15 shows average footprints for other seasons. There is a clear seasonal pattern for the 
distribution of footprints, which is important to attribute signals to different emission sources for 
each season. Overall, the seasonal footprints are strong in the north-south direction in the Central 
Valley although footprints are strong in the west-east direction near the WGC site for some 
seasons. During summer, footprints are also strong from the San Francisco Bay Area to the west 
of the WGC tower due to the dominance of land-ocean winds. Also, there is a shift of footprints 
toward north-south winds from west-east winds near the WGC site during the transition seasons 
of spring and fall, which is a similar result to that described in Jeong et al. [2012a] and Jeong et 
al. [2012b]. Depending on the season, the footprints reach the Southern California Air Basin (i.e., 
Region 10), which allows for constraining important urban emissions.  
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Figure 14. Averaged footprints during the noon-afternoon hours for (a) the WGC site and 
(b) all five sites during May – June 2011. 
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Figure 15. Seasonal mean footprints during the noon-afternoon hours for (a) September – 
October 2010, (b) November – December 2010, (c) January – February 2011 and (d) March 
– April 2011. 

 

3.3. Bayesian Inverse Analysis 
 

3.3.1. Linear Analysis 
Bayesian inverse analysis was conducted using two independent emission models: California-
specific and EDGAR42 emission models. Using each emission model, we performed Bayesian 
inversion to estimate optimized emissions for both each emission region defined in Figure 5 and 
each emission source (e.g., livestock). The Bayesian inversion for estimating region emissions is 
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referred to as Bayesian region analysis (or simply region analysis). Similarly, the latter is called 
Bayesian source analysis (or source analysis). Note that for both analyses we use a scaling factor 
Bayesian inversion (SFBI) technique introduced in Section 2.4. Therefore, we obtain four 
different emission estimates from Bayesian inversions. For the region analysis, we first optimize 
scaling factors for the 13 regions in Figure 5 using the SFBI technique (Equations 1 – 2) and then 
multiply a priori emissions (emissions are organized by region) by the optimized scaling factors 
to obtain optimized (posterior) regional emissions. Similarly, the source analysis optimizes 
scaling factors for emission sources, which are multiplied by a priori emissions (emissions are 
organized by source sector) to obtain posterior source emissions. 
 
Figure 16 shows the comparison result between measured CH4 signals and those predicted based 
on the California-specific emission model using a chi-squared (fitexy) linear regression analysis 
[Press et al., 1992] during May 2011. In the figure, outliers are removed after initial inversion 
[Bergamaschi et al., 2005].  
 
 

  
Figure 16. Comparison of California-specific predicted vs. measured CH4 signals during 
May 2011 before (left) and after (right) inverse optimization. The light blue circles indicate 
those removed after the first inversion. 

 
Table 5 summarizes the linear analysis results before and after Bayesian region inversion where 
emissions for each sub-region are scaled based on the optimized scaling factors for 14 sub-
regions including the region outside California. Depending on the month, predicted CH4 signals 
using the California-specific emission model are typically 30 – 50% of measurements before 
inversion, while EDGAR42 prior signals are 20 – 40% of measurements before inverse 
optimization. After inversion with the 50% error assumption in the prior emissions, the posterior 
CH4 signals based on the California-specific emission model are consistent with the 
measurements for most of the months, while the posterior signals from EDGAR42 are still 
systematically lower than the measurements. This suggests that EDGAR42 emissions in the 
Central Valley are systematically too low where footprints are strong.  
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Table 5. Linear Analysis Results Before and After Bayesian Region Inversion 

  Sep Oct Nov Dec Jan Feb Mar Apr May June 

Before Inversion 

CAa 
Slope 0.47±0.02 0.41±0.05 0.42±0.03 0.42±0.05 0.40±0.05 0.3±0.03 0.35±0.02 0.43±0.02 0.42±0.02 0.45±0.04 

RMSEc 70 108 155 233 303 149 108 78 61 63 

ED42b 
Slope 0.28±0.03 0.30±0.04 0.27±0.02 0.22±0.03 0.24±0.03 0.25±0.03 0.23±0.02 0.28±0.01 0.28±0.02 0.36±0.05 

RMSE 90 113 171 254 334 156 119 90 68 69 

After Inversion 

CA 
Slope 0.91±0.04 0.89±0.08 0.93±0.05 0.96±0.08 0.94±0.09 0.80±0.08 0.93±0.05 0.97±0.04 1.00±0.04 0.94±0.05 

RMSE 36 61 83 95 165 92 63 44 31 32 

ED42 
Slope 0.63±0.04 0.69±0.06 0.84±0.05 0.83±0.08 0.76±0.08 0.65±0.06 0.74±0.03 0.83±0.03 0.86±0.04 0.85±0.07 

RMSE 56 62 83 123 185 93 70 45 34 36 
aCalifornia-specific emission model 
bEDGAR42 emission model 
cRoot mean square error in units of ppb 
 

3.3.2. Bayesian Region Analysis 
 
The Bayesian region analysis estimates scaling factors for sub-region emissions using the 
Bayesian inverse technique (see Figure 5 for sub-region classification). In this study, a total of 14 
scaling factors including the region outside California are solved for a given inversion period. 
Although the inversions are performed at the monthly temporal scale, inferred CH4 emissions are 
reported by season and as a regional sum for the regions where the total emissions are significant 
and footprints show sensitivity. Since our data do not cover a full year, we divided the 10 months 
into five bi-monthly seasons. 
 
Figure 17 shows the posterior emission estimates using the California-specific emission model 
by region and season. Here, posterior emissions represent those emissions that we obtain after 
multiplying the a priori emissions by the optimized (posterior) scaling factors. Statistically, 
posterior emissions are the most probable emission estimates given the available data, prior 
knowledge, and assumptions we made. Overall, the inversion results suggest that actual CH4 
emissions are higher than the prior emissions for most of the regions and seasons. In particular, 
the posterior emissions are significantly higher than the prior in Regions 6, 8, and 12 where the 
emissions are well constrained. For Region 10 (Southern California region), the posterior 
uncertainties are slightly reduced for some seasons, suggesting that the measurements in the 
Central Valley weakly constrain the emissions in Region 10. In Region 7 (Bay Area and 
surrounding urban area), summer emissions are slightly higher than the other seasons. The 
significantly higher posterior emissions in Regions 8 and 12 suggest that emissions from 
livestock sources are significantly higher than the prior. Note that livestock emissions from the 
California-specific emission model account for 87% and 84% of the total emissions in Regions 8 
and 12, respectively. The posterior results in Figure 17 also show that there is a clear seasonal 
variation in CH4 emissions. For example, in Region 6 where high emissions are expected from 
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rice agriculture, the posterior emissions are high during the fall (i.e., fall 2010) and later spring-
early summer season. We discuss rice emissions in detail in the following section. 
 
 

 

Figure 17. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) by region and season 
based on the California-specific emission model.  Only regions with significant emissions 
are shown. The annual mean prior (gray bar) represents the annual average of seasonally 
varying emissions and is compared with posterior seasonal emissions (color bars). SO, ND, 
JF, MA, and MJ denote September-October, November-December, January-February, 
March-April, and May-June seasons, respectively. 

 
Figure 18 shows the region analysis results using the EDGAR42 emission model. The inversion 
results based on EDGAR42 show different emission estimates, yielding generally higher 
emissions for most of the regions compared to those of the California-specific case. In Region 
12, for instance, the EDGAR42-based inverse modeling estimates consistently higher CH4 
emissions than those from the California-specific modeling, although the EDGAR42 prior 
emission is lower than that of the California-specific model. As shown in Figure 18, the annual 
average scaling factor for Region 12 is ~3, which yields 15.64±1.47 Tg CO2eq yr-1. 
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Figure 18. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) by region and season 
based on the EDGAR42 emission model.  Only regions with significant emissions are 
shown. 

 
Results of the region analysis show that the sum of the posterior emissions for the sub-regions in 
the Central Valley (i.e., Regions 6, 8 and 12) are similar for the California specific and 
EDGAR42 a priori emission models (Table 6). The current measurement network constrains 
annual average CH4 emissions for Regions 6, 8 and 12 to be between 31.43±2.07 and 28.27±2.00 
Tg CO2eq for the California-specific and EDGAR42 emission models respectively, assuming 
uncorrelated errors between regions. However, there are significant differences in the 
predominantly urban regions (7 and 10) where the EDGAR42 model shows higher CH4 
emissions than those estimated with the California-specific model: 29.79±8.78 vs. 12.18±4.42. 
This is because the prior emissions show the same pattern, with EDGAR42 higher than 
California-specific by a factor of 2.3 (23.7 vs. 10.5 Tg CO2eq yr-1), and our measurement sites in 
the Central Valley have relatively weak sensitivity to the urban regions (e.g., Southern California 
region). This result is consistent with that reported in Jeong et al. [2012a] where the estimated 
annual emission for Region 7 using EDGAR32 (version 3.2) is higher than that estimated with 
the California-specific model by a factor of ~4. Although the results using multiple emission 
models help to characterize the uncertainty associated with estimating emissions at the sub-
regional scale, this result demonstrates that additional measurements are required in the San 
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Francisco Bay and Southern California areas in order to strongly constrain emissions from those 
urban regions. 
 
Table 6. Comparison of Annual Posterior CH4 Emissions (Tg CO2eq) between the 
EDGAR42 and California-specific Emission Models Based on Bayesian Region Analysis 

Emission 
Model Region R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 Total 

CA-
specific 

Emissions 0.1 0.2 0.4 0.3 0.4 4.0 2.6 8.8 0.7 9.6 0.3 18.7 0.2 46.1 

Uncertaintya  0.0 0.1 0.2 0.1 0.2 0.6 0.8 1.2 0.3 4.4 0.1 1.6 0.1 4.9 

EDGAR Emissions 0.1 0.4 0.7 0.4 0.5 5.4 8.4 7.3 1.2 21.3 0.4 15.6 0.5 62.2 
Uncertainty 0.0 0.2 0.3 0.2 0.2 0.9 1.7 1.1 0.6 8.6 0.2 1.5 0.2 9.1 

aPosterior uncertainty = 1σ 

 

3.3.3. Bayesian Source Analysis 
We also estimate CH4 emissions by inferring state-wide scaling factors for each emission source 
instead of each sub-region. The results show that while posterior emissions from livestock are 
similar for the California specific and EDGAR42 models, emissions from landfill (solid waste) 
and natural gas production and use are both substantially higher when using the EDGAR42 prior. 
Figure 19 shows the source analysis results using the California-specific emission model, and 
annual average emissions for the State are summarized by emission sector in Table 7. These 
results are consistent with those of the counterpart inverse analysis for regional emissions. For 
example, the source inversion suggests that actual emissions from livestock are much higher than 
the prior. This result agrees with the higher posterior emissions in Region 8 where livestock 
emissions are dominant (~90% of annual CH4 emissions).  
 
The source analysis results also indicate that the posterior emissions for crop agriculture are 
higher during early fall and summer season than the prior, which are consistent with the higher 
emissions in Region 6, where high biogenic emissions are expected from rice agriculture. This 
result is similar to that of a recent study based on aircraft CH4 measurements during the 
California Research at the Nexus of Air Quality and Climate Change (CalNex) period in summer 
2010 [Peischl et al., 2012]. Peischl et al. [2012] estimated annual CH4 emissions from rice 
cultivation to be 1.64 – 1.95 Tg CO2eq. This estimate is based on the rice emission study in a 
commercial rice field by McMillan et al. [2007] where they estimated annual CH4 emissions of 
26.1 – 31.0 g CH4-C m-2 during October 2001 – October 2002. This estimate is 3.0 – 3.6 times 
larger than the CARB 2008 inventory (0.54 Tg CO2eq yr-1) for rice CH4 emissions. Assuming 
posterior emissions for July and August (not available in our study) are proportional to the prior 
and scaling (available) June posterior emissions according to the prior ratios of July and August 
to June (3.26 Tg CO2eq  / 3.59 Tg CO2eq and 5.10 / 3.59, respectively), we find that the annual 
rice emission total is 1.40±0.14 Tg CO2eq, which is very similar to that of Peischl et al. [2012]. 
This result suggests that our inverse analysis constrains seasonally-varying rice emissions and 
demonstrates the capability of the inversion. The slight difference between the estimate by 
Peischl et al. [2012] and our estimate is possibly due to the difference in emissions during late 
fall and winter. CH4 emissions during late fall and winter from McMillan et al. [2007], on which 
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the estimate by Peischl et al. [2012] is based, are not negligible while our a priori rice emissions 
based on the DNDC model described by Salas et al. [2006] are insignificant and often negative.  
 
While Figure 19 shows that CH4 emissions from natural gas sources are generally higher than the 
prior, more measurements are required to effectively constrain natural gas emissions from the 
large urban areas including the Southern California region. 

 

 
Figure 19. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) for California by source 
and season based on the California-specific emission model. WW, LF, DLS, NDLS, NG, 
PL, WL and CP represent wastewater, landfill, dairy livestock, non-dairy livestock, natural 
gas, petroleum, wetland, and crop agriculture sources, respectively. 

 
Table 7. Annual Posterior CH4 Emissions (Tg CO2eq) for California by Source Based on 
the California-specific Emission Model 

Sectors WW LF DLS NDLS NG PL WL CP Total 
Emissions 2.20 12.11 26.29 4.96 3.30 1.43 0.83 0.68 51.80 
Uncertaintya 0.96 3.01 2.30 1.55 0.93 0.56 0.35 0.12 4.44 

aPosterior uncertainty = 1σ 
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The source analysis results based on EDGAR42 are shown in Figure 20, where eight major 
sources (~95% of total emissions) out of a total of 16 sources are compared. The corresponding 
annual average emissions for the State are summarized by emission sector in Table 8. As one 
might expect from the region analysis result, the source analysis based on EDGAR42 shows 
significantly different posterior emissions for some of the sources, compared to the California-
specific case. In particular, the annual CH4 emission estimate for solid waste (equivalent to 
landfill of the California-specific model) from EDGAR42 is 24.14±4.99 Tg CO2eq, which is 
significantly higher than that (12.11±3.01) estimated using the California-specific model. This 
discrepancy is likely due to the fact that ~70% of landfill emissions are concentrated in the urban 
regions (Regions 7 and 10), and these urban regions are only weakly constrained by the 
measurements. This suggests that more measurements are needed to constrain landfill emissions 
in urban regions. 

 
Figure 20. Estimates of posterior CH4 emissions (Tg CO2eq yr-1) for California by source 
and season based on the EDGAR42 emission model. AS, EF, GPD, MM, OPR, RT, SW, 
and WW represent agricultural soils, enteric fermentation, gas production and 
distribution, manure management, oil production and refineries, road transportation, solid 
waste, and wastewater, respectively. 
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Table 8. Annual Posterior CH4 Emissions (Tg CO2eq) for California by Source Based on 
the EDGAR42 Emission Model 

Sectors AS EF GPD MM OPR RT RT SW WW Others Total 
Emissions 1.01 23.59 17.28 3.65 0.51 0.57 0.30 24.14 3.45 0.67 75.17 
Uncertaintya 0.34 2.75 3.97 1.13 0.22 0.27 0.15 4.99 1.65 0.61 7.27 

aPosterior uncertainty = 1σ 
 
Table 9 summarizes the estimated annual CH4 emissions using the two independent CH4 
emission models. Overall, the EDGAR42-based emission estimates are higher than those of the 
California-specific model. Also, the source-based inversion analysis estimates slightly higher 
emissions compared to those of the region analysis. The Bayesian region analysis suggests that 
the total posterior CH4 emission for the entire California is 1.44±0.15 times and 1.94±0.28 times 
higher than the current CARB inventory (32 Tg CO2eq; CARB, 2011) using the California-
specific and EDGAR42 emission models, respectively. The source analysis suggests slightly 
higher emissions, which are 1.62±0.14 times and 2.35±0.23 times the current CARB inventory 
for the California-specific model and the EDGAR42 model, respectively.  
 
In addition to the inverse analysis based on measurements in the Central Valley, we used CH4 
emission estimates from Wennberg et al. [2012] where the urban emissions in the Southern 
California region are better constrained. Our State total CH4 emission estimates from different 
inverse analyses are compared with an estimate based on Wennberg et al. [2012]. For 
California’s South Coast Air Basin (the larger Los Angeles metropolitan region, hereafter LA 
megacity), Wennberg et al. [2012] estimated a total CH4 emission of 0.44±0.15 Tg yr-1, which is 
0.91 – 1.84 times higher than the California-specific prior emission estimate, and 0.4 – 0.9 times 
the EDGAR42 estimate for the LA megacity. This suggests that the EDGAR42 prior 
significantly overestimates CH4 emissions in the LA megacity while the California-specific prior 
is more likely to underestimate CH4 emission in the region. This also suggests that scaling 
EDGAR42 emissions by a factor of much greater than 1 based on the inversion results for the 
Central Valley will substantially overestimate State total CH4 emissions.  Note that annual 
posterior emissions for the Central Valley from EDGAR42 region analysis are 2.62±0.18 times 
the EDGAR prior. A more reasonable approach for State total emissions can be estimated by 
using the posterior emissions from the California-specific model for the Central Valley and other 
non-urban regions and scaling the California-specific prior emissions for the large urban regions 
(7 and 10) by a factor of 0.91 - 1.84. This approach estimates total CH4 emissions of 41.43 – 
55.50 Tg CO2eq yr-1, where the uncertainty is dominated by the urban regions. This result 
suggests that when this estimate is used, California total emissions are better constrained (factors 
of 1.30 – 1.74) compared to that from our original region analysis (1.29 – 2.22). This estimate for 
State total CH4 emissions is consistent with the results of our inverse analyses (Table 9) except 
for the EDGAR42 source analysis. Therefore, we do not include the emissions estimated from 
the source analysis using EDGAR42 in the executive summary because of the significant 
uncertainty associated with the large urban areas. 
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Table 9. Summary of Estimated Annual CH4 Emissions (Tg CO2eq; 100-year GWP = 21 g 
CO2eq / g CH4) for California 

Emission Model Region Analysis Source Analysis 
California-specific 46.10±4.93 51.80±4.44 

EDGAR42 62.18±9.07 75.17±7.27 

 4. Conclusions and Recommendations 
 

• The current GHG network constrains annual average CH4 emissions from California’s 
Central Valley to be between 31.43±2.07 Tg CO2eq and 28.27±2.00 Tg CO2eq for the 
California-specific and EDGAR42 emission models respectively, showing consistency 
between the two independent models. Similarly, emissions for the entire State from 
livestock (which are predominantly located in the Central Valley) are estimated to be 
31.25±2.77 Tg CO2eq and 27.24±3.13 Tg CO2eq from the California-specific and 
EDGAR42 emission models, respectively. 

 
• While significant error reductions are obtained in California’s Central Valley, emissions 

from other regions remain uncertain, with the ratio of emissions to the current California 
CH4 emission inventory (32 Tg CO2eq yr-1) ranging from 1.44±0.15 and 1.94±0.28 from 
the Bayesian region analysis based on the California-specific and EDGAR42 emission 
models. Additional tower measurements in the San Francisco Bay and Southern 
California coastal areas are expected to constrain those emissions. 
 

• Noting the large uncertainty in urban emissions estimated from measurements in the 
Central Valley, emissions from large urban areas (San Francisco Bay Area and Southern 
California region) are estimated based on a recent study [Wennberg et al., 2012] in the 
larger Los Angeles metropolitan region to better constrain large urban emissions. 
Combined with the emissions from the Central Valley and other non-urban regions, State 
total CH4 emissions are estimated to be 1.30 – 1.74 times larger than the current State 
total CH4 emissions (32 Tg CO2eq yr-1) where the uncertainty is dominated by 
uncertainty in the urban regions. This further suggests that additional measurements in 
the San Francisco Bay and Southern California areas are required to constrain those 
emissions. 
 

• Data from the current CH4 measurement network are effective for use in constraining 
emissions from different regions of California’s Central Valley but cannot be used to 
uniquely attribute emissions to specific source sectors. Additional measurements of 
source-specific tracers (e.g., CO, VOCs, and potentially CH4 isotopes) will help separate 
different sources of CH4. 
 

• Currently, uncertainty in the inverse model estimates of CH4 emissions for regions 
containing measurement sites are dominated by uncertainty in the meteorological 
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modeling of trace gas transport (in winter) and estimation of background signals (in 
summer). Additional work is needed to identify the source of these errors and reduce 
them. 
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