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ABSTRACT 

Electricity generation accounts for over 40 percent of the carbon dioxide emitted by the United 

States. ENGAGE investigates how real time appliance level energy usage information provided 

through advanced metering technology can induce conservation behavior. ENGAGE leverages a 

large asset of advanced residential energy monitoring technology deployed in 120 apartments in 

Los Angeles. ENGAGE systems frame energy feedback to optimize motivations to reduce 

energy use by recognizing that the impact of electricity use on the environment, on health, or on 

the community are often ‘invisible’ to consumers. We experiment with different message 

formats to identify best practices and optimal messaging. Specifically we compare the 

effectiveness of messages based on the environmental or health benefits associated with 

conservation to more conventional messages focused on the pecuniary savings associated with 

conservation. Our results, based on a panel of 440,059 hourly observations for 118 residences 

over 8 months show that health-based messages, which communicate the public health 

externalities of electricity production, outperform monetary savings information as a driver of 

behavioral change in the home. Participants who received messages emphasizing air pollution 

and health impacts associated with energy use reduced their consumption by 6% over the 

experimental period as compared to the control group. Health messaging was particularly 

effective on families with children, who achieved up to 19.8% savings. No significant 

conservation was found for participants who received messages informing them about monetary 

savings. Our research advances our knowledge of effective non-price incentives for energy 

conservation. 
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2 EXECUTIVE SUMMARY 

Background 

Residential and commercial buildings collectively account for over two-thirds of electricity 

usage and about a quarter of carbon emissions (EPA 2010, EIA 2010). The large impact of 

building energy usage is not surprising considering that residents of the United States spend 

more than 90 percent of their lives indoors (Evans and McCoy, 1998). Recent studies estimate 

that behavioral changes can reduce residential energy consumption between 22 and 30 percent 

over the next 5 to 8 years (Laitner et al., 2009; Gardner & Stern, 2008). One potentially major 

behavioral innovation aims to provide more detailed feedback to consumers about their energy 

usage, both in the private and public spheres. While currently most U.S. residential electricity 

consumers receive low resolution feedback through a monthly bill, the massive deployment of 

more than 65 million digital electricity meters by 2015 (Edison Foundation, 2011), will allow 

utilities to provide a wealth of new information to more than half of the nation’s electricity 

accounts, unlocking new conservation potential. However, this substantial upgrade to smart 

meter technology (representing $16 to $32 billion in investment) is not countered by an equally 

sound understanding of the conservation behavior opportunities associated with these new 

technologies. This study investigates how real time appliance level energy usage information 

provided through advanced metering technology can induce conservation behavior. 

Methods 

At University Village, a graduate student housing community in Los Angeles, we outfitted 120 

family apartments with wireless energy metering technology. We measured electricity use data 

in real-time 24 hours a day at the appliance level.
1
 University Village is an ideal location for a 

study of this nature. First, the apartments are standardized and have the same appliances so that 

there are no differences in energy efficiency or size in the housing stock. Except for variations in 

size and floor plan, apartments are more or less standardized with the same included appliances 

and amenities. After controlling for environmental variables, this consistency promotes the 

validity of experimental effects of energy use as resulting from individual behaviors and 

lifestyles, not differences in apartment features. Second, the residents are renters and pay their 

electricity bills, so we can observe conservation behavior rather than investment in more efficient 

appliances. Third, the residents have adequate control of their environment (lights, thermostats, 

plug load, fridge, dishwasher and other appliances) to meaningfully engage in conservation. 

Fourth, on a per capita electricity basis, University Village residents are representative of the 

State of California multi-family renter populations. While the residents consist of single and 

married graduate college students, who are younger and more educated than the U.S. population, 

they represent the next generation of homeowners who are used to working with mobile 

electronic devices and increasingly rely on electronic communications in their daily lives. 

One group of apartments was given detailed energy use feedback along with information about 

monetary savings. Another group was given feedback with an environment and health message 

about emissions and air quality impacts such as childhood asthma and cancer. A third group 

                                                 
1
 Data was updated every 30 seconds. 
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served as a statistical control following a six-month baseline period and random assignment. 

Statistical methods were used that compared the effectiveness of the detailed energy feedback on 

energy consumption for the treatment groups compared to the control group. The specifications 

consider treatment status along with other factors that may influence energy consumption such as 

household characteristics, apartment characteristics, environmental ideology, and weather.  

Results 

We estimate conservatively, an overall treatment effect of a 6% reduction in energy usage with 

environment and health messaging over the entire experimental period—after controlling for 

observed household characteristics, occupancy, weather, time trends, and environmentalist 

ideology. This was particularly effective on families with children, achieving up to 19.8% 

savings relative to the control group. On average, participants who only received information 

about potential monetary savings did not significantly alter their energy consumption. Our 

research advances our knowledge of effective non-price incentives for energy conservation. 

While non-price behavioral strategies can be viable alternatives to new capital projects by 

promoting peak load shifting and conservation, they can also be implemented immediately, at 

scale and at relatively low cost. Behavioral strategies enabled through information technologies 

can be an effective component of sustainable development pathways and do not require long lead 

times typical of new capital investments in energy generation, distribution and storage. 

Conclusions 

This study developed advanced technology-enabled information strategies to encourage energy 

conservation behavior in residential buildings. It makes use of a real world energy behavior 

laboratory that supports rigorous testing of behavioral science based strategies. We outfitted 120 

family apartments with wireless energy metering technology that allowed us to provide the study 

participants with real time, appliance level information about their energy usage. Residents were 

then randomized into a control group or one of two treatment groups that received information 

about potential monetary savings or about the environmental and health consequences of their 

energy consumption. Participants who received messages emphasizing air pollution and health 

impacts associated with energy use reduced their consumption by 6.0% over the experimental 

monitoring period versus the control group. Using published price elasticities for California, this 

conservation effect on the treated is equivalent to a long-run electricity price increase of 15.4% 

or a 60-day short-run price increase between 23 and 45%. Families with children were much 

more responsive to the environment and health messaging achieving energy savings of up to 

19.8%. Information about monetary savings was ineffective in engaging study participants to 

reduce their energy consumption.  



 

 

 

3 INTRODUCTION 

Background 

This study developed advanced technology-enabled information strategies to encourage energy 

conservation behavior in residential buildings. It makes use of a real world energy behavior 

laboratory that supports rigorous testing of behavioral science based strategies. The sophisticated 

experimental setting enables highly detailed energy use measurement and feedback, where major 

end usage categories (e.g., plug load, lighting, heating & cooling, and appliances) are measured 

in real-time and communicated to consumers. This research expands our understanding of how 

users respond to technology-enabled energy usage information to save energy. Testing 

behavioral responses to different types of energy use information also enhances the theoretical 

understanding of how information can trigger behavior changes and enable new habit formation. 

Residential and commercial buildings collectively account for over two-thirds of electricity 

usage and about a quarter of carbon emissions (EPA 2010, EIA 2010). The large impact of 

building energy usage is not surprising considering that residents of the United States spend 

more than 90 percent of their lives indoors (Evans and McCoy, 1998). Recent studies estimate 

that behavioral changes can reduce residential energy consumption between 22 and 30 percent 

over the next 5 to 8 years (Laitner et al., 2009; Gardner & Stern, 2008). One potentially major 

behavioral innovation aims to provide more detailed feedback to consumers about their energy 

usage, both in the private and public spheres. While currently most U.S. residential electricity 

consumers receive low resolution feedback through a monthly bill, the massive deployment of 

more than 65 million digital electricity meters by 2015 (Edison Foundation, 2011), will allow 

utilities to provide a wealth of new information to more than half of the nation’s electricity 

accounts, unlocking new conservation potential. However, this substantial upgrade to smart 

meter technology (representing $16 to $32 billion in investment) is not countered by an equally 

sound understanding of the opportunities for conservation behavior associated with these new 

technologies.  

The present study addresses the questions of how users make sense of smart meter technology 

and how it can be applied to generate energy conservation behavior. Smart meter technology 

enables more, better, and immediate information – a commonly proposed remedy to counter 

wasteful energy use patterns (Van Houwelingen & Van Raaij, 1989). ENGAGE systems frame 

energy feedback to optimize motivations to reduce energy use by recognizing that the impact of 

electricity use on the environment, on health, or on the community are often ‘invisible’ to 

consumers. The project experiments with different message formats to identify best practices and 

optimal messaging. Specifically we compare the effectiveness of messages based on the 

environmental or health benefits associated with conservation to more conventional messages 

focused on the pecuniary savings associated with conservation. Our research advances our 

knowledge of effective non-price incentives for energy conservation.  

Energy usage feedback to consumers can take on many forms. The information can differ in 

granularity and resolution. Granularity refers to the level of feedback. For example, feedback can 

be given at the building level, room level, or device/appliance level. Resolution refers to the 

frequency of feedback, which can be provided on a monthly basis, daily or continuous basis. The 

most common time resolution for consumers occurs via monthly billing cycles. In this 
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investigation, we enable very high feedback granularity and resolution, which enables consumers 

to access real-time information and social comparisons on a continuous basis. In addition to 

these two dimensions, feedback can differ widely in terms of the actual content presented and the 

means of conveying this content such as through a website or a paper bill. Content can be 

presented in terms of monetary impacts or alternatively, greenhouse gases or some aspect of 

energy use. This information can be shown graphically over time, or summarized; it can compare 

current usage with historical usage, peer usage, or potential usage. It can be displayed on a 

designated device, through a webpage, e‐mailed, sent in the mail, hung on a doorknob, or 

accessed via a mobile device. Because of the variety of feedback methods and because of the 

diversity of the consumer base, we still know relatively little about how to best provide 

information to influence energy conservation.  

Initiatives to induce energy conservation behavior have mainly focused on providing information 

about energy saving strategies or about the potential cost savings associated with reduction of 

electricity usage (e.g., Burgess and Nye, 2008; Faruqui, Sergici, and Sharif, 2010; Delmas et al., 

2013). However, research suggests that traditional methods based purely on cost savings 

information and economic incentives might not be sufficient to encourage conservation 

(Abrahamse & Steg, 2005; Fischer, 2008). Although behavioral adjustments to energy usage can 

collectively add up to large reductions, individual financial savings are often small. Indeed 

electricity makes up a relatively small portion of household spending, averaging only 2.9 percent 

of 2010 household expenditure for the United States (Bureau of Labor Statistics, 2011).  

To tackle the challenge of motivating conservation when price signals fail, we developed 

alternative methods for bringing about energy conservation, focusing on non-price motivations. 

Research on the influence of psychological aspects (Katzev & Johnson, 1983; Stern, 1992), 

motivation (McCalley & Midden, 2002), and social norms on conservation behavior (Schultz et 

al., 2007; Goldstein et al., 2008; Nolan et al., 2008; Delmas & Lessem, 2014) has begun to shed 

light on intervention factors beyond information that may drive conservation behavior. This 

research has been taken up by electric utilities (e.g., Duke Energy) and consulting firms (e.g., 

Opower, described in Alcott, 2011), providing practical evidence that non-price motivations can 

be a powerful driver of conservation.  

We build on this research tradition by developing and testing how non-price strategies can 

trigger conservation behavior. In this research, we contend that feedback messages focused on 

pro-social and pro-self benefits of conserving have the potential to induce energy conservation 

behavior. Pro-social benefits include benefits for one’s community or for society as a whole 

rather than the individual himself while pro-self benefits profit the participant directly, for 

example by benefiting health or improving how the participant is perceived by society (e.g., 

Fisher et al., 2008; White & Peloza, 2009). This study builds on this research by providing and 

testing the effectiveness of messages to consumers about the negative environmental and health 

externalities of their actual electricity consumption. 

Previous Work - Understanding Levers for Energy Conservation Behavior  

The failure to engage in energy efficiency can be characterized as a market failure: individuals 

lack the relevant information or knowledge to engage in energy saving behaviors (DeYoung, 

2000; Hungerford and Volk, 1990; Schultz, 2002) and acquiring such information is costly. 

Therefore detailed and immediate feedback is a frequently proposed solution to remedy to 

counter wasteful energy use patterns (van Houwelingen and van Raaij, 1989). 
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We first describe how information about individual energy usage such as historical feedback, and 

real time feedback as well as information on saving approaches might facilitate conservation 

behavior. While these strategies aim at reducing the cost of acquiring information, they do not 

touch on the potential motivations that might trigger conservation. We then describe the potential 

effectiveness of information strategies based on social norms and pecuniary incentives.  

Energy feedback. Feedback can be described as “the mechanism that directs attention to a 

specific goal” (McCalley, 2006), making attempts to achieve this goal more likely in a hierarchy 

of goals. The most common form of feedback informs participants about their own energy usage, 

often drawing comparisons to the past (e.g., Nielsen, 1993, Winett et al., 1979). Research has 

shown that most individuals have low awareness about their energy usage or its impacts (Attari 

et al., 2010; Kempton and Montgomery, 1982; Read et al., 1994). Being reminded of energy 

usage periodically may help trigger conservation activities, by making energy usage more 

salient. In addition, learning about one’s own electricity use may increase the sense of relevance 

of taking action to conserve. If individuals perceive their own impact as negligible, they might 

not behave in a prosocial manner (Larrick and Soll, 2008). Consequently, making an individual 

more aware of their own energy usage may contribute to conservation. 

Information on problem solving strategies. Another set of information strategies provide 

participants with energy savings tips (e.g., Schultz et al., 2007; Slavin et al., 1981) or conduct 

home energy audits (e.g., Nielsen, 1993; Winett et al., 1982). Both of these information 

strategies involve teaching consumers about new behaviors that will lower their energy 

consumption.  

The implicit assumption behind the use of information strategies to reduce energy usage is that 

these strategies will result in a higher level of knowledge and therefore enable participants to 

change their behavior (van Dam et al., 2010; Ouyang and Hokao, 2009). According to norm 

activation theory, changes in behavior occur when a person is aware of an issue and thinks he 

can influence it (Fischer, 2008; Schwartz, 1977; Vining and Ebreo, 2002). These preconditions 

to taking action may be enhanced if the person receives additional information on how to 

perform certain activities and on the outcomes of these activities. With regard to energy 

conservation behavior, it is conceivable that learning about the impacts of energy usage and 

receiving conservation tips will lower the barrier to actions. Energy savings tips and audits are 

likely to contribute to both awareness and perceived behavioral control. Providing such 

information in an easily accessible manner lowers the cost of information on conservation 

strategies for the consumer. 

Conservation strategies based on energy feedback and information increase individual awareness 

of the problem and of the possibilities to influence the problem. Once individuals have this 

information, they will weigh motives versus the cost of actions. The following information 

strategies frame the message to motivate behavior by focusing on pecuniary incentives or social 

norms.  

Pecuniary strategies. Pecuniary strategies represent another set of strategies commonly used in 

conservation behavior studies. Lowered energy use results in immediate financial benefits to a 

household, provided the household pays its own electricity bill. Individuals should be expected 

to take up energy conservation as long as the benefits of doing so are larger than the costs. 

Researchers have pointed out the importance of financial incentives and price signals for 

conserving energy (Hutton and McNeill, 1981).  
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Many energy conservation experiments inform participants about the financial expenses and/or 

savings potential associated with their energy usage (e.g., Bittle, et al., 1979; Wilhite and Ling, 

1995). Some studies include actual price incentives. These may take the form of rewards or 

rebate payments (e.g., Slavin et al., 1981), where participants receive a monetary payment for 

achieving certain energy savings goals. Other studies change the price of electricity (e.g., Sexton 

et al., 1987), raising for example the price per kWh or introducing rate schedules that change 

with the time of day or demand levels.  

Two recent meta-analysis studies found strong effects of price signals on the timing of electricity 

consumption (Faruqui and Sergici, 2010; Newsham and Bowker, 2010), demonstrating that price 

signals affect behavior. Furthermore, several studies have shown that electricity demand 

responds to prices, although price-elasticity can be low in the short-term (for an overview see 

Branch, 1993; Gillingham et al., 2009).  

However, other studies indicate that pecuniary incentives might be counterproductive for energy 

conservation because they might crowd out more altruistic or prosocial motivations (Benamou 

and Tirole, 2005; Bowles, 2008). Furthermore, pecuniary strategies might not be effective if the 

monetary incentives are negligible. Potential savings from conservation as well as price 

incentives used in the experiments are often small, in order to bear some relation to the actual 

price of electricity. For instance, a study by Hayes and Cone (1977) provided a $3 weekly rebate 

payments for up to a 20% reduction in energy use. In experiments using time of day pricing or 

critical peak pricing
2
, price differences can be more substantial (e.g. 1:9 ratio used by Aigner and 

Lillard (1984), as well as Sexton et al. (1987)).  

The power of norms. Comparative feedback provides comparisons to others (e.g., Alcott, 2011; 

Kantola et al., 1984; Schultz et al., 2007) and can also be called a motivational strategy, or 

nudge. Such strategies send non-price signals to participants that activate intrinsic and extrinsic 

motivation. Besides comparative feedback, motivational strategies also include the use of 

competitions (e.g., McMakin et al., 2002) and goal-setting (e.g., Katzev and Johnson, 1984) 

where participants are assigned or select non-binding goals over a defined period of time. 

Recognizing the importance of social and psychological aspects, a number of studies on energy 

use behavior have made use of comparative feedback (Alcott, 2011; Schultz et al., 2007). These 

studies illuminate other motivations for changing energy use behavior. In particular, the theory 

of normative conduct points to the importance of social norms in guiding conservation behavior. 

Norms influence behavior by giving cues as to what is appropriate and desirable. The 

effectiveness of social norms in bringing about conservation behavior is empirically supported 

by several studies. For example, Hopper and Nielsen (1991) find that recruiting neighbors to 

encourage and remind others in their community about recycling significantly increased 

recycling behavior. In an experiment presenting participants with the choice between a 

conventional, and a green, but inferior product, participants were more likely to choose the green 

product if their choices were publicly visible (Griskevicius et al., 2010). Similarly, Nolan et al. 

(2008) find that comparing individuals to the average energy user was more effective than other 

strategies at reducing energy usage. Overall, behavioral approaches predict that comparative 

feedback strategies making use of social norms will be effective in bringing about changes in 

behavior.  

                                                 
2
 In time of day pricing, prices follow a daily schedule, rising during high demand times. In critical peak pricing, 

prices are only raised on days with high load forecasts. 
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Our review of 156 published trials from 1975 to 2012 shows that much of the previous work 

suffers from methodological problems (Delmas et al., 2013). These studies involve small 

samples, short time periods, and low level of granularity (i.e. providing overall electricity usage 

without appliance level information). A surprisingly large number of studies do not have control 

groups or do not take baseline measurements prior to reporting changes in consumption. 

Additionally, many studies also do not account for the impacts of weather characteristics over 

time or demographics, jeopardizing the reliability of estimates. The estimation methods 

themselves could also be improved, by adopting more rigorous statistical approaches for time 

series analysis that can include de-seasonalizing trends in the data or employing difference-in-

difference estimation.  

Our research contributes three important elements to this body of research that previous studies 

have been unable to implement. First, this study provides consumers with detailed real-time 

feedback about their energy usage at the appliance level. This is a vast improvement over 

previous studies that are limited to aggregated energy consumption information that is presented 

in a monthly statement provided by the utilities company. Second, this study designs treatment 

groups that are given factual information about their potential monetary savings and 

environmental and health impacts of their energy usage compared to their most energy efficient 

neighbors. Third, this study uses an experimental design that measures actual responses to 

energy usage feedback compared to stated preferences toward energy conservation and 

hypothetical responses. Lastly, we use rigorous statistical approaches time series analysis and a 

number of controls for household characteristics.  

Overall, our research seeks to identify and test novel methods for generating energy savings. It 

targets psychological motivations to bring about more sustainable energy use behavior. We use 

high-granularity, high frequency feedback combined with tailored behavioral science messages 

to empirically determine the most effective behavioral approaches to induce changes in energy 

use behavior.  

4 MATERIALS AND METHODS 

At a residential housing community in Los Angeles, we outfitted 120 family apartments with 

wireless energy metering technology. We measured electricity use data in real-time 24 hours a 

day at the appliance level. One group of apartments was given detailed energy use feedback 

along with information about monetary savings. Another group was given feedback with an 

environment and health message about emissions and air quality impacts such as childhood 

asthma. A third group served as a statistical control following a six-month baseline period and 

random assignment. The randomized control trial was conducted from October 2011 to July 

2012 and weekly treatment messages were sent to participants. Figure 1 shows screen shots of 

the website and weekly e-mails shown to participants. No financial transfers or monetary 

rewards were offered for participation.  

Field Site 

Our field experiment site, University Village is a graduate student housing community for 

married students, domestic partners, many of whom have children, as well as single parents. It 

comprises two sites with roughly 1,100 one-, two-, and three-bedroom apartment units. Each 

apartment is equipped with heating and cooling systems and a full kitchen including refrigerator, 
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microwave, stove, dishwasher, and garbage disposal. Residents pay their own electricity bills and 

thus have a built-in financial incentive to conserve electricity as opposed to undergraduate 

students and other graduate students living in residence halls and other student housing 

complexes where the utility costs are factored into a single housing bill. 

Except for variations in size and floor plan, apartments are standardized with the same included 

appliances and amenities. After controlling for environmental variables, this consistency 

promotes the validity of experimental effects of energy use as resulting from individual 

behaviors and lifestyles, not differences in apartment features. Furthermore, circuits in 

University Village are fairly standardized with some minor variations. For example, the heating 

and cooling system is usually powered four circuits but sometimes three circuits, the refrigerator 

and microwave are always each on dedicated circuits, etc. This allowed us to design a hardware 

installation kit that would accommodate all of the circuit breaker panels without any hardware 

reconfiguration. 

Population  

University Village, is a large family housing community in Los Angeles located in proximity to 

public transportation, local businesses, parks and schools. On a per capita electricity basis, 

University Village residents are representative of general Los Angeles Department of Water and 

Power (LADWP) and State of California multi-family renter populations, and are only slightly 

below the national average (due to the milder climate in the State of California). Our participants 

consist of single and married graduate college students, who are younger and more educated than 

the U.S. population, but are representative of the next generation of users of information devices 

and are early adopters of smart metering technologies. They represent the next generation of 

homeowners who are used to working with mobile electronic devices and increasingly rely on 

electronic communications in their daily lives.
3
 Because political leaning or ideology can impact 

energy use attitudes and behaviors, we include statistical controls for household environmentalist 

ideology to estimate treatment effects conservatively and to account for the possibility that 

greener households might have more proclivities toward conservation. Our experimental results 

are indicative of how future residential electricity consumers can respond to high frequency 

information, especially as electric utilities begin utilizing smart metering data. 

Recruitment  

Households were recruited to participate in the study. No direct environmental messaging was 

used in order to prevent biases in recruitment selection. The recruitment process occurred within 

the context of several community events and information campaigns during the summer months 

prior to the start of the 2011-2012 academic year. To meet all Institutional Review Board (IRB) 

ethics requirements regarding research with human subjects, participation was strictly voluntary 

and no personally identifiable information (PII) was collected or shared. We conducted an 

enrollment survey to capture basic apartment demographics and occupancy characteristics for the 

community at-large, including households who opted in and those who opted out of the study. 

We recruited many more willing participants than there were active equipment allotments. 

Participant selection was then randomized. While households could at any point withdraw their 

                                                 
3
 We might expect some attenuation of treatment effects in a larger, more representative population with lower 

average levels of education.    
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consent to participate, new entry and dropouts among member households in the study were 

negligible for the entire duration of the experiment. 

 

Figure 1: Sample Online Interface for Energy Use Feedback and Messaging 

 



8 

 

System Design 

University Village uses a 208/120 volt 3-phase electrical service. Each apartment receives two 

legs of this system, which we will refer to as phase A and phase B. Each apartment at University 

Village each has its own electrical distribution panel through which power is routed to various 

loads (Figure 2). Many of these loads are powered by dedicated circuits. For example, circuits 

that power the heating and cooling system are dedicated to the heating and cooling system; 

recessed lights in the kitchen and bathrooms are powered by dedicated lighting circuits; the 

refrigerator is powered by a single dedicated circuit. Thus, we can conveniently measure 

electricity consumption from a centralized point in the apartment and with high granularity as 

determined by the circuit configuration in the panel.  

 

Figure 2: Panel Layout and Installation 

  

 

Our ability to disaggregate is limited at the plug level. As the wall plugs for the apartment tend to 

be powered by one or two circuits, we can only measure the load at these circuits and are not 

able to directly isolate power consumption for individual plug-in devices. While there are 

techniques for inferring individual device power consumption from aggregated signals, we have 

not yet explored their effectiveness in our system. 

Although circuit types were fairly consistent, there was a strong lack of consistency in circuit 

configurations. For example, the refrigerator might be the first circuit on phase A in one 
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apartment while in another apartment it might be the fifth circuit on phase B. During building 

construction and installation of the electrical infrastructure, variation in design across apartment 

units resulted in these inconsistencies in electrical wiring. This inconsistency in configuration 

created a challenge for categorization of circuits. Even though each panel contained a circuit key 

with labels for each circuit, as is standard practice, even the labels did not adhere to a consistent 

dictionary. Sometimes these labels even proved to be incorrect. We thus had to record each 

circuit configuration and store it in the database for use in appliance load calculations. 

Sometimes when energy calculations produced an unreasonable result, we needed to return to the 

unit to test the circuit and determine if the circuit was incorrectly labeled. 

Many commercially available options exist for monitoring electricity use in circuit breaker 

panels and other measurement points. These range from platforms for building management 

system (BMS) integration to home metering kits for enthusiasts. However, many of these 

solutions measure only total energy consumption or are otherwise very expensive. Few provide 

high-granularity, appliance level information at low cost. Furthermore, the data signals may not 

be readily available but rather only summary statistics are available. 

Our system uses a commercially-available, off-the-shelf (COTS) wireless energy metering 

device, the Brultech ECM-1240 that we adapted to our requirements. The Brultech ECM-1240 is 

a consumer-level, multi-channel, single-phase, wireless energy metering device designed for 

installation in circuit breaker panels. It measures power using a voltage transformer to step down 

voltage for digital measurement and current transducers to measure the current on each circuit in 

the panel. Because the electrical service uses two phases and the meters are only single phase, 

two meters are required to fully instrument the panel. 

The microcontroller unit (MCU) in the energy meter converts the voltage and current 

measurements to accumulated energy measurements. These energy measurements are analogous 

to the dials on utility meters that display energy consumption. The data packets broadcast by the 

energy meters at 1 Hz are received by our gateway and parsed to obtain the values for each 

measurement channel.  

Our gateway is a modified wireless router using an open source firmware and adapted with an 

XBee receiver radio. The software program on the gateway, known as a daemon, continuously 

monitors incoming data packets and performs preprocessing before uploading measurements to 

our server. The daemon keeps track of the first and last data packets it receives, specifically the 

energy measurements E0 and En and their timestamps t0 and tn. At the end of the 30-second 

interval, we compute the average power for the interval as  

 ̅  
     

     
 

With every packet uploaded from the gateway, we also upload both the window tn-t0 and a count 

of the number of packets received from each meter. The window information is used to correct 

for packet loss. Sometimes, due to packet loss, the interval for which we have received 

measurements from the meters is less than the 30 second upload window. In this case, we impute 

the average power for the rest of the interval. 

On the server, measurements from each meter for each apartment are merged and labeled 

according to the stored circuit configurations. Further processing abstracts the 1/30 Hz 

measurements into hourly measurements to allow more direct computation of metrics such as 
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daily, weekly, and monthly energy usage as well as group level comparisons. The energy 

metering system is shown in Figure 3. 

 

Figure 3: Instrumentation and Information Flow 

 

Treatment Messages 

Information treatments received by households contain: (i) a neighbor comparison, which 

provides a reference point for their household consumption and (ii) a stated impact, either in 

terms of potential cost savings or public environmental and health externalities. The specific 

treatment messages are listed in Table 1. Neighbor comparisons are standardized in the following 

form: “Last week, you used ___% more/less electricity than your efficient neighbors….” This 

type of language provides households with a reference point for their energy consumption and is 

commonly referred to as comparative feedback or social norms.
 4

 Neighbor comparisons in the 

energy conservation context have gained broad use in (i) small-scale lab or field studies, 

typically in applied behavioral psychology, building-science and engineering, and (ii) utility-

scale energy conservation pilot projects, typically in economics and related fields. Impacts 

described were presented to households in numerical and scientifically verifiable terms. The 

treatment messages and information about weekly usage were displayed on the ENGAGE 

dashboard as well as a personalized weekly email that was sent every Tuesday morning. This 

email contained their usage relative to the most efficient neighbor along with a link to the 

ENGAGE dashboard where they could see the real-time appliance level information.  

 

We also tested a third treatment which made public how well each apartment was doing relative 

to their neighbors. While this treatment was effective in the pilot study that took place in the 

dorms at UCLA, no significant results were found at University Village. Since the population at 

                                                 
4
 We chose efficient neighbor as a references instead of the average neighbor to avoid undesirable boomerang 

effects where consumers regress to the mean. For more information see Schultz, 2007. 
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University Village consists of graduate students with families, the interactions between 

households are likely to be less involved leading to a lower level of community engagement 

compared to the dorms where residents become quite close. This is thought to be the reason why 

social comparisons failed to generate statistically significant reductions in electricity 

consumption in the current study. For a description and results from the pilot study that 

successfully used the power of public information to achieve energy conservation, see Chen et al. 

(2014) and Delmas & Lessem (2014).  

Unlike many laboratory studies where numerical impacts may be the subject of manipulation, we 

provided households with factual evidence-based numbers that depended on their weekly 

consumption. Equivalent cost savings were calculated using household-level consumption data 

and the published LADWP electric rate schedules for residential customers. Equivalent pounds 

of air pollutant emissions were calculated using emission factors from the Emissions & 

Generation Resource Integrated Database (eGRID) maintained by the U.S. EPA. Treatment 

messages were also pre-tested in a series of questionnaires for clarity, comprehension and stated 

willingness-to-save energy with independent populations. The messages that were used in pre-

testing are shown in Table 2. 

 

Table 1: Treatment Messages. 

Group Treatment Message 

Monetary Savings Group “Last week, you used 66% more/less 

electricity than your efficient neighbors. In 

one year, this will cost you (you are saving) 

$34 dollars extra.”* 

Health Group “Last week, you used 66% more/less 

electricity than your efficient neighbors. You 

are adding/avoiding 610 pounds of air 

pollutants which contribute to health impacts 

such as childhood asthma and cancer.”* 

Control Group None. 

* ‘Efficient neighbor’ in this context means households in the top 10th percentile  

of household weekly average kWh consumption (lowest users of electricity)  

for similar size apartments in the community. 

 

It is interesting to point out that of the categories chosen to relate energy consumption to its 

negative externalities, respondents most often reported reducing emissions as the primary reason 

they would reduce energy use. The ranking of these categories is shown in Figure 4. 
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Table 2: Treatment Messages Used in Pre-testing 

   

Financial "Last month you used 66% more electricity than your efficient 

neighbors. In one year, this will cost you $34 dollars extra.” 

Health "Last month you used 66% more electricity than your efficient 

neighbors. You are adding 610 pounds of air pollutants which 

contribute to health impacts such as childhood asthma and 

cancer." 

Trees "Last month you used 66% more electricity than your efficient 

neighbors. Over a year, your extra emissions are equivalent to 

removing 7 trees from your community." 

Cars "Last month you used 66% more electricity than your efficient 

neighbors. Over a year, this is equivalent to adding 1 car to the 

road." 

Emissions "Last month you used 66% more electricity than your efficient 

neighbors. Over a year, this is an additional 609 pounds of CO2 

emissions from a coal-fired power plant." 

Developing 

Country 

"Last month you used 66% more electricity than your efficient 

neighbors. Over a year, the extra energy would be enough to 

provide power to 3 Kenyan citizens." 

 

 

Figure 4:  Potential Categories to be used to Induce Energy Conservation 

“For which of the following would you be MOST willing to reduce energy use? [CHOOSE 

ONE] 

 
Percentage of Responses 

Reducing	Emissions

Financial	savings

Health

Taking	cars	off	the	road

Developing	countries

Trees	Saved

0% 5% 10% 15% 20% 25% 30%

24.1%

27.6%

29.3%

6.9%

6%
6%
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Empirical Strategy 

We model the household behavioral outcomes as time series of electricity consumption, before 

and after the start of information treatments. Our general empirical strategy consists of panel 

regressions of total and appliance-level electricity loads on a series of treatment group indicators 

and important statistical controls, namely, household and occupancy characteristics, a measure of 

household environmental ideology and seasonal variables such as weather and time trends. To 

estimate the treatment effects on the study population, we use an analytical approach by 

difference-in-differences (DID). Difference-in-differences is also referred to as ‘before-after’ 

designs in the statistical literature. In keeping with our identification strategy, we define various 

indicator variables denoting treatment group and event time status. Let  be the binary treatment 

group indicator, equal to 1 if household is a member of treated group i and 0 otherwise. Let  be 

the binary post-treatment indicator, equal to 1 after the start of information treatments (e.g. post-

treatment period), and 0 during the baseline period (e.g. pre-treatment period). Let  denote 

the expectations operator. Conditioning on observable covariates, the average treatment effect on 

the treated (ATET) is: 

 

   (post-treatment period) 

                
 (pre-treatment period)   (1.1) 

Treatment status occurs exclusively when the group-time interaction   ( ̂ )         equals 1 

over  and does not occur under any other possible combinations of our group and event 

time indicator variables. In Equation 1.1, the ATET is the population average difference in the 

control group ( ) subtracted from the population average difference in the treated group        

( ) over time during pre- and post- treatment. This analytical procedure helps remove 

estimation bias or confounding associated with any common unobserved trends or heterogeneity 

in the data, which might be unrelated to the intervention (Athey and Imbens 2006). 

Dependent Variable 

Our dependent variable and behavioral response measure is the total kilowatt-hour (kWh) 

electric power consumption. A kWh is the most common unit of electricity used by electric 

utilities in commercial and residential billing. We aggregate real-time electricity measurements 

into hourly observations. Our total kWh signal for each household is further decomposed into 

one of six major appliance categories. By direct measurement, the appliance-level kWh 

consumption categories are: (i) lighting, (ii) heating and cooling, (iii) plug load, (iv) refrigerator, 

(v) dishwasher, and (vi) other kitchen (meaning the microwave and kitchen outlets). These six 

appliance categories, as we define, make up the complete circuit breaker distribution for all 

electricity uses in the household. We note that this level of granularity in kWh measurement is 

unique to our installed metering technology and wireless sensor network. 

Independent Variables 

The variables of interest are the treatment group indicators as defined above, household 

characteristics, and seasonal controls including weather and time trends. Household and 

  
T

i

 P

  
{i = 1,2}

   
T

i
= 0

   
T

i
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occupancy characteristics include statistical controls for total occupancy, e.g., the number of 

adults, and number of children living in the household. Apartment size indicates the number of 

bedrooms in the apartment, ranging from 1 to 3 bedrooms. Building floor captures apartment 

elevation, also ranging from 1 to 3, where 1st floor indicates ground level. Floor plan captures 

differences in apartment layout, measured in nominal square footage. Member environmental 

organization is a common proxy variable which captures a fixed measure of household 

environmentalist ideology or orientation. It is a dummy variable equal to 1 if the head of 

household reports being an active member of an environmental non-governmental organization 

(NGO), and 0 otherwise. These apartment characteristics represent time-invariant fixed effects 

for behavioral modeling. We also specify important seasonal variables and time trends. 

Seasonality and Time Trends 

Electricity demand (in kWh per unit time) exhibits seasonal fluctuations and serial correlation 

that depend on outside factors such as time of day or weather. Modeling electricity loads with 

high time-resolution data requires special consideration of seasonality and time-varying 

characteristics on consumption, most notably, the effects of outside temperatures on hourly 

energy demand. Even with the milder climate in Los Angeles, heating and cooling hours capture 

significant seasonal variation on electricity consumption. We calculate heating and cooling 

degree hours, using quality-controlled, local weather data from the Santa Monica Municipal 

Airport weather station, as maintained by the National Climatic Data Center (NCDC). Outside 

dry bulb temperatures were recorded hourly at the Santa Monica Municipal Airport weather 

station, located less than 1 mile from the study site. Archival access was provided by the 

National Oceanic and Atmospheric Administration (NOAA’s) Quality Controlled Local 

Climatological Data (QCLCD) product, which contains hourly, daily and monthly summaries of 

outside weather conditions for the specific station. Mean degree-hours are a fundamental 

measure in building energy management that expresses the magnitude of expected heating or 

cooling load at a given location. Degree-hours capture seasonal heating or cooling requirements 

at a finer resolution than degree-days, making our hourly kWh observations compatible with 

outside weather variation. The weather vector is        
    

   where: 

  
         ∑          

  
     heating degree hours 

  
         ∑          

  
     cooling degree hours  (1.2) 

 

As shown in 1.2, the larger the indoor heating or cooling requirement, the larger the distance 

between the measured mean hourly outside temperature       and a given base temperature   . 

By U.S. convention, the indoor base temperature    is defined as 65˚F (18.3˚C) (Day and 

Karyannis, 1998). When outside temperatures rise above the given indoor base temperature, 

cooling degree hours are strictly positive and heating degree hours are zero. Conversely, when 

outside temperatures fall below the base temperature, heating degree hours are strictly positive 

and cooling degree hours are zero. In this way, differential effects of heating and cooling load on 

electricity consumption are decomposed in a meaningful way over a 24-hour period. In addition 

to seasonal degree-hours, we also specify time dummies to capture common time trends (or 

cycles) in the data and any calendar shocks on consumption. By rigorously specifying seasonal 

variables in our behavioral model, we directly address potential confounding factors such as 

serial correlation in the disturbances of the regression model. 
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Econometric Model 

The main econometric specification for household j, in treatment group i, at time t, is  

    (1.3) 

The dependent variable, Ejit, represents hourly panel observations of total and appliance-level 

electricity loads. Our main coefficient of interest,  ̂, indicates the average treatment effect on the 

treated and the coefficient  ̂ indicates the post-treatment effect on the population. Hj is the vector 

of household covariates and  t is the weather vector. We include time dummies,  t which specify 

hour-by-day, day-by-week and week-by-month dummies that capture common time trends and 

any calendar shocks on consumption. Time dummies offer a convenient and robust control for 

community-wide effects in short or high frequency panels. The residual error is captured in  jt. 

We normalize our dependent variable by dividing by the average post-treatment control group 

consumption, , and multiplying by 100, allowing us to interpret our 

coefficients directly as percentages.
5
  

We model the electricity use in Equation 1.3 by difference-in-differences using a feasible 

generalized least squares (GLS) estimator. While we will not review the theory regarding GLS or 

weighting least squares estimators here, we note that GLS panel estimation is feasible because 

the panel’s time dimension is larger than the cross-sectional dimension of N households, a 

characteristic of our high time-resolution data set. While also more computationally intensive, 

GLS panel estimation offers the advantage of being less sensitive to outliers in the data (a 

common feature of residential electricity data) while being robust to heteroskedasticity and 

cross-sectional correlation in the error structure. We mitigate the effects of serial correlation—a 

common source of estimation bias in difference-in-differences models (Bertrand et al., 2004) by 

fully specifying important seasonal variables with autoregressive components on consumption 

and clustering the standard errors at the household level.  

5 RESULTS 

Building an intelligent, wireless sensor network, we gave consumers real-time access to detailed, 

appliance-level information about their home electricity consumption. Our results are based on a 

panel of 440,059 hourly kWh observations (or 3.43 million underlying appliance level kWh 

observations) for 118 residences over a time span of 8 month. Table 3 presents descriptive 

statistics for total electricity usage and for the control variables that are used in the regression 

analysis. Figure 5 shows average electricity usages before and after the treatment messages 

began. It is important to keep in mind that these are unconditional means and differences in 

apartment and household characteristics are not being held constant. Plots of average electricity 

usage for each appliance before and after the treatment messages began for are shown in are 

shown in the appendix. 

 

                                                 
5
 We do not use logs as monotonic transformations of the hourly kWh measurements since appliance-level 

electricity loads belonging to [0,∞
+
)  can frequently be equal or close to zero, for example, when the dishwasher or 

other appliance is off. See Alcott (2011) for other examples of this approach with electricity metering data. 
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Table 3: Summary Statistics 

  
Mean S.D. Min Max 

 

Total kWh 

(normalized) 
103.11 89.71 0 3489.1 

Experimental 
    

 

Health Group 0.37 0.48 0 1 

 

Monetary Savings 

Group 
0.38 0.49 0 1 

 

Control Group 0.24 0.43 0 1 

Household Characteristics 
    

 

Number of Adults 1.93 0.29 1 3 

 

Number of Children 0.52 0.81 0 4 

 

Apartment Size 

(beds) 
1.97 0.38 1 3 

 

Floor Plan 

(Nominal sq.ft.) 
862.3 104.49 595 1035 

 

Building Floor 2.07 0.81 1 3 

Ideology 
    

 

Member Env. 

Organization 
0.09 0.28 0 1 

Weather Controls 
    

 

Heating Degree 

Hours 
7.15 5.76 0 26 

 

Cooling Degree 

Hours 
0.6 1.94 0 26 
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Figure 5: Average Electricity Usage Before and After Treatment by Demographics and 

Treatment Status 

 

 

 

Informational messages were delivered via a specialized, consumer-friendly website with 

monitored page views and weekly accessible e-mails by personal computer and portable 

electronic devices (Figure 1). Information feedback was specific to each consumer. In order to 

present residential energy consumption in context, we compared our participants to the top 10% 

most energy efficient similar neighbors to build on prior literature and provide treated 

households with a reference point for their consumption.
 6

 Our regression results show that health 

and environment messages, which communicate the public health externalities of electricity 

production such as childhood asthma and cancer, outperform monetary savings information as a 

                                                 
6
 Households were provided with factual evidence-based numbers that depended on their weekly kWh electricity 

consumption. Equivalent cost savings were calculated using household consumption data and the published Los 

Angeles Department of Water and Power (LADWP) electric rate schedules for residential customers. LADWP is the 

nation’s largest public utility. Equivalent non-baseload emissions were calculated using emission factors from the 

Emissions & Generation Resource Integrated Database (eGRID) database maintained by the U.S. EPA. 



18 

 

driver of behavioral change in the home. Participants who received messages emphasizing air 

pollution and health impacts associated with energy use reduced their consumption by 6.0% over 

the experimental monitoring period versus control (Figure 6).
 7

 The largest reductions were 

found in households with children who achieved up to 19.8% energy savings (Figure 6). 

Participants who received messages informing them about monetary savings did not produce 

significant conservation by the end of the experimental period, net of all statistical controls.
 8

  

 

Figure 6: Effects of informational Messages on Study Households 

 

Quantile Treatment Effects 

Using quantile regression, we evaluated the distributional impact of informational messages on 

treated households for both low and high users of electricity. We find that environment and 

health messaging produced statistically significant conservation effects in all but the lowest 

decile of households (who are already the most energy efficient households). Cost savings 

                                                 
7
 The estimates in Figure 6 are GLS regressions estimates from Equation 1.3. They represent the estimated average 

treatment effect   ̂.   

8
 We estimate treatment effects with a before-after statistical design by difference-in-differences panel regression. 

The full set of statistical controls for observable characteristics include weather controls as heating and cooling 

degree hours, time fixed effects, apartment size and household occupancy characteristics, including a proxy for 

household environmentalist ideology. Any common unobserved characteristics are captured in the control group. 
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messages, on the other hand, led to increased electricity use relative to control (Figure 7).
 9

 This 

defiance to treatment result was particularly striking among families with children (Figure 7) and 

the highest deciles of electricity use, where monetary savings information was ineffective for the 

most energy-intensive households (Figure 7). The lack of a significant conservation effect with 

cost savings information, which might initially be a surprising result, is consistent with over 35 

years of experimental evidence in the behavioral conservation literature (Delmas et al., 2013). 

While cost savings has historically been an important incentive for household energy 

conservation, in practice the actual realizable dollar savings for most U.S. households compared 

with the top 10% most energy efficient similar neighbors is typically small. In the current 

experiment, for example, household cost savings potential for a 2–bedroom family apartment 

was $5.40 to $ 6.60 USD per month, which is roughly equivalent to 2 gallons of fortified whole  

 

Figure 7: Quantile Treatment Effects (QTE) 

 

                                                 
9
 The estimates in Figure 7 are the estimated quantile average treatment effects   ̂ from Equation 1.3.  Additional 

robustness checks and panel regression results with alternative estimators including OLS with clustered robust 

standard errors, are available from the authors. 
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milk, based on the consumer price index (CPI) average price data.
10

 On an annual basis, these 

savings for the current multi-family residential housing complex, which is at the mid-range of 

national per capita electricity consumption (EIA 2009), is a modest $65 to $80 dollars per year. 

These energy savings in dollar terms, while small relative to the U.S. household budget, are 

realistic for most U.S. households, suggesting that information about small monetary savings, 

especially over longer time horizons (weeks to months) may not sufficiently motivate household 

behavioral change.  

Appliance-Level Information 

Because we have separately metered appliances, we can further decompose the appliance level 

consumption. The average electricity consumption across all households is 0.3157 kWh per hour 

or approximately 230.4 kWh per month across 1, 2 and 3 bedroom units ranging from 595 to 

1035 square feet. For decades, heating and cooling (e.g. space conditioning) was considered to 

be the major source of household electricity use, based on national data from the Residential 

Energy Consumption Survey (RECS). Estimates from the most recent RECS survey suggest that 

the share of residential electricity use for heating and cooling is declining nationally in the 

United States, down to 48% in 2009 from 58% in 1993 (EIA 2009). In California, due to the 

milder climate, the share of heating and cooling makes up a smaller fraction of energy use, 

(31%) across all single and multi-family households, and only 19% in our multi-family 

residential field site (Figure 8). While space heating and cooling is declining nationally, the share 

of energy use for appliances and electronics continues to rise. Consistent with these estimates, by 

direct measurement, we show that plug load is already the largest share (36%) of appliance-level 

electricity consumption for apartments at our field site (Figure 8). Major appliances (e.g. 

refrigerator, dishwasher), the plug load (e.g. charging devices, consumer electronics, etc.) and 

lighting make up a significant share of household direct energy use (73%). In future years, 

behavioral strategies that can target conservation through reductions in plug load, appliances, 

electronics and lighting will be increasingly important. We note that summary results shown in  

                                                 
10

 The consumer price index (CPI) average price data, published by the Bureau of Labor Statistics (BLS) provides 

monthly data on prices paid by urban consumers for a representative basket of goods and services. (available at 

http://www.bls.gov/cpi/) 



21 

 

Figure 8: Appliance-Level Electricity Measurements 

 

 

* Includes all household electricity uses 

 

Figure 8 represents experimentally observed appliance-level electricity readings, and are not the 

result of survey estimates or modeling as in traditional approaches to obtain such data. 

Household appliance-level data is typically scarce, incomplete, and/or obtained indirectly. More 

generally, the lack of appliance-level energy metering data in U.S. households and businesses 

has been a long-standing problem for modeling consumer behavior in residential and commercial 

buildings (Hirst, 1980). By the current state of technology, there is no centralized appliance-level 

metering capability in U.S. homes or residential electricity markets. This study is one of the first 

field contributions of its kind to have experimentally measured appliance-level data in a large 

energy study.  

Effects By Time of Day 

We also decompose the appliance-level treatment effects by time of day. For households 

randomly assigned to environment and health messages, our results show significant 

conservation effects, versus control households, beginning about 12:00 noon. These energy 

savings persist in the afternoon during peak demand hours and throughout the evening, where 

peak load for the community occurs nightly at approximately 9:00pm for all household types 

(Figure 9). 
11

 For our environment and health-messaging group, energy conservation occurs 

primarily through plug load and lighting behavioral changes. Consistent with post-study 

participant interviews, the most commonly reported changes in household behavior include 

                                                 
11

Average hourly usage for each appliance is shown in the appendix.  Hourly data for the rest of California was not 

available for a comparison to be made.  

Plug Load 
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3% 

Multi-family Residential Energy 
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turning off lights, unplugging electronics and charging devices when not in use. Conservation 

treatment effects for our environment and heath group are also maintained overnight, suggesting 

both load shifting behavior and conservation. Whereas our environment and health strategy was 

most effective in reducing plug load, lighting, and electricity use in kitchen outlets and other 

appliances, we observe different appliance behavior with the monetary savings strategy. For our 

cost savings information group, we identify conservation effects only in lighting, particularly 

during peak community hours. However, as lighting is only a minor share of total household 

energy consumption (15%), behavioral changes due to lighting conservation are not enough to 

overcome splurging behavior in other consumption categories, in particular, plug load and 

heating and cooling, resulting in no net conservation with monetary savings information by the 

end of the experiment . This empirical result of conservation in one or more appliances (e.g. 

lighting), but no net conservation in aggregate motivates further research into the persistence of 

household behaviors and dynamic behavioral responses to information treatments. 

 

Figure 9: Average Hourly Electricity Usage by Demographics 

 

 

6 DISCUSSION 

This research advances our knowledge of non-price information based strategies for energy 

conservation. Information-based policies for conservation can be used, particularly where price-

based strategies may not be politically feasible or effective. More generally, energy conservation 

is desirable in the economy as an alternative to costly capital investments in new power 

generation, and can help delay managerial investment decisions for new generation capacity. 

While non-price behavioral strategies can be viable alternatives to new capital projects by 

promoting peak load shifting and conservation, they can also be implemented immediately, at 

scale and at relatively low cost. Behavioral strategies enabled through information technologies 

can be an effective component of sustainable development pathways and do not require long lead 

times typical of new capital investments in energy generation, distribution and storage.  

Using non-monetary information treatments, we observe significant reductions in energy 

consumption by appliance (e.g. lighting, heating/cooling, plug load, etc.) and by time of day. Our 
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environment and health based messaging strategy was more effective at sustaining favorable 

conservation outcomes versus the cost savings strategy. The lack of a significant conservation 

effect with cost savings information, which might initially be a surprising result, is consistent 

with over 35 years of experimental evidence in the behavioral conservation literature (Delmas et 

al., 2013). While cost savings has historically been an important incentive for household energy 

conservation, in practice the actual realizable dollar savings for most U.S. households compared 

with the top 10% most energy efficient similar neighbors is typically small. Environment and 

health messaging achieved a 6% reduction in energy usage overall, and a 19.8% reduction for 

respondents with children. Using price elasticities for California from Ito (2012) and Reiss and 

White (2005, 2008), this conservation effect on the treated is equivalent to a long-run electricity 

price increase of 15.4% or a 60-day short-run price increase of 23 to 45%. Empirical evidence 

from this randomized field experiment contributes the first known use of health-based 

conservation strategies with residential customers. We demonstrate environmental health 

messaging as a new class of non-price incentives for energy conservation. We also add to a 

growing experimental literature on the use of non-price interventions as cost-effective strategies 

for energy conservation.
 
 

In the conservation literature, there is often a dichotomy between what people say they do, and 

what they actually do. This so-called attitude-behavior gap is uniquely revealed in this field 

setting. Prior to the study, we conducted a stated preference (SP) survey asking independent, 

random samples of participants to choose messages that would be most likely to change their 

behavior and motivate conservation in the home. When pushed to state their energy preferences, 

we find that consumers do state a willingness to change behavior and that financial savings are at 

the top of their concerns. However, when faced with actual decision-making in the field, only our 

non-monetary, environment and health strategy produced a lasting conservation effect. This 

distance between what people say they would do and what they actually do is referred to as the 

“cheap talk” critique. As long argued by psychologists and behavioral economists, monetary 

savings, which by standard accounts should motivate rational decision making in the home, can 

often fail with ordinary consumers (Stern, 1992). The idea that a non-monetary, information 

strategy centered on environment and health, could produce energy conservation without a 

significant change in economic incentives, advances our understanding of the range of effective 

large-scale behavioral interventions that can be carefully applied at scale.  

Energy conservation strategies can be guided not only by traditional consumer incentives such as 

saving money, but also by non-price based consumer information about health and 

environmental effects not necessarily reflected in prices for electricity services. We argue that 

behavioral strategies in household electricity markets can be complements rather than substitutes 

for regulatory or price-based solutions. In the current discussion on climate policy and behavioral 

wedge strategy, it is therefore of great interest for researchers and policy makers to develop 

effective behavioral interventions that can transcend political ideology or environmentalist 

orientation. 

7 SUMMARY AND CONCLUSIONS 

This study developed advanced technology-enabled information strategies to encourage energy 

conservation behavior in residential buildings. It makes use of a real world energy behavior 

laboratory that supports rigorous testing of behavioral science based strategies. The sophisticated 
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experimental setting enables highly detailed energy use measurement and feedback, where major 

end usage categories (e.g., plug load, lighting, heating & cooling, and appliances) are measured 

in real-time and communicated to consumers. This research expands our understanding of how 

users respond to technology-enabled energy usage information to save energy. Testing 

behavioral responses to different types of energy use information also enhances the theoretical 

understanding of how information can trigger behavior changes and enable new habit formation. 

At a residential housing community in Los Angeles, we outfitted 120 family apartments with 

wireless energy metering technology. We measured electricity use data in real-time 24 hours a 

day at the appliance level. One group of apartments was given detailed energy use feedback 

along with information about monetary savings. Another group was given feedback with an 

environment and health message about emissions and air quality impacts such as childhood 

asthma. A third group served as a statistical control following a six-month baseline period and 

random assignment. The randomized control trial was conducted from October 2011 to July 

2012 and weekly treatment messages were sent to participants.  

Non-monetary information treatments resulted in significant reductions in energy consumption 

relative to the control group. Our environment and health based messaging strategy led to a 6% 

reduction in energy usage overall, and a 19.8% reduction for families with children. These 

estimates are at the high end of prior non-price information strategies based on social norms 

(Ayres et al., 2013; Alcott, 2011; Delmas et al., 2013). While non-price behavioral strategies can 

be viable alternatives to new capital projects by promoting peak load shifting and conservation, 

they can also be implemented immediately, at scale and at relatively low cost. Behavioral 

strategies enabled through information technologies can be an effective component of 

sustainable development pathways and do not require long lead times typical of new capital 

investments in energy generation, distribution and storage. 

Besides the contribution to social science theory, our research also advances practical knowledge 

about energy conservation behavior. We have developed a unique experimental setting, 

providing both real-time feedback and appliance level information. The high resolution of the 

information in our experiment allows for unique insights into how participants respond to non-

price motivations to reduce energy use. The availability of such detailed information sets our 

experiment apart from previous research. 

8 RECOMMENDATIONS 

Despite decades of research on the health effects of air pollution, the link between individual 

electricity use and resulting impacts on human health (via energy-related industrial emissions) 

remains elusive for most consumers. Historically, the development of electricity services has not 

been guided by particular concern for associated health effects (Comar and Sagan, 1976; 

Brunekreef and Holgate, 2002). Environmental damage is often an unseen byproduct of other 

activities, with both consumers and those around them being unable to gauge the impacts of their 

actions. Disclosing environmental and health effects privately to consumers can reduce the 

perceived costs and/or moral benefits of household actions to conserve energy. Policies that 

correct this information asymmetry between individual electricity consumption and public health 

effects have the potential to encourage environmentally friendly outcomes by re-framing and 

creating new mental accounts on the perceived benefits and costs of household behavioral 

actions. 
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Information-based policies for conservation can be used, particularly where price-based 

strategies may not be politically feasible or effective (see Delmas et al., 2013) for a review of 

these studies). More generally, energy conservation is desirable in the economy as an alternative 

to costly capital investments in new power generation, and can help delay managerial investment 

decisions for new generation capacity. While non-price behavioral strategies can be viable 

alternatives to new capital projects by promoting peak load shifting and conservation, they can 

also be implemented immediately, at scale and at relatively low cost. Behavioral strategies 

enabled through information technologies can be an effective component of sustainable 

development pathways and do not require long lead times typical of new capital investments in 

energy generation, distribution and storage. 

Future work should make use of the appliance level data that is measured in this study to design 

algorithms that gives consumers without appliance-level monitoring a more detailed analysis of 

their energy consumption. Since the equipment developed in this study provides real-time 

appliance level feedback, an appliances “energy usage signature” can be determined. Comparing 

the patterns in total energy usage with the appliance level feedback could allow utility companies 

to provide consumers with more detailed feedback about their energy usage without the need for 

any capital investment by the consumer. 
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11 LIST OF ABBREVIATIONS 

 

Description Abbreviation 

Average Treatment Effect On The Treated     ATET 

Building Management System       BMS 

Commercially-Available, Off-The-Shelf      COTS 

Consumer Price Index        CPI 

Difference-In-Differences      DID 

Emissions & Generation Resource Integrated Database    eGRID 

Generalized Least Squares       GLS 

Institutional Review Board       IRB 

Kilowatt-Hour         kWh 

Los Angeles Department of Water and Power     LADWP 

Microcontroller Unit        MCU 

NATIONAL CLIMATIC DATA CENTER      NCDC 

National Oceanic and Atmospheric Administration     NOAA 

Non-Governmental Organization      NGO 

Personally Identifiable Information      PII 

Quality Controlled Local Climatological Data     QCLCD 

Residential Energy Consumption Survey      RECS 

Stated Preference        SP 
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12 APPENDIX 

Figure A 1: Average Hourly Electricity Usage by and Demographics 
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Figure A 2: Average Daily Usage by Treatment Status Before and After Treatment 
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Figure A 3: Average Daily Usage by Demographics Before and After Treatment Messages 
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Figure A 4: Feedback Survey 
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Figure A 5: Exit Survey 
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