CHAPTER 4

Chapter 4 contains

e an introduction to the problem of modeling nonlinear chemical reactions in tur-
bulent flows, including a general literature survey and classification of existing
methods,

e an exposition of the fundamentals of the Eulerian Statistical Approach for both
direct and indirect chemical closure methods,

e a detailed presentation of the “concentration field splitting method,” that is the

particular indirect closure technique employed in the formulation of the TRPM

m
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CHAPTER 4

CHEMICAL REACTIONS
IN TURBULENT FIELDS

4.1 INTRODUCTION

Many chemical reactions, either single-phase (on which we focus attention here)
or multi-phase, of importance in both natural (environmental) and industrial systems,
take place in turbulent flow fields. In general both the properties of the flow field
in which the reaction occurs and the way the reactants are introduced in it will
affect the spatial and temporal evolution of these systems. Further, the state of a
particular system will be determined by the natuge of the reaction kinetics involved
(monomolecular or multimolecular) and by the relative rates of the simultaneously

occurring chemical and dispersion processes.

The state of environmental systems (e.g. atmospheres and oceans) is turbulent
for almost all common circumstances; on the other hand industrial low and reaction
systems are also deliberately, in most cases, in a turbulent state, in order to utilize
the enhanced rates of heat and mass transfer resulting from turbulent motions (com-

monly called “turbulent mixing”).(*) As a consequence, the problem of simultaneous

(*) One should keep in mind that the term (turbulent) mixing is used in somewhat different
context by different authors. Thus, for example, in some works turbulent mixing pro-
cesses are assumed to involve just turbulent diffusion due to small scale turbulent eddies
and in others to involve both this turbulent diffusion and “bulk convection” due to eddies
of larger scales. It is therefore necessary to always specifically define terms like “mixing”
in the analysis of systems where multiscale dispersion processes occur simultaneously.
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turbulent mixing and chemical reaction is commonly encountered in a vast variety of
different situations. Table 4-1 gives a typical list of cases of engineering interest where
this problem has been realized and research is active towards its analysis. Although
the selection of subjects in this list is far from being exhaustive, it is at least indicative
of the broad range of areas in which significant interaction between turbulence and
chemistry appears. The relevant research studies problems arising in fields such as
chemical and environmental engineering, combustion and propulsion aerodynamics,
laser and plasma chemistry etc. The major interest today appears in the area of
combustion research (see, e.g., Libby and Williams, 1980; Chigier, 1981; Williams,
1985, and the proceedings of the Symposia (International) on Turbulent Combustion
— the proceedings of the 20th published in 1985) where the problem of interaction
between reaction and turbulent mixing seems to assume its most complex levels.(*)
Increasing interest has also been arising recently in various other fields, especially in
environmental applications. More specifically, Donaldson and Hilst (1972) and Lamb
(1973) (see also Lamb and Seinfeld, 1974; Seinfeld, 1977) recognized the importance
of incomplete turbulent mixing phenomena in the processes of photochemical smog
formation and a number of related works have appeared since then (e.g. Bilger, 1978;
Kewley and Post, 1978; Kewley and Bilger, 1979; Kewley, 1980; see also Chapter 1).
Due to both the variety of the problems in which the problem of rective turbu-
lence is encountered and the wide range of approaches through which this problem
is attacked (not to mention the differences, in both method and terminology, that
appear in the treatment of equivalent problems in different scientific disciplines), an

attempt to get familiar with the essentials of the entire spectrum of modeling tech-

(*) The complexity of the problem in the field of combustion is basically associated with the
large heat releases accompanying combustion reactions and the resulting intense variation
of temperatures, densities and pressures. This leads to a complicated multidirectional
coupling among the processes of heat, momentum and mass transport and the chemistry.
On the contrary, in many typical environmental applications the transport processes can
be assumed decoupled. The complexity of the mixing-reaction problem in environmental
systems is thus associated more with the complexity and the peculiarities of the turbulent

environmental flow per se (temporal and spatial variation of turbulence characteristics,
many scales, unknown parameters, etc.).
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niques in the field would constitute a most difficult task. Basic aspects of such tec-
niques are covered in standard textbooks in chemical engineering (see, e.g., Froment
and Bischoff, 1979) and in combustion theory (see, e.g., Williams, 1985). However
the interested reader will eventually have to confront a plethora of specialized articles
and publications; some comprehensive reviews (usually focusing on a specific topic)
and compilations of works dealing with particular applications are available to help in
his quest. In particular the collections edited by Murthy (1975), Brodkey (1975) and
Libby and Williams (1980), contain a wide range of applications from various fields
and some excellent reviews of specific approaches. Among the review papers with
a more general perspective, those of of Hill (1976), which covers mainly the “fluid
mechanical” approach to the mixing-reaction problem (together with some discussion
on spectral and “micro-structural” techniques — see the analysis that follows) and of
Pratt (1979), which contains a brief summary of modern chemical reactor theory on
the basis of population balance approaches, can serve as tutorial introductions to the
subject of reactive turbulence. Some more recent vdevelopments not contained in the

above works can be found in the reviews of Villermaux (1983) and Pope (1985). (*)

It would be beyond the scope of the present work to attempt a detailed exposition
of the various modeling methodologies and techniques which have appeared in the
vast literature that deals with turbulence and chemistry interactions. However, the
importance of these phenomena in atmospheric applications — and in particular in
relevance to moderately fast reactions in point source plumes (see Chapter 1) —is a

subject that merits further study and development of procedures for proper modeling

(*) Three other comprehensive review articles, (published together), that give an overview of
the reactive turbulence field from a “chemical engineering viewpoint” are those of Brod-
key (1981), Nauman (1981) and Patterson (1981). One must also note that, even in order
to deal exclusively with single-phase reactions (homogeneous at equilibrium systems), it
is very useful to realize the analogy of the behavior of these systems with the behavior
of reactive dispersions in turbulence (see, e.g., Rietema, 1964; Olson and Stout, 1967;
Tavlarides and Stamatoudis, 1981) Structural methods now commonly used to model
small scale turbulence effects on reaction originated in the analysis of dispersions (e.g.,
Curl’s “coalescence-redispersion” approach); in fact one should keep in mind that before
complete mixing is achieved the reactive mixture is essentially a multiphase system.
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in order to improve current atmospheric dispersion and reaction models. This fact,
together with the lack of an exposition of the fundamentals of the simultaneous mixing
and reaction problems covering specifically the spectrum of methods that can be
used in environmental applications, dictates the necessity for a concise and coherent
presentation of the subject. So, in this chapter after discussing briefly some basic
concepts and terms, we attempt to show the range and interrelationship of the various
approaches to the mixing-reaction problem by classifying them according to a general
organizational scheme.
Thus we distinguish between
 Eulerian Statistical (or global “fluid mechanical” or “mechanistic”) approaches,
and
e Structural approaches (not to be confused with the structural approaches em-
ployed in the modeling of turbulene in recent years), that include

(a) Lagrangian trajectory methods,

(b) distributed and lumped Population Balance methods, which encompass clas-
sical chemical reactor theories (e.g., the residence time distribution ap-
proach), and

(c) “micro-structural” (or “micro-mechanistic” or “local fluid mechanical”) mod-
eling techniques, that focus on the description of the local concentration
structure in small control volumes (“reacting laminae”) at scales below the
microscale of turbulence, and then attempt to deduce global properties of
the turbulent system by viewing it as a random collection of such control
volumes.

Naturally, a specific modeling application may contain elements from more than

one of the above approaches.

In this chapter Sections 4.2 and 4.3 are devoted to an exposition of the fun-

damentals of the reactive turbulence problem. Basic terminology is reviewed and
clarified, and important concepts are introduced. Then a comprehensive overview of

the different modeling methods available, compactly organized in figures and tables
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completes this exposition. The following sections deal with the systematic develop-
ment of Eulerian models that are appropriate for spatially varying environmental
systems. The focus is on methods that can be employed in the modeling of turbulent
atmospheric plumes, the criteria being scientific validity and computational simplic-
ity. In particular, pure and mixed conserved scalar closure approximations, including
the “concentration field splitting method” that is adopted in this work, are developed
to directly usable forms.

Presentation of details not directly related to the framework of atmospheric
plume modeling that was described in Chapter 1 will be avoided in this chapter.
Instead, references to original works and, more often, to reviews of particular prob-
lems or approaches will be given.

In conclusion, the scope of this chapter is to pfovide both a comprehensive intro-
duction to the relevant literature and at the same time present a concise but struc-
tured exposition of the fundamental principles and methods underlying approaches

for modeling reactions in turbulent fields.
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Table 4-1
Examples of Applications
with Significant Interaction of Turbulence and Chemistry

APPLICATION EXAMPLE

e Continuous Flow Kattan and Adler (1972)
Stirred Tank Reactors

o Tubular Flow Reactors Pratt (1979)

e Jet Stirred Reactors Clegg and Coates (1967)

e Turbulent Jets Shea (1977)

o Turbojet Plumes Borghi (1974)

¢ Turbulent Shear Layers Broadwell and Breidenthal (1982)
e Pollutant Dispersion Builtjes (1983)

from Stacks

e Photochemical Smog Formation Kewley and Bilger (1979)

e Biological Flow Reactors Fan et al. (1971)

and Waste Treatment

e Combustors and Combustion Processes Williams (1985)

o Turbulent Flames Chigier (1981)

o Weakly Ionized Plasmas Shkarofsky (1974)

¢ Hypersonic Ballistic Wakes Proudian (1969)

® Reacting Gas Coolants Richardson and Getz (1968)

for Heat Exchangers

e Chemical Lasers Hayday and Chung (1979)
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4.2 SIMULTANEOUS TURBULENT MIXING AND REACTION:
BASIC CONCEPTS AND TERMINOLOGY

The evolution of a system of reacting species in a turbulent field is determined
by the combined action of three processes: turbulent dispersion (or random local
advection), molecular diffusion and chemical reaction.

Turbulent dispersion transfers the species through the action of the fluctuating
random velocity. It reduces gradients of the mean concentration field and at the
same time creates local inhomogeneities at the molecular level which, in a continuum
description manifest themselves as random concentration fluctuations. These inho-
mogeneities are dissipated by the action of molecular diffusion. Chemical reactions
take place at the same time and will in general be affected by the spatial distribution
of species concentrations at both macroscopic and local (molecular) levels to a degree
that depends upon the reaction order and rate as well as on the initial mixing state
of the reactants.

Consider, for example, the process of turbulent mixing of two “feeds” — or por-
tions of fluid in general — which at equilibrium (that is after a long enough time
period) (*) can be mixed down to the molecular level and constitute a single phase-
system; we call this a homogeneous-at-equilibrium system. Each feed is assumed to
be perfectly mixed down to the molecular level at the inception of the mixing process;
it may contain one or more species that may react with species of the same or of the
other feed. Various situations are possible with two fluid feeds, e.g.:

(a) mixing of finite amounts of two fluids in a process vessel, or in general in a
confined space
(b) mixing of a finite amount of one fluid with an “infinite” amount of another, as in

the dispersion of an instant release of material — or “puff”— in the atmosphere,

(') Such an equilibrium can be reached either in time, e.g., for a batch mixing process taking
place in a vessel, or in space as for, e.g., a steady atmospheric plume where complete
mixing is obtained only far enough downwind the source.
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(c) mixing of a continuous feed with an “infinite” fluid, as in the dispersion of a

continuous plume in the atmosphere,
(d) mixing of two continuous feeds,

(e) mixing of a continuous feed with a mass of fluid which retains constant compo-
sition via chemical reaction, as in the ideal continuous flow stirred tank reactor,

etc.

In cases (a) and (b) the mixing process evolves in time whereas in (c) and (d)
it evolves in space. In case (e) the mixing process is in a steady state (possibly

non-equilibrium) after an initial start-up phase has passed.

4.2.1 Stream and Age Mixing

The terms stream mizing (or cross-stream mizing or reactant mizing or simply
mizing) and age mizing (or self mizing or backmizing) have been employed, respec-
tively, to characterize the extreme cases of mixing between two “fresh” separate fluid
feeds and of mixing of one or more feeds with fluid that achieved its current identity
(different from its initial) through the action of processes (such as mixing and reac-
tion) that take place in the flow system under consideration. Some authors go as far as
to stress that stream and self mixing are completely different physical processes (e.g.
Brodkey, 1967); in general these processes usually coexist but in certain cases one is
dominant. Thus, stream mixing is more important in flows that show a dominant
upstream-to-downstream character and are described by parabolic transport equa-
tions, whereas age mixing is more important in flows where convective recirculation
is dominant; transport in such situations is described adequately by elliptic equations.
As far as chemical reactions are concerned, stream mixing is more important in sit-
uations of parabolic type transport for the cases of both premixed and unpremixed
reactants. In situations of elliptic type transport age mixing is the important process
when the reactants are premixed but both stream and age mixing affect critically the
evolution of the reaction system when the reactants are unpremixed. These qualita-

tive notions are summarized in Table 4-2. Pratt (1979) presents some simple models
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for the quantification of the description of pure as well as combined stream and age
mixing processes. Other, more specific or technical terms such as channeling, by-
passing, dead-space flow etc. are also used to describe special patterns of mixing,
usually in process vessels, but they will not concern us here. (See, e.g., Himmelblau
and Bischoff, 1968; Wen and Fan, 1975; Oldshue, 1983, for relevant discussions and
details.)

4.2.2 Micromechanics of Mixing:
Relevant Scales

Let us now return to the mechanics of the mixing process of two fluid portions.
Whether stream or age mixing is dominant (or are combined), portions of fluid of
different chemical composition are first brought in contact — by the action of the
turbulent velocity field and — then give origin to regions of fluid (“mixed zones”)
of new chemical identity through the processes of molecular diffusion and perhaps
chemical reaction. Assume for simplicity that molecular diffusivities of all species as
well as kinematic viscosities of the two, initially separate but individually uniformly
mixed, feeds are of the same order of magnitude, D and v respectively. The turbulent
energy of the flow field is dissipated at a rate ¢ . Then at scales large compared to

the Kolmogorov micro-length scale £y, where

g = (V;) v (4.2-1)

turbulent velocity fluctuation distort the initial portions of different feeds by breaking,
carrying, pulling and squeezing them into convoluted sheets and ribbons of decreasing
thickness. The stretching, squeezing and breaking would continue indefinitely in the

absence of molecular diffusion effects, that is if the Schmidt number

Sc

I

SRS

was infinite (D — 0). In reality molecular diffusion acts from the start of the mixing

process and slowly ~ in comparison to turbulent phenomena — creates regions of fluid
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Table 4-2
Dominant Type of Mixing Process
in Relation to the Initial State of Reactants
and the Type of Flow

INITIAL CONDITION GOVERNING PDE FOR THE DOMINANT TYPE
OF REACTANTS CONCENTRATION FIELD OF MIXING
premixed parabolic stream-mixing
or un-premixed for flows with a dominant

upstream-to-downstream

character
premixed elliptic age-mixing
un-premixed elliptic combined

- 158 -



PART IB CHAPTER 4

that are mixed down to the molecular scale at the interphases of portions of different
feeds. In fact, if Sc is of order unity or larger, Batchelor (1959) showed that when
the patches of fluid approach a thickness of order O(¢p), where

2\ 1/4
lp = (£> =g Sc™1/? (4.2-2)
€

is the Batchelor micro-length scale, concentration gradients normal to the patch are
sufficiently large that the molecular fluxes balance the compression of the patch by
the straining motion, and the creation of fluid zones mixed at the molecular level is
the dominant physical process. If Sc is much smaller than unity,i.e v < D, then the

relevant microscale is the Corrsin~-Obukhov microscale £ defined as

3\ 1/4
bo = (DT) = ZKSC_3/4 (4.2 - 2(1)

(This is not to be confused with “Corrsin’s dissipation scale” that is defined as the
counterpart of Taylor’s microscale for scalar diffusion and is discussed in Section 4.4
and in Chapter 5).

For diffusion of gases like CO, NO, NO3, SOg, etc., in the atmosphere, Sc is of
order 1 and £x, £p assume approximately equal values; thus either scale is relevant.

Other microscales, of similar nature, have also been introduced in various models
of local diffusion and reaction; among them the “striation thickness”, first defined by
Mohr (1957) as a measure of the thickness of “patches” of completely mixed material,
has been very popular in the modeling of “lamellar microstructures” (see Section
4.3.2) in turbulent reacting flows (see, e.g., Ranz, 1979; Ou and Ranz, 1983ab).

Another quantity of interest in detailed descriptions of reaction-diffusion phe-
nomena at the local level of laminar conditions is the rate at which the thickness
of perfectly mixed “patches” diminishes with time. A simplified analysis assuming
a uniform local (laminar) velocity gradient gives for the thickness £(t) of the mixed
zone (Middleman, 1977)

£(t) = £(0) (1 +~2¢2) /2
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where < is the constant strain rate of the laminar shear, approximately given by (see,
e.g., Bourne, 1982; Baldyga and Bourne, 1984)

v ~0.5 (5) V2

4.2.3 Macro-fluids versus Micro-fluids
Macro-mixing versus Micro-mixing

So, before final equilibrium is achieved, any mixture will have some of the char-
acteristics of a two-phase (or multi-phase) system, as for a certain period of time
portions of the different feeds will be intermixed by turbulent motion down to a
rather fine but still macroscopic level of very small “Auid elements” or “Auid parti-
cles” which preserve their different identity defined by chemical composition. A fluid
which can be viewed in this way, i.e. as consisting of elements of different identity, is
often called a macro-fluid in contrast to a micro-flutd (*) in which all different species
are mixed down to the molecular level (see, e.g., Levenspiel, 1972). The small “struc-
tural elements” of a macro-fluid (which, when it corresponds to a homogeneous-at-
equilibrium system is of course always in a transition state) are not always identified
in the same way but we will not discuss this subject in detail here. Use of the term
“fluid particle” dictates however a few comments. The concept of a fluid particle is
widely used in Lagrangian descriptions of turbulent diffusion (see, e.g., Monin and
Yaglom, 1971, 1975; Hinze, 1975; Seinfeld, 1975) as well as in population balance
methods for modeling both single and multi-phase flow and reaction systems (see,
e.g., Himmelblau and Bischoff, 1968). The identity of a fluid particle in such treat-
ments is not necessarily determined by its composition; other properties such as, e.g.,
its temperature or its “age” (time it has spent in the flow field) are often used instead.
Many other terms like “fluid element,” “material point of fluid”, “fluid lump”, “Huid

clump”, “continuum element of fluid”, “fluid molecule”, have also been employed in

(*) Sometimes the terms macromixed and micromixed fluid (or reactor) are used instead -
(see, e.g., Pratt 1979).
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the literature; however the context in which these terms are used is not always the
same. For some authors a fluid particle (or element) has completely uniform “internal
properties” (concentrations, pressure) and is so small (smaller than the appropriate
microscale of turbulence) that its structure cannot be affected (e.g. distorted) by the
turbulent motions. In this way it corresponds to a “point” of the fluid continuum.
For others it can have larger dimensions, non-uniform internal structure and can be
distorted by the action of the turbulent motions. In this way it corresponds simply
to a Lagrangian material volume of fluid. Hinze (1975) discriminates between a fluid
particle (which can only be advected by turbulence) and larger fluid lumps (which can
be distorted and separated into smaller lumps or fluid particles). According to such
a definition the only interaction of a fluid particle with its environment can only be
purely molecular in nature (but of course can be approximately modeled as a larger
scale random process, i.e. a coalescence and redispersion model of fluid particles can
be used to simulate a “spreading” of properties actually due to molecular diffusion).
Hinze (1975, §5.1) further distinguishes between volume particles and property or
substance particles. A volume-particle is defined as a small constant volume of fluid
following the (random or not) flow, whereas a property-particle is defined in terms of
some property of the material constituting it and thus can be viewed as a collection
of marked (by their chemical identity or age, etc.) molecules. If molecular effects are
negligible the volume and property particle remain identical during any dispersion
processes; otherwise the motion of the centroid of the property particle deviates from
that of the original volume particle. A point worthy of noting here is that in fact the
dispersion of a property due to molecular diffusion is not statistically independent of
that due to macroscopic random turbulent velocities; see, e.g., Hinze (1975, §5.5).
The way in which fluid particles of different identities are distributed spatially
in the flow field determines the state or degree of macromizing of the system (or “the
system’s macrostate” ). Mean continuum properties, (that is first means of stochastic
continuum quantities defined over “points” which are of the size of fluid particles),

reveal and characterize this macrostate. Thus, if fluid particles from two feeds of
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different chemical composition are uniformly distributed over a volume or area of the
flow field, the mean concentration of any conserved species of the mixture will also
appear to be uniform there.(*) As time passes compositions of individual volume fluid
particles may change through the process of molecular diffusion until all such particles
are identical and molecular uniformity has been achieved, but mean concentrations of
the of the conserved species will remain the same. Thus, the degree of macromixing
is determined (locally for a spatially varying system) by the “gross” characteristics
of the flow i.e. first moments of random variables and characterizes uniformity of
mixing at the level of fluid particles. Further, it is insensitive to the degree or state of
micromizing (or “system’s microstate” ) which refers to the finer structure of the flow
field, at scales smaller than those of the fluid particles, down to the molecular level.
For a given macrostate the instantaneous degree of micromixing of a system may vary
from complete segregation, in which no observable zones of microscopically mixed fluid
have been created and the fluid particles retain unaltered their initial identities (the
mixture is a macro-fluid), to mazimum mizedness, in which molecular diffusion has
brought intimate mixing of individual molecules in the entire system (the mixture is
a micro-fluid). This however does not necessarily imply that concentrations are also
uniform in the mixture. In terms of continuum variables of the flow field, micromixing

is revealed by their fluctuations and the variation of their higher order moments and

correlations.

The distinction between these two different kinds or levels of mixing in a given
system is of crucial importance, as far as the evolution of chemical reactions is con-
cerned, for both premixed and unpremixed reactants. This was recognized in the

1950’s by Danckwerts (1953, 1958) who introduced this distinction of mixing con-

‘ (*) Some authors (e.g., Patterson, 1975) use the term macromixing in a different context,
that is to describe a mixture is in a state of complete segregation (which in our terminol-
ogy is one extreme state of micromixing) and the term micromixing to describe the state
of maximum mixedness. This use of a term in very different contexts is unfortunately
very common in the field and unavoidably causes confusion to anyone not familiar with
the terminology of different authors.
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cepts in chemical reactor theory (*) with ideas that were soon extended by Zwietering
(1958) and Van Krevelen (1958). Danckwerts also introduced quantitative measures
for the description of macrostates and microstates which since then have been used
in chemical engineering literature almost exclusively to describe premixed reactants

systems where age mixing is the dominant process.

Thus the residence time distribution (RTD), defined as the time response at the
exit of a reactor for an instantaneous concentration pulse of inert tracer acting as input
at time ¢ = O at its entrance, where all properties are considered uniform over the exit
and entrance, characterizes the state of macromixing of the reactor as a whole (see,
e.g., Himmelblau and Bischoff, 1968; Levenspiel, 1972). Another equivalent definition,
more closely related to the concept of age mizing, views the RTD as the probability

density that a fluid particle which enters the reactor at time t = 0 will leave at time .

RTD models defined in this way represent a method of modeling through macro-
scopic averaging and treat the reaction-flow field as a lumped system with a single
entrance and a single exit (a “global concept”). Hence they are not appropriate to
describe systems where stream mixing is dominant (since stream mixing is a process
that basically evolves in space and not in time) and in general distributed systems
that do not have a single entrance and exit and the complete distribution of proper-
ties in their “interior” is of interest. Although such an approach is not common in
the literature one can generalize the classical lumped-system RTD concept to such
distributed systems by defining it as a function of both time and two sets of spatial
coordinates — one for a “source” and one for a “receptor” ~ again as the response (con-
centration) at the receptor for an instantaneous release of inert tracer at the source
(i.e. a Green’s function for the inert mixing ~ i.e. advection-diffusion — boundary
value problem). In general the spatial distribution of mean concentrations (steady or

not) in a flow system gives a complete characterization of its macrostate.

(') Actually Danckwerts wrote of “scales of mixing and segregation” and of “mixing at the

molecular level”; the prefixes “micro” and “macro” were introduced by Van Krevelen
(1958).
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4.2.4 Scale and Intensity of Segregation

According to Danckwerts the degree of micromixing of a system needs two pa-
rameters for a local description. These parameters are usually called the scale L, and
the intensity, I, of segregation. A variety of other names is also used for the concept of
I such as mizing effectiveness (Pratt 1979), simply segregation (Brodkey 1966, 1967)
and unmizedness (Hawthorne et al.,1948). Also the term mizing parameter is used
for —I and the term contact indez for (1 — I) (see Hill, 1976; Donaldson and Hilst,
1972).

Often the intensity of stream segregation is distinguished from the intensity of
age segregation and different symbols such as I, and I, respectively are used (see,
e.g., Brodkey 1967, 1975, 1981; Pratt, 1979).

The scale of segregation describes the degree to which the dispersing material
has been “spread out” by the action of turbulence. In the case of stream mixing it is
a measure of some typical average size of unmixed lumps of different feeds. As these
lumps are pulled, contorted and break into smaller ones the scale of segregation is
reduced. Quantitative definitions of L, can be constructed in terms of spatial correla-
tions of concentration fluctuations. Thus, if ¢’ is the fluctuation of the instantaneous
concentration of an inert species about its ensemble mean value {(c), Brodkey (1967,

1981), for example, defines for the case of uniform <c'2> the scale L, by

Lo= [ g (r) ar (4.2 -3)

where

;) = () (x + 1))
ge(r) %)

L, is an average over relatively large distances and thus it is a measure of the “large
scale breakup process”, “but not of the small scale diffusional process” (Brodkey, 1981).
Quantities like g, and L, are in general difficult to be calculated and various methods

have been proposed for their estimation (see, e.g., Brodkey, 1967; Patterson, 1981,
1983).
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The intensity of segregation describes the effect of molecular diffusion on the
mixing process. For the case of stream mixing it is basically a measure of the difference
in concentration between neighboring lumps of fluid particles of the mixture; for age
mixing it is defined as a measure of the difference in age of such lumps. Quantitative
definitions of I appear in the literature in a variety of different forms (some of which
are appropriate only for stream mixing and others only for age mixing). In the
perspective of the present work particularly useful is the definition of I as the local

intensity of fluctuations of an inert scalar

(4.2-14)

where <c' 2> and (c) refer to the same space-time point. The intensity I as defined in
(4.2-4) describes the quality of micromixing of an inert species with the background
environment, the latter seen as a single component. Such a definition is useful mainly
for cases of dominant stream mizing.(*) This quantity is a basic parameter of the
Turbulent Reactive Plume Model described in Chapter 2 and we devote Chapter 5
to its estimation in the case of steady atmospheric point source plumes.

If stream mixing is complete on a molecular scale (maximum mixedness mi-
cromixing), or if only inert tracer is present for all ensemble realizations, then <c’ 2> =
I =0. For steady state cases time averages are usually used as estimates of theoreti-
cal (ensemble) means. According to the definition (4.2-4) I will be equal to unity in
the particular case of complete segregation with equal probabilities of tracer existing
or not existing at the point and instant of measurement (in other words in cases with
local concentration intermattency equal to 1/2; see Chapter 5). A major disadvantage
of the definition (4.2-4) is the behavior of I for tracer concentrations tending to zero.
Thus in the plume case both nominator and denominator of (4.2-4) go to zero as

the plume boundaries are approached but the denominator decreases faster with I

tending to infinite values.

(*) Pratt (1979) defines the intensity of segregation through (4.2-4) exclusively for stream
mixing.
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Other definitions of I attempt to express the state of mixing of two particular
species A and B and thus use two stochastic concentration fields instead of the one

employed in definition (4.2-4), e.g.,

7= _fch) _,_ {cacs)

{ca)(eB) ~  {ca){en)

In this case I varies from zero, for a uniformly micromixed solution, to one, when A

(4.2 —5)

and B do not coexist anywhere. If non reacting A and B are mixed, and B is defined

as not — A then ¢/, = —cg, and (4.2-5) gives
2 1 2
o te) ()
{ca)(eB)  (ca)(cB)

which is very similar to (4.2-4). A possible advantage of (4.2-6) over (4.2-4) is that

(4.2 —6)

the denominator now does not go to zero as fast as in (4.2-4), since {c4) and (cp)
cannot both be simultaneously zero, and thus its change is more easily compensated

by changes in the nominator. For complete segregation I = 1 and

(eh?) = (eb) = (ca) (en)

Hence, for unpremixed reactants — where their initial variances of fluctuations

() _{5")  (en
T=n=0 =<c:2>o:‘<cA>o<cB>o 2=

which is another definition of I, holding only for stream mixing.
For the definition of intensity of segregation in cases of dominant age mixing
concentrations are viewed as functions of the species ages, that is the elapsed time

@ = t—1g since the species molecule was introduced in the flow field. So let ¢(c) be the
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instantaneous concentration at a point of tracer molecules that have age . The mean
of this variable at a point and instant can be expressed only as an ensemble average
and any estimate would be the average over, say, IV realizations of the dispersion

phenomenon, in each of which the random variable c¢(a) takes the value ¢i(a),7 =
1,...,N:
1
(eala)) = % D cila)
1=1
(Time averages are meaningless in this case.) The mean age of molecules at the point

of measurement will be

o — foma(c(a)) da
? fooo (c(a)) da

Then, the intensity of age segregation at a point is defined (see, e.g., Pratt, 1979) as

the ensemble average of variances of the ¢;(a)’s about (¢c(e)) at that point:

— ¥ Eﬁ—-l f:j [es() — (c(@))]? dex
[fo° (e(a)) da)?

(4.2 - 8)

The limits of the integral in the summation of (4.2-8) are the lower and upper values
of a for which (¢(a)) is non-zero.
Danckwerts (1958) defined a measure of age segregation for the reactor as a

whole, i.e. the ratio of the variance of point ages to the variance of molecule ages

throughout the reaction field

J=2% (4.2 - 9)
vara
where
vara = (a — {a))? | (4.2 - 10)

is the variance of the ages of all the molecules in the system ((@) is the mean age of

all molecules which are at some particular instant in the system), and

vare, = (ap — {a))? (4.2 —11)
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is the variance of mean ages at a point. In (4.2-10) averaging is meant over all
molecules of the system whereas in (4.2-11) is meant over all continuum points of the

system.

J is a global measure of the degree of molecular homogeneity in a system whereas
I (for both stream and age mixing) is a local measure. J and I, are measures only
of atom ages and do not consider the chemical identify of atoms; thus they have no

utility as measures of stream mixing effectiveness.

Another point that needs to be stressed here is that I {or I,) as well as L, are
ezpected local properties of the field; obviously in an actual random realization of the

field the mixing at a “point” will always correspond either to complete segregation

or to maximum mixedness.

4.2.5 Mixing in Atmospheric Plumes

In the dispersion of an atmospheric plume it is typically assumed that axial
diffusion is negligible and that recirculative convection phenomena do not take place.
In such a case, where advection by the mean wind field and lateral dispersion are the
only significant physical processes, the mixing of effluents with the background air
down to the molecular scale is accompanied by a decrease of I (for stream segregation)
from 1 to 0 in the downwind direction but I, and J will always be equal to 1. They
will be reduced from this value only if diffusion mixes efluent molecules of different

ages; however as long as there are advection effects they will assume non-zero values.

4.2.6 Interaction of Mixing and Chemical Reaction

The effect of the mixing state on the evolution of reactions taking place in the flow
field has already been stressed in the introduction of this chapter as well as in Chapter
1. Monomolecular reactions (that is with intrinsic linear kinetics) are affected only by
the macrostate and their temporal and spatial evolution depends only on the mean
concentration field of the reacting species. Thus, for lumped systems, the RTD alone

is adequate to describe the macroscopically averaged evolution of linearly reactive
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networks.

(a) The Effect of Rate Order

Reactions of order different from unity are in general affected by both the macro-
and micro- state of the system as well as by the initial state of the reactants (pre-
mixed or unpremixed) and the nature of the dominant mixing process (stream or age
mixing). It must also be clarified here that controlling macro- and micro- states of
evolving flow and reaction systems must always be identified for a stage of their evo-
lution that is relevant to the reactions of interest. Thus, if a reaction is very slow and
occurs in a flow system that evolves quickly towards equilibrium with respect to the
mixing processes, it will not be practically affected by the early mixing states — since
they correspond to times for which conversions are very close to zero. Hence, when
slow reactions take place in a homogeneous-at-equilibrium flow system it is usually
assumed that the latter has achieved its maximum mixedness microstate before the
chemical processes have advanced significantly. On the other hand instantaneous or
fast reactions are affected to a varying degree by the early mixing states of the system
since the intrinsic kinetics of the reactions, under conditions of equilibrium mixing,
would have produced non-negligible conversions at short times corresponding to these
states. The comparison of the different rates at which the chemical and mixing pro-
cesses evolve in a particular system and the subsequent characterization of a reaction
as slow or fast should be done on the basis of appropriate characteristic time scales
for the various processes. Such scales as well as nondimensional characteristic groups

were used in Chapter 1 and will be further discussed in section 4.4.1 of this chapter.

(b) The Effects of Initial Conditions
The different effects of molecular dispersion processes on reaction evolution and
their dependence on the initial condition of the reactants should also be mentioned
here. Thus, in the case of unpremized reactants, molecular diffusion is necessary to
bring the reactants together at the molecular level so that reaction occurs. In this

way it enhances the effective kinetic rate, for reactions of order greater than unity,
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by homogenizing the mixture. The action of the same phenomenon, i.e. molecular
diffusion, has opposite effects on the case of premized reactants. Its action homoge-
nizes the reactive mixture with inert dilutant (in the case of stream mixing) or with
older, converted, mixture (in the case of age mixing). As a result it lowers the levels
of concentration that determine the local kinetic rates and consequently the effective
rate of reactions of order greater than unity decreases too.

Similarly, random flow field (turbulent dispersion) effects also depend on the
initial state of the reactants. Although the action of both molecular and turbulent
diffusion typically results in “spreading” of material this is done at different levels,
that is at the molecular and the fluid particle level respectively. At the local fine
scale level they are actually antagonizing processes. Indeed, turbulence creates local
random concentration gradients and fluctuations which are dissipated by the action of
the molecular diffusion. The correlations of fluctuating concentrations will be positive
for premixed and negative for unpremixed species and therefore opposite effects on
the observed (“phenomenal”) rates are to be expected for these two cases.

In Table 4-3 we have summarized the different effects of molecular and turbulent
dispersion phenomena on single-phase reactions of order greater than unity for both
premixed and unpremixed reactants. (For reactions of order less than unity the

various effects mentioned are generally reversed).
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Table 4-3
Effect of Mixing on Reaction:
Dependence on Initial State of Reactants
(for Reaction Order Greater than Unity)
DISPERSION SINGLE/PREMIXED UN-PREMIXED
PHENOMENON SPECIES SPECIES
Molecular Diffusion ~ Depresses the overall rate; it homog- Enhances the overall rate by dissi-
enizes the reactive mixture with the pating concentration fluctuations; its
diluent rates are more critical than for pre-
mixed species since it is necessary to
bring the reactants together
Turbulence Creates positive correlations of con- Creates negative correlations of con-

(and stochastic

initial conditions)

centration fluctuations and enhances
the overallrate because at non-diluted
spots reaction takes place at faster

rates

centration fluctuations and depresses

the overall rate
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4.3 METHODOLOGIES
FOR THE DESCRIPTION OF TURBULENT REACTIVE SYSTEMS

As it was stated in Section 4.1, modeling methods for turbulent reacting systems

can be classified as
(a) Eulerian Statistical (or Global Fluid Mechanical or Mechanistic), and

(b) Structural, including Lagrangian Trajectory Schemes, Population Balance Meth-
ods and/or Models of Local Laminar Micro-structures.

Elements of both approaches can be present in a particular model formulation

at different organizational levels (Figure 4-1).

The choice and application of a particular method depends mainly on the di-
mensionality of the model that is assumed to describe satisfactorily the system under

study. (e.g., lumped in space or in time etc.).

4.3.1 Fundamental Concepts
of the (Global) Eulerian Statistical Approach

The Global Eulerian Approach is presented in relative detail in Sections 4.4 to 4.6,
with emphasis on formulations and results that are simple and directly applicable to
situations of interest in the present study. This systematic presentation also contains
a survey of methods that have appeared in the literature. In the present sub-section
we introduce this approach through a brief overview which, in combination with
the brief survey of Structural Approaches of the next sub-section, reveal the range,
complexity and diversity as well as the relationships of methods that have been used

to attack the problem of reactions in turbulent fields.

Global Eulerian Statistical Approaches are based on the Eulerian local and in-
stantaneous species transport equations, which incorporate reaction terms, perhaps
in combination with the respective equations for momentum and energy transport

(Section 4.4.1). These equations are assumed to describe globally (everywhere) the
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turbulent flow and reaction field, always at an instantaneous pointwise basis, and
therefore, with the appropriate initial and boundary conditions constitute the starting
point for model development. The stochastic nature of the flow field imposes the ne-
cessity for a statistical formulation that will provide information for the probabilistic
characteristics of the unknown concentration (and perhaps temperature etc.) fields.
The common procedure for constructing such a formulation is to derive, through
ensemble averaging of the stochastic transport equations, equations for the first (or
subsequently the higher order) moments of the unknown random quantities. As is
well known, such an equation for the n-th moment will necessarily contain as new
unknowns the correlations of fluctuations of stochastic variables of total order greater
than n. Nonlinear chemical kinetic rates are responsible for the appearance of more
such unknowns. Formulation of evolution equations for these new terms leads pro-
gressively to an infinite hierarchy which excludes the possibility of exact solutions
(Closure Problem). An approximation scheme must be introduced at some level to
account for the correlations of fluctuations. Such a scheme is called an n-th order
closure if it is incorporated as a correlation approximation in the governing equa-
tions for the n-th moments. We shall further call “chemical closure schemes” the
approximations of the correlations that arise because of nonlinear chemical rates to
distinguish from “ransport closure schemes” which account for the interaction of the
random velocity and transferred quantity fields. Once estimates of moments (either
joint or of a single random variable) are available, they can also be used as parameters
in probability density functions of appropriate (assumed) form, a practice that has
been extensively applied. In addition to moments or correlations modeling, a rela-
tively limited range of reactive turbulence studies employing spectral schemes (for
the reactive concentrations) has appeared in the literature (Section 4.5.3).

The alternative to deriving equations for the moments is to construct functional
evolution equations for the entire joint probability density function of the unknown
stochastic flelds, starting again from the local instantaneous transport equations. The

need of closure remains in these formulations too. Further, obtaining solutions for
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such equations is a very difficult task. Other, heuristic schemes for the construc-
tion of such pdf’s assume a certain artificial random picture of the structure of the
flow continuum and therefore actually belong in the Structural Approaches that are
discussed later.

The main modeling effort has been focused on 2nd order reactions of either pre-
mixed or unpremixed species. Various schemes have been formulated starting from
the basic Eulerian framework. Their complexity depends mainly on the relative rates
of chemical and dispersion processes. Thus, if the reaction rate is very slow we have
seen that complete micromixing is achieved before the reaction starts, and fluctua-
tion effects are negligible. Also, if the rate is muchk faster than the diffusion (case
of “infinite” reaction rate) the effect of turbulence is controlling but the analytical
presentation of the problem can still be simplified greatly. Indeed, equilibrium (for
reversible reactions), or a limiting stoichiometry (for irreversible reactions) are as-
sumed to be achieved instantaneously and hold pointwise wherever the reactants are
micromixed. So, an algebraic steady state relation between random concentrations
is available to reduce the complexity of the mathematical description. If the reaction
rate cannot be considered infinitely fast, but still is not slow enough for equilibrium
to be assumed with respect to mixing processes, the local instantaneous kinetics are
also in an evolving state which depends on both macro and micro-mixing conditions.
In this case further evolution equations for appropriate reaction progress variables
must be derived in the place of the stoichiometric or equilibrium relations.

For both the cases of finite and infinite rate chemistry the tasks of formulating
chemical and transport closure schemes have been in general pursued on two different
lines:

(a) The most tractable (and presently successful) approaches attempt a decou-
pling of mizing and reaction processes or indirect closure (Section 4.6). Thus some
conserved quantitites (“coserved scalars”), such as stoichiometric invariants of the
reactions or inert surrogate concentrations, are introduced to account separately for

the transport effects. The probabilistic characteristics of the spatial and temporal
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distributions of the conserved quantities (which of course are also random variables)
are determined with the use of appropriate Eulerian transport equations, incorporat-
ing closure schemes of first or higher order. The respective characteristics of reactive
species concentrations are related to them a posteriori. This step involves approxima-
tions equivalent to chemical closure in an indirect way. The above technique is more
natural and effective for infinite rate chemistry but certain extensions have appeared
for finite rate cases.

(b) The alternative is to invoke directly a chemical closure approximation either
using the moments or the joint pdf evolution equations formulations (Section 4.5).
The usual approach, employing moment transport equations is to relate correlations
resulting from nonlinear chemistry to lower order moments or correlations of the re-
active species concentrations. This can be done in principle either at the level of
governing equations for the first moments or at a higher level after forming first dy-
namic equations for the correlation and introducing estimates for the new unknowns.

The general organization of Eulerian methodologies is given schematically in

Figure 4-2 which is supplemented by Table 4-4.

4.3.2 Fundamental Concepts

of the Structural Approach
Under the general title of Structural Approaches we classify all those method-
ologies that instead of starting by developing governing equations for the entire dis-
tributed flow and reaction field, considering it as a continuum, they focus on small
scale entities which are assumed to be “structural units” of the field. The average be-
havior of these entities then determines locally or globally the evolution of the overall

system.

Many different theoretical treatments are based on the concept of structural

units. Their variation depends mainly
(i) on how “complex” they assume this structural unit is, and

(ii) on whether they attempt a detailed (spatially distributed) description of the flow
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Table 4-4
Eulerian Statistical Approaches:

Selected References

TYPE OF MODEL EXAMPLE

I Direct Chemical Closure
JA Moments Formulation
IA; Higher Order Closure McCarthy (1970)

JA; Reaction Order Closure Patterson (1981)

IB PDF Formulation

IB; A priori Assumption Bilger (1980b)
of PDF Form
IB; Structural Model Patterson (1973)

for PDF Construction
IB;s Evolution Equation for PDF

(a) Probability Functionals Petty and Reed (1972)
(b) Fine Grained Densities O’Brien (1980)
IC Spectral Formulations Lundgren (1985)

II Indirect Chemical Closure

II, Chemistry Free Closure

II, Infinite Rate Chemistry Toor (1962)
IT” Finite Rate Chemistry Bilger (1980a)
IIs Mixed Closure Lamb and Shu (1978)
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and reaction system or just develop estimates of macroscopic averages (a lumped

picture of the system).

In some cases the structural entity can be viewed as a Lagrangian material volume
following the flow which is large enough for the material fluxes through its boundaries
(that are in general distorted by flow shear) to be caused not only by molecular
diffusion but also by small eddies. In other cases this Lagrangian volume is considered
smaller than the smallest eddies of the field and therefore it becomes equivalent to
the (volume) fluid particle concept that was discussed in Section 4.2. Here we will
use the term fluid particle (either volume or property particle) for the latter case
and the term fluid lump or simply material volume for larger volumes. A fluid lump
will in general have at any instant a non-uniform, random, internal structure. On
the other hand a fluid particle is usually considered to possess completely uniform

internal structure.

(a) First Structural Level Models

We shall call approaches that adopt the concept of fluid particles, as described
above 1st structural level models. The widest class of models relevant to arbitrary
reaction and flow fields, the Population Balance Models, follows this line (see, e.g.,
Himmelblau and Bischoff, 1968; Froment and Bischoff, 1979, for introductions to
the method). A set of properties is used to identify the various fluid particles. In
a distributed description the properties include the three spatial coordinates of the
particle (“external coordinates”) plus properties that characterize the physicochemi-
cal state of the particle such as mass, volume, chemical composition, etc. (“internal
coordinates”). If continuum properties, such as species concentration, density, pres-
sure, temperature, etc., are to be used, they are taken to assume constant values over
the internal continuum of the fluid particle. Distribution functions denoting how a
population of fluid particles is distributed (or, more precisely, is expected to be dis-
tributed - see, e.g., Ramkrishna and Borwanker, 1973) in an extended coordinate or

phase space that incorporates both internal and external coordinates can be defined.
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Then evolution equations for these distribution functions in the extended space are
constructed. The difficult part here is to devise appropriate models for terms in the
equations that will account for mixing and reaction (that is molecular scale processes)
among the constituent species of fluid particles. For premixed species each fluid par-
ticle behaves initially (that is at states of complete segregation of the reactive mixture
and diluent system) as a batch reactor. Thus for very fast reactions the description
is very simple. For moderately fast reactions the effects of stream mixing can be in-
corporated into dilution factors that will in general be proportional to the age of the
particle. For unpremixed species however, some artificial mechanism of interaction

between fluid particles must be invented.

(al) Lumped (1 dimensional) Systems

Usually the Population Balance Equations are spatially averaged over control
volumes with a single entrance and exit, or at least over control surfaces. When
the only internal coordinate considered is the age of the fluid particles then these
macroscopically averaged population distribution functions reduce to the well known
residence time distributions or other similar concepts of the conventional chemical

reactor theory which is based on lumped models formulations and considers mainly

conditions of age mixing.

The original formulations of this method considered only extreme micromixing
conditions, i.e. either complete segregation (Danckwerts, 1958; Zwietering, 1959), or

maximum mixedness (Zwietering 1959), combined with arbitrary macromixing of the

lumped system.

Different microstates of a system can also be modeled within the fluid particle
framework. Thus one can assume that the fluid particles spend successive intervals of
their residence time in the field under conditions of different but definite degree of seg-
regation (e.g. they are completely segregated for an initial period and then they spend
the rest of their residence time under conditions of maximum mixedness); these are

the Many-Environments models (abbreviated as ME models). Two-Environment (see,
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e.g., Goto and Matsubara, 1975), Three-Environment, as well as Four-Environment
Models have appeared in the literature (see Mechta and Tarbell, 1983, for references).
Typically thse models are formulated for arbitrary macromixing (RTD) of the lumped

system.

Alternatively, the evolution of microstates, which takes place through the action
of molecular scale effects, can be approximated by processes of coalescence of fluid
particles with initial different composition which form fluid lumps that immediately
redisperse into new fluid particles of common composition. These are the Coalescence
and Redispersion models, often referred to as “c—t” or “c—d” models, that provide an
artificial but often useful model of molecular mixing that was originated in the work of
Curl (1963) (for examples see, e.g., Kattan and Adler, 1967; Evangelista et al., 1969;
Flagan and Appleton, 1974). (The analyses contained in these works are formulated
for macromixing corresponding to either cstr or pfr conditions; Kattan and Adler

(1972) presented a study for arbitrary macromixing).

Combinations of the ME and “c—r” approaches have also appeared in the litera-

ture. (see, e.g., Richie, 1980).

It must be stressed again that the main body of work that utilizes these ap-

proaches refers to systems that are at least partially lumped.

(a2) Multidimensional Models

Another approach, still at the 1st structural level, in principle appropriate to
describe spatially distributed systems, is to develop schemes for the prediction of
random Lagrangian trajectories of fluid particles. Such an approach would require
the estimation of joint particle transition probability density functions. Reaction
between unpremixed species will occur if two particles of the different feeds “collide”.
Of course in a formal Lagrangian description, individual particle trajectories cannot
cross each other at a given time instant because of continuity constraints and thus
a “collision” is interpreted as the approach of two trajectories at a micro-distance

small enough to permit molecular interaction. This methodology is in principle an
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extension of the Lagrangian theories for turbulent diffusion to nonlinearly reactive
systems; however it seems too complicated to be of practical use in the near future

(see also Shu, 1976; Lamb 1976)

(b) Second Structural Level Models

Models that consider as structural entities flutd lumps that have a non-uniform
internal structure and can also be distorted or broken by the action of turbulence can
be named 2nd structural level models. In such approaches the focus is on the progress
of reaction and molecular diffusion phenomena in a control volume small enough so
that all fluid motions inside it can be described in a deterministic manner. The major

interest in such approaches concerns unpremixed species reactions.

The simplest approaches in this area confine their control volume around the
“interface” of two fluid particles or fluid “patches” (or “slabs” or “drops” etc. ) of
different feeds and try to develop estimates and evolution patterns for the mizing
and reaction zone that is created at this interface based solely on the relative rates
of diffusion and reaction. In this category we can classify models such as Mao and
Toor’s (1970) “slab diffusion model,” Nauman’s (1975) “droplet diffusion model,”
David and Villermaux’ (1975) “interaction by exchange with the mean model,” Klein
et al.’s (1980) “droplet diffusion and erosion model,” etc. These approaches in general
assume that the macroscopic configuration of the system is simple enough so that

conclusions concerning conversions etc. for the entire system can be deduced from

the local results.

More complicated models consider effects of turbulent shear on local fluid volume
deformation on the evolution of the reaction zone. Some formulations try to model
“lamellar structures” of many reaction zones separated by unmixed material (see, e.g.
Ottino, 1980, 1982; Ou and Ranz 1983ab). A similar approach is examined in a series
of papers of both theoretical and experimental content by Bourne and coworkers
under the general title “Mixing and Fast Chemical Reaction” (see, e.g., Angst et al.,

1984 — see also Baldyga and Bourne, 1984). All these models use Eulerian molecular
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diffusion- reaction equations at the local scale where flow is laminar.

4.3.3 Comments
on the Interrelationships of the Models

An overall view of the range, diversity, and interrelationships of Eulerian and
Structural Approaches is given schematically in Figures 4-1, 4-2 and 4-3. These Fig-
ures are supplemented by Tables 4-4 and 4-5 which contain selective lists of references
arranged according to the general organizational scheme presented in these figures. It
should be clear that a particular model intended for practical application may contain
aspects of both methodologies at different levels of its structure. The various levels
of description of the mixing processes that are commom in chemical reactor theory
and their connection are shown schematically in Figure 4-4.

The Eulerian Approach is more straightforward (although it provides less insight
on the local evolution of mixing) than the Structural Approaches (which, nevertheless,
make extensive use of ad hoc assumptions and have been limited mainly to turbulent
fields of very simple average macroscopic configuration). Thus the Eulerian method-
ology seems more appropriate for describing complex, spatially varying, systems that
occur in environmental applications. For such studies the role of the structural ap-

proach can be supportive by providing estimation of certain parameters arising from

closure approximations.
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Table 4-5

CHAPTER 4

Lagrangian Statistical Approaches:

Selected References

TYPE OF MODEL

EXAMPLE

I Lumped Models
IA Macromixing via RTD’s

IB Micromixing Models

IB; Coalescence-Redispersion
IB2 Many Environments

IB,;,2 Combined M-E/C-R Models

JAB Combined Macro- and Micro-
Mixing

II Distributed Systems

IT' 1st Structural Level
II', Distributed Population Balances
II; Lagrangian Trajectories

II" 2nd Structural Level
I’} Single Reaction Zone

II3 Lamellar Structures

Naumann (1981)

Kattan and Adler (1967)
Mechta and Tarbell (1983)
Richie (1980)

Kattan and Adler (1972)

Himmelblau and Bischoff (1968)
Lamb (1976)

Bourne (1982)
Ou and Ranz (1983ab)
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1st level
of approximation:
IDEAL FLOW PLUG FLOW PERFECT MIXER
PATTERNS {max grad model) {macrobalance)
2nd level
of approximation:
ARBITRARY GENERAL TANKS DISPERSION COMBINED
MACROMIXING RTD IN SERIES PDE MODELS
CURVES MODELS MODELS
! 3rd level
{ of approximation:
EXTREME SEGREGATED FLOW MAX MIXEDNESS
MICROMIXING MODELS MODELS
4th level
of approximation:
ARBITRARY MANY COALESCENCE COMBINED DISPERSION
MICROMIXING ENVIRONMENT REDISPERSION M-E C-R OF HIGHER
MODELS MODELS MODELS MOMENTS
Figure 4-4

Levels of Description of Mixing

in Reactive Systems
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4.4 THE EULERIAN STATISTICAL APPROACH:
MODEL DEVELOPMENT

4.4.1 General Considerations
The starting point of the Eulerian Statistical or Global Fluid Mechanical Ap-
proach to turbulent reacting flows is the continuity equation for each of the species of
the reacting and diffusing mixture. This equation is assumed to hold instantaneously
and pointwise in the field. A general form for it is (see, e.g., Bird et al., 1960; Slattery,

1972) in the case of a binary mixture

a . "
—g’ti+v-(pAu)=—V~JA+u (44-1)

where u is the instantaneous mass average velocity of the mixture, p4 is the mass
density (or mass concentration) of the species A, j4 is the rate of molecular diffusion
of A (diffusive flux) with respect to u, and 74 in the rate of production (or dissipation)
of A by chemical reaction per unit volume expressed in terms of the mass densities
of A and of the species that participate in reaction with it. Equation (4.4-1) can of
course be written for the instantaneous value of molar concentration cg4; however,
in this case the molar average velocity must be used instead of the mass average
velocity and such an approach is not very convenient for systems of variable density
(Hill, 1976). The way it is stated in (4.4-1) species transport describes equally well
both compressible and incompressible flows. With the use of the mass fraction Y,

and assuming that Fick’s law for a binary mixture is valid
Ja=—-pD4sVYy

where Y4 is the mass fraction of A, p is the mixture density and D, is the molecular
diffusion coefficient of the species A with respect to the mixture (usually a strong

function of concentration), and if
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(a) either Y4 < 1, or
(b) the mass density p is uniform and constant in time

then we can write (4.4-1) as

‘9;—;‘+u.ch-v-(DAch) — 4 (4.4—2)

where the reaction rate r4 is expressed in terms of the molar concentration of the

reacting species. When D4 can be assumed constant (4.4-2) becomes

aaif'i-u'VcA—DAVch:TA (4.4—20.)

This form of species transport equation is strictly applicable to isothermal, constant-
pressure, binary mixtures of uncharged substances. For multicomponent mixtures j4
will depend upon the gradients of chemical potential of all species in the mixture as
well as on the temperature gradients.

For atmospheric applications one can usually assume that the overall mass den-
sity of the air and pollutant mixture is uniform and constant and that this mixture
is sufficiently dilute with respect to the relative species so that (4.4-2) is valid. Fur-
ther the heat of reaction and reaction induced density changes in these situations
are small enough so that the velocity u(x,t) and the temperature T'(x,t) fields can
be considered independent of the reaction, the latter field being practically uniform
for not very large spatial scales. Under such conditions the species transport equa-
tion is uncoupled from the simultaneous momentum and energy transport dynamics
and is adequately approximated by (4.4-2), always on a stochastic instantaneous-
pointwise basis (see, e.g., Seinfeld, 1975, Section 6.1.1). One can then proceed to
develop equations for the moments of concentration by ensemble averaging this equa-
tion (traditional approach) or follow statistical-mechanical approaches (see Sections
4.5.2, 4.5.3) to formulate functional equations for the probability density functions of
concentrations.

In a rather simplifying approach — which is more directly related to the perspec-

tive of environmental systems analysis and the present work — one can assume that
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the interaction between the random concentration and temperature fields takes place
only through the dependence of the chemical reaction rate term on the temperature
and the system is insensitive to other temperature and flow field interactions which
can be considered negligible. Such an approach can also be extended to treat effects
of fluctuations of solar radiation on the evolution of photochemical reactions. The
key modeling assumption is that all effects of gradients and turbulent fluctuations
of the temperature or the radiation field can be incorporated completely in spatially
varying and fluctuating chemical kinetic coefficients. Kewley (1978) employed such a
technique for a simplified study of the effect of temperature fluctuation on the value
of the photostationary state parameter in the ozone-nitrogen oxides photolytic cycle
in the atmosphere (see Chapter 3 and Appendix A3.3). His conclusion, specifically
for the NO; - Og system, was that, when the action of temperature variations is felt
only through the dependence of the kinetic coefficients on them, their effect can be

neglected, at least at a first approximation.

Thus, here we focus attention mainly on equation (4.4-2) for stochastic trans-
port and reaction with reaction terms depending practically only on concentrations
of the species. A set of equations of this type, with one corresponding to each reac-
tive species, together with the appropriate initial and boundary conditions, and given
the appropriate statistical characteristics of the independently varying velocity field
u(x,t), is assumed to describe completely the evolution of the system of concentra-
tions. The reaction term appearing in (4.4-2), r4(x,t), will be a local function of the
reactive species concentration where the latter are assumed instantaneous, random

point variables. The kinetic rate forms that have been most extensively studied up

to now are
ra = —ke? (4.4 — 3)
for a single-species reaction with n = 1 (linear kinetics) or n = 2, and

ra = —kcacp (4.4 — 4)
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for 2nd order reactions between two species A and B:
A+B-—P

Extension to reversible reactions with the reverse reaction also obeying one of the
above laws are straightforward and on the same lines as the irreversible reactions. (*)

The stochastic nature of equation (3.4-2) and therefore of the dependent variable
¢ is due to the stochastic nature of the turbulent velocity field. Another possible
source for randomness in ¢ may be due to the presence of statistical initial conditions;
however, we will not be concerned with this possibility here (see, however, Section
3.5.1 for some relevant references).

The stochastic nature of the governing Eulerian transport equations for disper-
sion with reaction leads to the same fundamental problems of analytical description
as inert dispersion. Thus a complete description of the random concentration fields
is possible only through the knowledge of the probability density functions of con-
centrations at each point in space and time. The standard alternative to seeking
these pdf’s is a description through equations for moments of the stochastic fields.
Such a procedure starts typically by introducing Reynolds type decomposition of the
random variables, that is u = (u) + u’,¢ = (c¢) + ¢/, in the equations and of course
leads to a moments closure problem, typical and unavoidable in turbulence theory.
(Eulerian formulations for evolution equations of the entire pdf have analogous clo-

sure problems). A major difference between describing inert and reactive species

(') One must keep in mind that relations like (4.4-3) and (4.4-4) do not necessarily reveal
the kinetic mechanism of the chemistry at the molecular level (see, e.g., Laidler, 1965;
Emmanuel and Knorre, 1973). They are phenomenological approximations of molecular
processes at the continuum level — exactly as the common transport equations of mass,
momentum and energy — and must always be interpreted in this way. Certain approxima-
tions may have been incorporated in such laws; thus, for example a bimolecular reaction
is often approximated by a linear (or pseudo-linear) kinetic law by use of the assumption
that the concentration of one of the reacting species is so large that is not practically
affected by the evolution of the reaction. However, despite this assumption the efects
of turbulent mixing on such a reaction will be similar to those for a higher order (non-
linear reaction) since, e.g., from unpremixed reactants dispersion processes are necessary
to bring the two species together in order to react although formally the rate seems to
depend on one reactant only.
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dispersion occurs however in the case of nonlinear chemical kinetic rates as it was dis-
cussed earlier in this chapter as well as in Chapter 1. Such a reaction rate produces
self-interaction, as in the Navier-Stokes equations, which leads to the appearance of
higher order correlation terms between the fluctuating parts of concentrations. This
makes the closure problem more complicated because of the presence of more and
higher order unknowns than in the case of inert dispersion.

Thus, for example, the rate r4 = —kcacp will induce, after ensemble averaging,
a second order correlation appearing in the dynamic equation for the first moment of
cA:

(ra) = —k{ca) (eB) — k{c/sc’5)

The magnitude, and hence the importance, of these higher order correlations which
describe the local homogeneity, or completeness of mixing, in the reaction field de-
pends in general on the relative intensity of all three phenomena that take place
simultaneously, that is the mixing processes (molecular and turbulent diffusion) and
the chemical reaction .

In order to estimate the relative importance of these phenomena one can proceed

directly from (4.4-2a) by transforming it into dimensionless form (see Hill, 1976)

Ztc + NrU-V.C - NpViC = Ng (4.4 —5)
Here .
t.=3, Ve=LVvV,c=2 =2
T Co Uo

where Lo, 7, uo, o, are characteristic length, time, turbulent velocity, and concen-
tration scales. A reaction rate scale rg is used to non-dimensionalize the chemistry.

Here N7, Np, Ng are dimensionless time ratios

NT = — (4.4 - 60,)
it

Np=—_ (4.4 — 6b)
tp

Np=—_ (4.4 — 6c)
tr
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with tr, tp, tr characteristic times scales of the turbulent dispersion, molecular
diffusion and chemical reaction processes. 7 must be set equal to one of them; then
the above time ratios become either equal to unity or to typical dimensionless groups
which are in use in reaction and dispersion analyses (Peclet and Damkohler numbers).

From the non-dimensionalization procedure the time scales have to be

_ Lo

ty = ” (4.4 — 8a)
L2

tp = 30 (4.4 — 8b)
co

tp = — 4.4 — 8¢

* Tl a5

However, special care is needed in interpreting the significance of this direct approach,
mainly as far as the choice of an appropriate L is concerned. This is due to the fact
that molecular and turbulent dispersion processes do not actually “compete” regard-
ing how fast they will reduce gradients of concentration over the same macroscopic
distance, say Lo. From that perspective one would expect that tp > t7 in general,
and of course, as is well known, molecular dispersion is usually neglected in inert
scalar turbulent transport studies. The importance of molecular diffusion is in pro-
ducing micromixed spots where reaction can occur; thus its rate seems to be relevant
mainly with respect to distances corresponding to neighboring random concentra-
tion differences maxima that occur in volumes locally macromixed but incompletely
micromixed. (*)

Considering these facts some researchers (see, e.g., Brodkey, 1975) assume that
it is more reasonable to define ¢7 in terms of some macroscopic turbulent length scale
Lo which is characteristic of the spatial persistence of mean gradients, and ¢p in

terms of another length scale £y typical of the spatial scales at which the effect of

(') For the problems‘ of interest in this study it is the comparison between this particular
rate and the reaction rate that is most important. In the closure “solution” adopted by
the TRPM the effects of molecular diffusion are actually incorporated in the phenomenal
conversion rate term of the governing equation and not in the transport term.
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molecular processes is felt directly (see, e.g., Bourne, 1982). Thus

tr = ﬂ (4.4 —Ta)
Uo
£2

tp = 50 (4.4 —7'0)
Co

tp = —— 44 —-T¢

R |T0| ( )

Thus a global description, as provided by (4.4-5) is essentially abandoned and the
analysis proceeds separately at two different scale levels, the local scale being viewed in
the spirit of the second level structural models of Section 4.3.2. However, even in this
approach, it is still in general difficult to decide which is the most appropriate choice
for the characteristic scales. A first problem is the selection of a proper turbulent
macro-length scale, especially in cases like the atmospheric plume where turbulence of
different scales interacts in different ways with the other processes. (See also Builtjes,

1983; Libby and Williams, 1980 - Section 1.16; Bilger, 1980, for relevant discussions).

A second problem is what the most appropriate scale £ should be. Typically one of

the microscales discussed in Section 4.2.2 (depending on the value of Sc) is assumed

to be a good choice. If we set, e.g., £o = £k, the Kolmogorov length microscale given
by (4.2-1), we obtain tp = tx where tx = (v/€) 1/2 is the Kolmogoroff time scale.

The three characteristic time scales introduced here are measures of the time
needed for

(i) achieving mean uniformity by turbulent mixing (t7),

(ii) achieving detailed local uniformity (i.e. complete micromixing) by molecular
diffusion, thus being a characteristic time for the decay of fluctuations of a scalar
field (¢p), and

(iii) of reaching chemical equilibrium or some limiting stoichiometry (tg).

The magnitude of the ratios of these time scales, given by the dimensionless
groups N1, Np, Ng after a choice of 7 has been made, characterizes the relative
rates of the processes corresponding to the nominator and denominator of the group.

Traditionally, the ratios of turbulent and molecular dispersion to chemical rates are
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named first and second type Damkdhler groups respectively and denoted as Daj, Dayj.

When there are no gradients in the mean concentration field then the single di-
mensionless ratio Vg defined for 7 = tp — in which case it is a second type Damkdohler
group Dayy, (*) also called mizing modulus by some authors (e.g., Bourne, 1982) —
is sufficient to determine the relative importance of the terms (c4) (cg) and (c’, ¢’g)
in the kinetic rate term (when we consider the reaction 4 + B — Products) and the
degree at which the evolution of the reactive system is determined by the intrinsic
kinetics or the rate of molecular diffusion. This was discussed in Chapter 1 where,
for small to moderate intensities of segregation, and for species that have molecular

diffusion coefficients of approximately the same magnitude D, it was shown how

* . 2
N = Day = ';_D _ k[{ch) ;'D(CB)] Z

can be suggested as a local estimate of the second Damkéhler group when appropriate
values of the concentration scales {(c}) and (c}) are used.

Finally, if we want to characterize a chemical reaction as slow or fast in an
arbitrary turbulent concentration field we must take into account the relative magni-
tude of both the first and second Damkdhler groups. If for example we assume that
tr > tp, then Daj > Daj; and the various regimes of chemical rates can be identified
as follows:

(a) Daj; < 1 : (infinitely) fast chemistry, mixing limited conversions,
(b) Da;; < 1 < Daj : moderately fast chemistry, interéction of turbulence and
chemical reaction,

(¢) Da; < 1: slow chermistry, no effects of turbulence on reaction rate.

4.4.3 Chemical Closure
As it has been already mentioned, Chemical Closure can be obtained by either

“direct” or “indirect” (i.e. mixing-reaction decoupling) methods; the different routes

(*) 1t is very interesting to note that the Damk&hler group is analogous to the Thiele modulus
in heterogeneous catalysis and to the Hatta number that appears in modeling absorption
with simultaneous reaction.

- 194 -



5N

FARY

BN

PART IB CHAPTER 4

followed by these approaches as well as their interrelationships were also briefly pre-
sented there. In the following sections we consider a more detailed development of
these methods, following basically the moments formulation and providing informa-
tion and references for the pdf formulation. The focus is on the methods that seem
more promising for applications from the viewpoint of justification, generality and
computational simplicity. The presentation here is confined mainly to practically
isothermal-constant density conditions, relevant to those of typical atmospheric sys-
tems. For discussions of the problems related to non-isothermal cases see, e.g., Libby

and Williams (1980}, Williams (1985).
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4.5 DIRECT CHEMICAL CLOSURE

4.5.1 Moments Formulation

Direct closure methods that employ moments approximations attempt to express
correlations of the type appearing in the last term of the r.h.s. of (1.3-8) in terms of
more tractable (i.e. more easily estimated) variables.

As introductory attempts towards a better understanding of the problem there
have been several studies of the most simple nonlinear rate case, i.e. that of a single
species—2nd order reaction evolving in a monodimensional system (e.g. a macroscop-
ically mixed volume or a pfr). The governing (stochastic) equation will be

%t‘i = —kc? (4.5-1)
The initial conditions may also be assumed stochastic.

O’Brien (1966) compared expressions for {c4(t)) and <cf42> obtained by aver-
aging the exact solutions of this equation for Gaussian initial conditions with the
predictions for these quantities computed using the third moment discard, quasinor-
mal, and direct interaction (DIA) approximations.(*) None of the approximations
behaved satisfactorily when the relative amplitude of initial fluctuations was large.

Later O’Brien (1968) recognized that since ¢4 is a nonnegative random variable, its

moments must satisfy Liapounov’s inequality (Uspensky, 1937):
(ch)" <) @) a>b>e20 (4.5-2)

where a,b,c are constants. As an illustration, the third central moment of ¢ A must

satisfy

(*) See, e.g., Leslie (1973) for details on the quasinormality assumption and the DIA.
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It is obvious that if one adopts, say, the third moment discard approximation,
<c:42> /(e 4)? must be < 1 at all times. To avoid unrealistic restrictions on the initial
fluctuations, O’Brien (1968) proposed a so—called “inequality preserving closure ap-
proximation” (IPCA) so that Liapunov’s inequality is always satisfied. O’Brien again
compared the predictions of his ICPA with the exact solutions of (4.5-1) and found
satisfactory agreement. O’Brien and Eng (1970) generalized the closure for reaction
order one to three, and O’Brien and Lin (1972) used a different ICPA for two-species
reaction with spatial dependence. Lee (1973) presented a “generalized direct interac-
tion approximation”. All of these approximations appeared to behave satisfactorily
when tested against (4.5-1). However, since each of these closure schemes was de-
veloped and tested mainly on a simple system, namely (4.5-1), there is no assurance
that they will hold when appllied to the full continuity equations.

There are relatively few direct closure schemes that have been applied to either
single- or multi-species reactions using the full continuity equations for reactive scalars
(i.e.(4.4-2)). A “brute force” approach was that of McCarthy (1970). By discarding
fifth order cumulants, he developed a hierarchy of (seventy eight) differential equations
for single-point concentration moments and microscales. |

Later Lin and O’Brien (1972) presented a closure theory which incorporates Lin’s
(1971) third order ICPA for the reaction terms and Lee’s (1966) modification of the
quasinormal approximation for the convective terms. Computations of the decay of
moments and spectra of A were carried out for various conditions. The decay of (ca)
and <cf42> was found to depend primarily on the second Damkéhler number (see
Section 4.4).

Hilst et al. (1973) combined a third order ICPA (different from that of Lin, 1971)
for the reaction term ¢/,¢’s with an “invariant model” (Donaldson and Rosenbaum,
1969) for the convection term. Hilst et al. then applied the model to the reaction
of O3 and NO emanating from four cross-wind freeway line sources and solved the
resulting 12 coupled differential equations numerically. Borghi (1974, 1979) has also

investigated the probability of higher order direct closure; he addresed non-isothermal
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problems with all the consequent complications.

Donaldson and Varma (1976) discussed second-order techniques for both trans-
port and chemical closure and applied them to idealized dispersion-reaction problems
(among which there was the case of point source dispersion-2nd order reactions with
the background). They further discussed issues related to more realistic situations.

Due to their mathematical complexity and the lack of experimental support, none
of the closure schemes mentioned above appears to be useful at this time in applica-
tions to chemical and enviromental engineering (in particular atmospheric pollution)
problems.

Some steps towards a more simple approach have been proposed by Patterson
(1981, 1983) whose closure suggestion is based on a “quasi-equilibrium” hypothesis (*)
that assumes irreversible chemistry so fast that segregation is complete everywhere,
all the time (I = 1), but the mixing rate still affects chemical conversions (obviously
through dilution of the reactants concentrations in their segregated volumes caused
by the diffusion of product and/or inert material).Consider the reaction A+ B — P
of unpremixed A and B, which is so fast that A and B remain totally segregated from

one another. Hence (from Section 4.2.4),
(e4?) = (") = (ca) (eB)
The rate of decrease of (c4) (cp) due to reaction may be expressed as follows:

- (PHealleoll) — (tea) tem) (252) (45 -3

<%)r= <3§9ct3))r (4.5 — 4)

when they are due only to chemistry.

because

(‘) Unfortunately Patterson’s assumptions are not always stated explicitly; he just proposes
the formulation we discuss here for “infinite rate irreversible kinetics.” However in such
a case mixing and reaction are naturally uncoupled and the closure problem is trivial
(see Section 4.6).
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We also have

;2
(2tear o _ [24”) ws—s)
at . at '
Patterson (1981, 1983) now sets
o{en’)) _ (2{eu?)
et | T\ e (4.5-6)

This means that the rate of dissipation of fluctuations of the reactive species due to
chemical processes alone is exactly the rate of dissipation caused by molecular diffu-
sion effects. This assumption expresses the fact that all reactive material coming to a
state of complete micromixing through molecular diffusion is immediately consumed

by chemical reaction. Hence, now in the place of the chemical rates expressions one

d(c,?
- (ca) -il- (cB) <B: > (45-17)

can put

m

The dissipation term can subsequently be modeled as in the case of inert scalars;
this subject is examined in detail in Chapter 5. In particular, Patterson (1981) uses
Corrsin’s (1964a) relations (see Chapter 5) for isotropic turbulent mixers, adopting a
scalar segregation length scale equal to that of the turbulence macroscale. This last
assumption is not justified in the cases of localized sources since the concentration
field cannot be assumed locally isotropic. This is a major limitation in Patterson’s
modeling schemes. Nevertheless, in spite of the various deficiencies of the complete
approach, we believe that the approximation just described is useful in showing how
one can introduce significant simplifications into a turbulent kinetic model, at least
for rather extreme conditions like those of “quasi-equilibrium”. Approximations at
a similar level, usually for very simple (1-dimensional) systems like the multijet plug

flow reactor etc., have been proposed by various investigators; see, e.g., Brodkey
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(1975) and Murthy (1975) for relevant references. One such approximation results
from Patterson’s (1973) simple “interdiffusion model” (essentially a simple micro-

structural model; see also Section 4.5.2 and Figure 4-5) which gives

(ehe) == (4°) 57 (45-8)
where
_ (CA>0
h= (¢B)g
and

_ Blea)(en) — (e4”)
Blea) (e) + (c4)

(A relation for <c£42c§3> can also be obtained but Patterson (1981) suggests setting
these correlations equal to zero.)

It must be emphasized that extensions of the above equations to more compli-
cated, 3-dimensional situations, localized sources e.t.c., common in environmental

problems, would be questionable.

4.5.2 PDF Formulation

Probability density schemes use the joint probability density function, or a re-
lated quantity (like a moments generating functional) of reactive species concen-
trations, and possibly of other random variables such as velocities, to describe the
reacting system. One-point or multi-point densities (or related functions) may be
the object of study depending on the complexity of the case modeled and on the de-
sired level of approximation. All statistical characteristics like first and higher order
moments and correlations of all kinds are then derived directly from the pdf.

A “degenerate” type of pdf formulation is that in which the pdf form is cho-
sen a priort on the basis of relevant experimental information (or just by guessing).
Then the parameters of the pdf have to be estimated (this being an auxilliary “clo-

sure step”). After that, any other statistic of the random field is evaluated from
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the pdf. Hence, since the parameters of the pdf (usually two or more) are directly
related to moments, this scheme actually reduces to moment closure (of appropriate
order) plus the primary closure assumption involved in the selection of the pdf, which
subsequently will determine higher order moments. Pdf’s that are marginally (and
jointly) Gaussian have been usually assumed in the past; see, e.g., Lockwood and
Naguib (1975). However such an assumption might be highly unrealistic, especially
for arbitrary types of mixing or localized injection of material (see, e.g., Hill, 1976).

Another type of pdf formulation is based on simple structural models that as-
sume special, simple, random or pseudo-random structures of the concentration fields.
This results in discrete (“spiked”) pdf’s for the reactive concentrations. For example
Patterson’s (1973) “interdiffusion model” assuming idealized concentration distribu-
tions of unpremixed species (Figure 4-5), produces a probability distribution that is
nonzero only for three values of the concentration (i.e. for zero, for the unpremixed
stream value and for a value corresponding to completely mixed feeds). Donaldson’s
(1975) “most typical eddy” model similarly postulated a joint pdf consisting of delta
functions at fixed locations in the composition space. The strengths of these delta
functions are parameters that require appropriate estimation. Much more elaborate
models have also been constructed on the basis of structural (Lagrangian) assump-
tions. Kuznetsov and Frost (1973) assumed that both the turbulence and the scalar
fields obey Langevin’s equations and proceeded from there to model their statistics.
Following a different line, Pope (1981) presented an approach that utilizes Monte
Carlo schemes of dispersion. His method conceptually stands between older struc-
tural approaches and the Eulerian models to be discussed next.

Pdf models that are really Eulerian in nature proceed from the fundamental
transport principles (e.g. equation (4.4-2)) to derive evolution equations not for the
moments and correlations of the reactive species concentrations but for their (joint)
probability density functions (possibly jointly with properties of the turbulence field).
Typically enough, the problem of turbulence will lead again, as in the moments case,

to an infinite hierarchy of equations and some kind of closure approximation will have
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Local Concentration Profiles

(and the associated concentration probabilities)

assumed in Patterson’s (1981, 1983) “Interdiffusion Model”
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to be invoked. The schemes for deriving the pdf evolution equations are provided by
modern Statistical Mechanics. In particular two different methods have been used in

the study of reactive turbulence.

The first is the method of probability functionals. Here, from an equation for the
probability density functional (Hopf, 1952), which is linear and closed, one deduces an
unclosed n-point pdf evolution equation. Lewis and Kraichnan (1962) first studied the
probability functional of the turbulent velocity field; (see also Leslie, 1973; Monin and
Yaglom 1975). Petty and Reed (1972), Ievlev (1973), Dopazo and O’Brien (1974) (see
also Dopazo and O’Brien, 1975, 1976) studied the analogous equations for reacting
species in turbulent flows. However, quoting O’Brien (1980), “there seems little

prospect that a broad range of applicable results can be obtained at present by such

a direct approach”.

The second method was introduced by Lundgren (1967) in modeling turbulent
velocity fields. It is sometimes called the “fine grained probability densities method”
and is simpler and more efficient (although not as general and straightforward) than
the previous one. It produces the pdf evolution equations directly from the partial
differential equations which define the conservation laws of the system. The hierarchy
of equations derived in this way is analogous to the BBGKY hierarchy in the kinetic
theory of gases (see, e.g., Reichl, 1981). Hill (1970) used a similar scheme to study
chemical reactions in turbulence and, after him, many researchers offered different
versions of this approach. Dopazo and O’Brien have published a series of papers
exploiting the method. Two of these publications are, at least formally, studies of
the turbulent reacting plume problem (Dopazo, 1976; O’Brien et al., 1976 — see also
Chapter 1). Relatively recently O’Brien (1980) reviewed the method and the closure

- approximations proposed by various authors; this review should be consulted for

further information on the subject. For another recent comprehensive review (but

with a more general perspective) on PDF methods for turbulent reactive flows see

Pope (1985).
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4.5.3 Spectral Formulations

Some researchers have tried to describe simple cases of reactive transport in
turbulence by means of spectral models for the concentration fields. Such models
have been developed exclusively for single spectes reactions, usually 1st order,and
most computations have been limited to the use of spectral transfer theories for the
universal equilibrium range. The second order irreversible reaction 4 + A — P
has been studied by Corrsin (1964b) and Dash (1973). They used the “Further
Generalized Onsager Model” (Corrsin, 1964b) and the Corrsin-Pao “Unified Spectral
Cascade Concept” (Pao, 1964).

Recently Lundgren (1985) constructed a model for the analytical estimation of
the form of the concentration spectrum of the product of a fast bimolecular chemical
reaction of the A + B — P type for wavenumbers greater than the Kolmogorov
wavenumber. This analysis considered unpremixed reactants in a stirred tank and
assumed a vortical microscale structure for the turbulent fluid motion in the tank.(*)

The Schmidt number was large and the volume of one of the reactants was small.
Under these conditions Lundgren found that the spectra first decrease like k~1 (i.e.
as for a passive scalar) and then increase linearly with wavenumber, peaking near the
Batchelor wave number from which it drops off like £~ for large wavenumbers, to
finally decay exponentially.

As far as relevant experimental information is concerned, Kewley et al. (1978)
have measured co-spectra of O3-NO; in photochemical smog.

Nevertheless, spectral methods do not seem at the moment very promising for
describing reactions under conditions relevant to environmental flows (although some
information from the spectral approaches can be useful in other modeling schemes).
For more information and references one may consult the reviews by Hill (1976) and

Bilger (1980) and Lundgren’s (1985) paper.

* The whole development of this model is based on an advanced microstructural approach

of the 2nd level (Section 4.3.2). However, since its major results concern concentration
spectra, we mention it here.
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4.6 INDIRECT CHEMICAL CLOSURE

4.6.1 Methods of Decoupling Mixing and Chemistry

Among the methods that use Equations (4.4-1) or (4.4-2) as a starting point,
the ones that have led up to now to more tractable final working schemes, at least
for not very complex physical situations, are based on techniques which decouple
and in some way “isolate” the analytical description of the phenomena of mixing
and chemical reaction. The underlying concept is rather old and early applications
appeared in theories of turbulent combustion (Burke and Schumann, 1928; Hawthorne
et al., 1949). The recent interest in the method originated mainly from the work of
Toor (1962) and his coworkers who considered infinitely fast reactions of nonpremixed
species in tubular flow reactors. A rather recent review of the approach for the case
of nonpremixed reactants, containing many details and references, is given by Bilger
(1980b); however some of the existing techniques are not discussed and thus certain
aspects and capabilities of the method are not revealed.

Consider for simplicity the case of an isothermal reaction system where all the
dependent (unknown) variables are members of the random concentration vector
¢ = (c1,¢2,...,¢n). (In case of non-isothermal systems more unknowns such as the
temperature, density etc., must also be included in the treatment.) Then the general
idea of the method, expressed in rather crude terms, consists of the two following
steps:

e First, introduce a set (vector) of quantities,

Cs = (€s;,Co55---5Cs,)
such that
LMe,, =0 (4.6 — 1)

*

holds for all 7 with the appropriate boundary and initial conditions. Here £M

is the overall mixing operator defined in in Chapter 1 [equation (1.3-4)]. The
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quantities c,, are thus conserved scalars. They are random quantities and their
evolution is governed by stochastic equations like (4.6-1).

e Second, construct a general relation of the form
¥ ({c),{c"),f(cs)) =0 (4.6 — 2)

which will connect the expected values of the members of the unknown reactive
species concentration vector ¢ to deterministic functions fi(c,) of the random
vector of conserved scalars ¢,. The vector function f will usually be a vector
of moments or pdf’s of the ¢,,’s. A vector of auzilliary variables with expected
value (c*) may also have to be introduced in this step and appear in the general
relation (4.6-2) depending on the complexity of the particular problem and the
details of the formulation. Construction of (4.6-2) will unavoidably (except in
the simplest case of irreversible infinite rate reaction) require closure hypotheses
regarding either higher order moments or pdf’s. If such hypotheses involve func-
tions of the conserved scalar only they will be referred to as pure conserved scalar
closure models. If the approximations involve functions of the conseved scalar
and reacting species they will be referred to as mized indirect closure models.

In this way the f;’s, which in general will be estimated by a procedure that starts
from equations (4.6-1), describe analytically the mixing state of the system, with
chemistry effects having been “removed” from it. Then relation (4.6-2) supplements
the description with the a posteriori consideration of these effects.

Both steps of the modeling procedure pose various questions. The obvious prob-
lems in the first step is how may conserved scalars must be introduced and how are
they chosen. The answers to these depend on basic characteristics of the system like
number and uniformity of feeds etc. The second step raises more difficult questions

directly connected to the complexity of the given problem and the level at which it

is wished to be modeled.
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4.6.2 Number and Forms of the Conserved Scalars

There has been a great variation in the choice of conserved scalars in the literature
(see, e.g., Bilger, 1980b, for a review and relevant references). There is also a certain
confusion with respect to the merits of various choices. In many circumstances the
conserved scalars are all linearly related so that solution for one yields all of the others.
The choice is then arbitrary up to a point, depending perhaps on requirements arising
from other points of the modeling procedure. Under other circumstances there may
be factors that directly favor the choice of one or more relative to the others. Such
factors include nonequal molecular diffusivity effects, the number and uniformity of

the reactant feeds and the complexity of the chemical mechanism.

A complete analysis of a general situation with an arbitrary number of feeds and
reactions is not available, neither it seems to be very useful, so we limit the present
discussion mainly to the case of two “feeds”, under conditions of dominant stream

mixing which is the situation relevant to the atmospheric plume problem.

A condition particularly useful for practical purposes, is that of equal (in practice
of the same order of magnitude) molecular diffusivities for all the species of the
system. In fact these molecular diffusivities are usually and considered negligible in
magnitude in comparison to turbulent dispersion and the above condition is satisfied
for almost all cases.(*) Then, since the transport properties are characteristic of the
flow field and not of the species that are present there, the number of conserved
scalars needed to describe the mixing state of the system is minimum. Thus, for two
feeds or streams of distinct but constant instial chemical identity the state of mixing
is uniquely determined by one conserved scalar variable. In general for n feeds n — 1
conserved scalar variables will be adequate to determine this state (Bilger, 1980b).

This results from the fact that all differentiation of different feeds arises from chemical

(*) Significant differences in molecular diffusivities of importance in practical applications
appear when light gases, as for example molecular hydrogen, are present. These species
have very high diffusivities relative to other species as, e.g., oxygen, nitrogen, etc. and
therefore rather strong differential diffusion source terms will appear in transport equa-
tions for linear combinations of concentrations incorporating them.
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identity only and not from difference in transport properties. Any more conserved
scalars that could be defined will be necessarily linearly dependent with the initial
ones under the condition that each feed is initially perfectly mixed. (If a feed is not
perfectly mixed then it can further be seen as composed by other, perfectly mixed
feeds). Bilger (1980b) states this condition as a requirement for uniformity, that is
“spatial and temporal constancy” of each feed, with respect to elemental composition
only, whereas, “each feed may be in several streams each of which may have any state
of chemical aggregation, e.g. it may be partially reacted or pyrolyzed”.

In general, conserved scalars can be chosen either from the stoichiometric in-
variants of the reaction under consideration or they can be “artificially conserved”
quantities like fictitious inert surrogate concentrations of the actual reactive species.
When they correspond to a stoichiometric invariant of the system they actually cor-
respond to a conserved quantity; the term conserved scalar in the literature has been
used almost exclusively for choices of this type.

In principle any quantity that is conserved during the reaction process can be
adopted as a conserved scalar. The “fundamental” conserved scalars are naturally
the atomic mass fractions Z; or the gram-atomic concentrations é; of the different
elements in the reactive system. If the number of elements is M then, since the total
mass in the system is constant, there are in general M — 1 independent variables.
Solution of the M — 1 equations of the type (4.6-1) yields the instantaneous and
mean (after ensemble averaging of the equations) elemental composition throughout
the field and this may be looked upon as a description of the mixing of the system.
Constancy of the composition of the feeds provides further relations between the
fundamental conserved scalars when differences in the molecular diffusivities of the
species are assumed negligible. Then the required number of equations of the type
(4.6-1) is reduced significantly.

In practice other conserved scalars have been used in both chemical engineering
and combustion applications and have already appeared in the modeling of photo-

chemical pollution and plume dispersion processes (Bilger, 1978; Kewley, 1978, 1980).
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In the case of a one-step reaction such as
A+mB —nP (4.6 — 3)

where the (molar) formation rates of A,B and P are related through

m n

one can define the so-called Shvab-Zeldovich coupling functions (see, e.g., Williams,

1085).

¢B
—eq— 2 465
§AB = €4 ™ ( a)
Cc
¢ap=ca+t— (4.6 — 5b)
¢Bp = ¢p + & (4.6 — 5¢)

or

{aB = m¢ap = mecy — B,

and so on, which are immediately seen to satisfy (4.6-1). Depending on the particular
application Favre averaged (see, e.g., Hinze, 1975) concentrations or mass fractions
can be used in the definitions (4.6-5) whereas other conserved scalars of the same
type can be formed using the sensible specific enthalpies of the feeds in the case of
highly exothermal reactions (see, e.g. Bilger, 1980b). Toor (1962, 1975) refers to the
same technique, which he applies for conditions of equal molecular diffusivities, as the
Burke-Schumann transformation of the reactive transport equation (see Burke and
Schumann, 1928).

With the assumption of equal molecular diffusivities the balance equation for
a conserved scalar becomes free of artificial source terms resulting from differential
diffusion effects and is exactly the same for all conserved scalars. In two-feed problems
the conserved scalars can be normalized in such a way that boundary conditions also

become identical (see, e.g., Bilger, 1979a). A normalized conserved scalar which can
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alone describe the mixing state of the system is the mizture fraction x which is defined

through (see, e.g., Toor, 1975; Bilger, 1979a).

_ Zi—Z,-(z) _ ¢—¢@
X= ZV_ 70~ (O —®

(4.6 — 6)

where superscripts (1) and (2) refer to the uniform composition of the two different
feeds, Z; is the mass fraction of any element and ¢ is any Shvab-Zeldovich function
of the type defined in (4.6-5).

Then, in feed (1) we have

X = 1 (4.6 - 70)
and in feed (2)

x=0 (4.6 —7b)

So, x can be physically interpreted as the mass (or mass per volume) fraction of the
material in the mixture at a given point and time instant which originated in feed
(1) with 1 — x the fraction originating in feed (2). Thus the result of turbulent and
molecular diffusion on the composition of the whole mixture at a point is the same as
if we took a quantity of mass x from feed (1) and mix it thoroughly with a quantity
of mass 1 — x of feed (2) and then let reaction occur. Of course the instantaneous x
is a random quantity like the quantities in terms of which it is defined.

Any conserved scalar ¢, is related to x and its initial values in the two separate

feeds denoted ny superscripts (1) and (2) through
es = xei + (1 - x)cl? (4.6 — 8)

(Necessary condition for the validity of this relation is the equality of molecular dif-
fusivities of all the reacting species of the system.)

Considering now the case where in feed (1)

€A =¢C4,, cB =0, §'£1'2=CA0 (4.6 — 9a)
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and in feed (2)

CB
¢4 =0, cg = CBy» S',(ng = _Wo (46 - gb)
we obtain the following expression for x

<= m{aB + CB, _ SAB +¢B, (4.6 — 10)
mca, +€B, MCa, +¢B,

in terms of the “pure stream” concentrations c4,, ¢B,. There will be a special value
of x, xs at which the two feed materials coexist at a point in exact stoichiometric

proportion. For the one step reaction (4.6-4), with conditions as in (4.6-9) we have

CBo
= 46 —11
Xa mc4, + cB, ( )

This value of x corresponds to ¢4 = 0 and has a particular significance. For a
one-step irreversible reaction with infinitely fast kinetics x = x, corresponds to the
random instantaneous location of the surface (of infinitesimal thickness) on which
chemical reaction is confined. For reversible multi-step reactions as well as for slower
chemistry this location will be an approximate center for the instantaneous reaction
zone. It is important to realize that, although all quantities in the r.h.s. of (4.6-11)
are deterministic, the position at which ¢4p = 0 and (4.6-10) reduces to (4.6-11) is
random at any time instant.

Another point to be mentioned here is that, for the two feeds case, the most
important of the quantities describing the degree of micromixing, that is the intensity

of segregation, can be defined e.g. through (4.2-4), in terms of any conserved scalar,

;i) (%)
(§AB)2 (X>2

The use of the concept of inert surrogates for conserved scalars is examined in more

e.g.

detail in section 4.6.3.

Now we proceed in examining the various possible model formulations in terms
of conserved scalars for the two cases of infinite and finite rate chemical kinetics, as

outlined in Figure 4-2.
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4.6.3 Pure Conserved Scalar Closure

(a) The Case of Infinite Rate Chemical Kinetics

As it has already been mentioned, when chemical processes can be assumed
much faster than the dispersion processes the problem of reactive turbulence model-
ing simplifies greatly. Indeed, if we focus on the problem of nonpremixed reactants(*)
contained in two feeds of uniform composition and assume that all species have ap-
proximately equal molecular diffusivities it is easy to see that in the limit of infinitely
fast chemistry all concentrations are instantaneously related to the value of an ar-
bitrarily chosen conserved scalar. Actually in this case the statistics not only of
concentrations but of all thermodynamic variables of the system should be obtain-
able from sufficient knowledge of the statistics of that scalar. This is the situation
where pure conserved scalar closure is either not needed at all or is directly applicable
and most useful.

(al) Irreversible Reaction

In the case of one-step irreversible reactions (e.g. reaction (4.6-3) in the forward
direction only) we will have cg = 0 when x > x, and ¢4 = 0 when X < Xs whereas

both c4 and c¢p will be zero when x = x,. Thus the following functional relationships

will hold:

gABS.O, XSXs:CA=0
¢B = n¢aB = né(xs — X) (4.6 — 12a)

cp = méx(1— x,) (4.6 — 12)

¢aB 20, X > Xs:¢a=¢aB =¢(Xs — X)
¢cg=0 (4.6 — 13a)

cp =méx,s (1 —x) (4.6 — 13d)

* Of course a case of premixed reactants which react with infinitely fast rate cannot exist.
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where
F=cay+ Do = ZAo (4.6 — 14)
n Xs

So we see how, at a given point in the flow, the value of x at any particular instant

defines the complete composition of the reactive mixture. Hence the problem for the

steady state actually reduces to solving
LMy=0

with (known) appropriate boundary conditions.Since all the above relations for c4,
¢B, cp are linear in x, there is no difficulty in relating the expected values {c4), (cB),

(cp) to (x) which is obtained from the solution of
(LMx) = LY (x)=0 (4.6 — 15)
where £M is an approximation of (ﬂM ) resulting from a closure approximation.

(a2) Reversible Reaction
If the infinitely fast reaction is reversible (with both forward and backward rates
being very fast compared to the mixing processes) ¢4 and c¢p will both have nonzero

values not only for x = x, but for a range of values from x~ to x+ where
1>2xt>x,>x" >0

The values x+, x~ define the local boundaries of the reaction zone . The reaction
zone, for infinitely fast chemistry is exactly that local portion of the space of the entire
system which is micromixed (not necessarily uniformly). This will be called the mized
zone . The composition of the mixture at any given point of the reaction zone, at any
particular instant, will be the same as that if the mixture were isolated and allowed
to come to chemical equilibrium. The species concentrations will again be unique
functions of the conserved scalar. However, now the existing relations for chemical
equilibrium replace limiting stoichiometry equations for the attainment of mathemat-

ical closure of the system of unknown concentrations. These equilibrium relations,
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in contrast to limiting stoichiometry, will be in general nonlinear and this creates a
chemical closure problem as higher order statistical characteristics of the concerved
scalar ¢, (X, ¢aB, or whatever else) are needed for the estimation of the expected
values of species concentrations. Even for many species and multiple reactions the
fast chemistry assumption implies that these will be effectively equilibrated. There
will be sufficient equilibrium constants available to enable calculations of species con-
centrations in terms, e.g., of elemental composition which is directly related to any

conserved scalar. Thus a set of relations of the form
¢ = c§(cs) (4.6 — 16)

where the superscript e denotes equilibrium and ¢, is the random conserved scalar will
be available. (In general not only for concentration but also for other thermodynamic
variables such as temperature and density ). These ¢ s are exactly the functions
fi that appear in the general equation (4.6-2). So now the problem is actually how,
starting from (4.4-16), to relate the {c;)’s to the field {c,), the latter being governed

by LM (c,) = O with the appropriate boundary conditions. As an example let us

consider again the reaction

A+BYp (4.6 — 17)
ks
which obeys the kinetic law
R=kchcB——kbcP (4.6—18)

When equilibrium is assumed we have R = 0 and

CACEHB kf
=1 = 4.6 —
o K ( 19)

This equation can be combined with two relations of the type (4.6-5) and with (4.6-6)
to give ¢4, ¢B, cp in terms of K and x. Indeed, in terms of the mixture fraction we

have, for the conditions described in (4.4-23), and if there is no P in the feed streams,
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the following relations:

CA_CB=(CA0+CB0)X_CB0 (4.6—-200.)

€A+ Cp =CaX (4.6—206)

which, together with (4.6-19), provide a closed system for c4, cp, cp. So, for this

case we obtain

K
ca= (—B + \/5) (4.6 — 21)
with
A=< (4.6 — 22a)
=% _
B=1+cp, —(ca, +¢B,) X (4.6 — 22b)
D=B? —4%x (4.6 — 22¢)

The nonlinearity of these instantaneous relations between concentrations and the con-
served scalar does not allow a direct connection of expected values of these quantities
by ensemble averaging. Thus one has to invoke an appropriate closure scheme either

(a) by introducing the probability density function of the conserved scalar ¢,, p(c,)

in which case expected values of the ¢;’s will be obtained through

<ci) = /;oo Cf (ca)ﬁ(ca) des (4.6 - 23)

(“pdf closure”)
or

(b) by ensemble averaging (4.6-16) (i.e.(4.6-21)) so that after some algebraic manip-

ulations one has
{es) = f ({ea),(€3),...) (4.6 — 24)

This is an equation involving only the first few moments of the conserved scalar.

(“moment closure”).
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So, the chemical closure problem is reduced to the estimation of moments and/or
pdf’s of the conserved scalar; thus it has been “transferred” to the closure problem
appearing in the governing equations for these quantities.

For the particular system under study, i.e. reaction (4.6-17), the function ¢4 (c,)
is given directly by (4.6-21) with x = ¢,. The function f can also be obtained from
(4.6-21) after ensemble averaging of both sides, but this is not a trivial task. For this
reason practically all models that have followed the methodology described in this
sub-section adopt equation (4.6-23) for their calculations.

Now, when pdf closure is employed, the problem is very similar to that of pdf
modeling for reactive species (Section 4.5.2). However there is a definite advantage
in dealing with pdf’s of conserved scalars because their form and properties are much
more predictable for a great variety of flow geometries. Both experimental as well
as theoretical information is much more extensive for pdf’s of inert scalars than for
reactive ones; the same is true for moments also, whose study, e.g., through Eulerian
transport equations, is not complicated by chemical interaction terms.

The pdf of the conserved scalar can be studied theoretically exactly on the lines
described in Section 4.5.2, i.e., either by formulation of pdf evolution equations (meth-
ods of probability functionally and of fine grained densities), or by employing some
structural model that describes mixing in terms of processes that are experienced by
the fluid particles (see, e.g., Bilger, 1979b; O’Brien, 1980; Pope, 1981; Kollmann and
Janicka, 1982). However, the most common approach in applications is the a priori
assumption of the probability density form.

In combustion applications (where the method of this sub-section has been ap-
plied most extensively in many variations) there has been a variety of choices for the
conserved scalar pdf. Modelers have used more commonly “Clipped Gaussian” (or
semi-Gaussian: see Chapter 5) pdf’s (see, e.g., Bilger, 1980b) and Beta function dis-
tributions; other choices that have also appeared in the literature are the sinusoidal
and the triangular pdf’s (see Murthy, 1975, and Effersberg and Peters, 1983, for

relevant references). In air pollution problems, where the method has been applied
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by Bilger (1978) and Kewley (1978, 1980), the semi-Gaussian pdf has been the only
choice. In particular Kewley (1978) assumed a semi-Gaussian distribution for the
plume concentration field; this also incorporates the effect of intermittency too (see
Chapter 5). However, since only the “internal” concentration fluctuations, and not
the ones caused by meandering, affect chemical reactions in plumes, it seems that such
a distribution might not be the most appropriate choice. Actually, as it has been dis-
cussed in the previous chapters, it is needed to disengage instantaneous dispersion and
meandering effects and to attempt statistical description of each process separately.
A lognormal (or some other positively skewed distribution) seems to be a reasonable
choice for the instantaneous concentrations when viewed in a frame that follows the
random meandering of the centerline. This and related problems are discussed in
more detail in Chapter 5 where the moment estimation problem (specifically: second
moment estimation for atmospheric plumes) is studied extensively; hence the present

section is complemented by Chapter 5.

(b) The Case of Finite Rate Chemical Kinetics

For moderately fast reactions pure conserved scalar closure is not directly pos-
sible, i.e. immediatelly from the equations (4.6-23), (4.6-24). Indeed now there are
no algebraic equilibrium equations to relate in a simple fashion reactive species and
conserved scalar concentrations. Hence mixed (or “multivariable”) closure of the type
to be described in the next subsection is more appropriate. However there have been
attempts to extent pure conserved scalar closure to finite rate kinetics by viewing the
actual solution of the problem as a “departure” (or perturbation) from the equilib-
rium solution that is obtained for infinite rate kinetics. Thus, perturbations of the
conserved scalar are introduced as extra variables (Bilger 1979b, 1980ab). Until now,

however, the method has been applied in a very limited number of situations.

- 217 -



o

PART IB CHAPTER 4

4.6.3 Mixed Indirect Closure
and the Concentration Field Splitting Technique

Application of the conserved scalar approach to finite rate chemistry requires the
introduction of extra variables, besides the conserved scalars. These will be affected
by the chemistry. One of the reactive species concentrations can be such a variable
but it would be better if one could introduce other parameters easier to treat when
closure complications appear. Indeed, closure assumptions now have to accommodate
these “auxilliary” variables too. So, the underlying idea of the method is to define
them in a way such that their correlations (or perhaps cross—correlations with the
conserved scalar) are easily predictable for the given problem.

Bilger (1980) discusses these “Two—Variables” approaches. Another model that
has implicitly followed this line is that of Shu (1976), Lamb (1976), and Lamb and
Shu (1978). The fundamental idea of this model was chosen in the present Reacting
Plume study to assess the effects of turbulent fluctuations on the kinetics because of
its generality, its relative simplicity (especially for the plume case), and its significant
potential for future improvement.

The formulation (and hence the subsequent application) of the model in the
works of Shu and Lamb is limited (because of the restrictive use of spatial aver-
aging over the mixed zone and other similarly defined volumes) to one-dimensional
problems (where variation of mean concentrations takes place only in one, spatial or
temporal, dimension). Furthermore, some results of their analysis, relevant to local
microstructures, are not directly extendable to a global statistical picture of the flow.
In Chapter 2 we presented a new, generalized, formulation of this model that holds
for pointwise defined instantaneous concentrations in arbitrary, non uniform, fields,
and formally deals with the global statistical equations. In the following we further
discuss this formulation, presenting the proofs that were omitted in Chapter 2 and
commenting on various points of the modeling procedure. The exposition of Chapter
2 is essentially repeated here to facilitate reading of the next paragraphs by avoid-

ing repeated references to definitions and equations in Chapter 2; furthermore, in
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this way the present chapter provides a self-contained treatment of chemical closure
modeling.
The “Concentration Field Splitting” Method

Let ¢l (x,t), ck(x,t) be the hypothetical concentrations of A and B that would
exist at the space-time point (x,t) if they did not react with each other but, still, were
transported in the field by exactly the same molecular and convective mechanisms.
(A point to note here is that the present analysis implicitly assumes that differences in
the molecular diffusivities of the various species under consideration are negligible.)
We can define these new variables as concentrations of fictitious inert surrogates
AT, BT, of A and B. The quantities c4, cp, as well as ¢k, ¢k at any (x,t) are
random variables. The approach proposed in this work accounts for the possible
states of mixing of the two species by viewing each of the above concentration fields
not only as random functions of (x,t) but also as functionals of the entire ensembles
of realizations of the inert surrogate of their “mixing partners” at (x,t). Indeed, the
possible micromixing states of, say, A or A’ at any point depend on the probabilistic
characteristics of the conentration of B! at this point. Thus c4(x,t) and ¢ (x,t)

are functionals of the ensemble of all possible values of ¢k (x,t). This dependence

is expressed formally through the following integral representation of each random

realization of, say, c4(x,1):

A (%t [cp(x,t) =75]) = [cA (x,8;]cB]) 6 (B — ch(x,t)) dek, (4.6 — 25q)

en (% ti[ch(x,8) =4)) = [ en (x,5[ch]) 6 (14 — ch(x,8)) dely (4.6 —255)
ci (x,t;[ch(x,t) =5]) = [ (x,t;[ch]) 6 (vE — ch(x,t)) dek (4.6 — 25¢)

ek (x,ti[eh(x,8) = v41) = [ cb (x,65[L]) 6 (v — el 1)) del (46— 254)

Then, defining

a=ca(x,t[cp =0]), a=ca(xtch=75+#0) (4.6 — 26q)

- 219 -



=

PART IB CHAPTER 4

b=cp (x,t;[ch =0]), B=cp(xt[c] =~} #0]) (4.6 — 26b)
of = (x,t5[ch = 0]), af =} (x,55ch =7 #0)) (4.6 - 26¢)
b = ok (x,5[ck = 0]), 87 = ek (x,t5[ch = 74 #0]) (4.6 - 264)
one has
ca(x,t) = a(x,t) + a(x,1)

ch(x,t) = al (x,t) + af(x,1)

cB(x,t) = b(x,t) + B(x,1)

cL(x,t) = b1 (x,t) + BI(x,t)
One advantage of this representation (“concentration field splitting”) lies in the fact
that the evolution of a, af, a, a!, etc., or, more precisely, of their statistical mo-
ments and correlations, is more easily predictable than of the rectant concentrations
themselves. Thus it should be is in general easier to make reasonable assumptions
(based on physical insight and simplified pictures of the mixing process) involving
these statistical quantities. Another advantage of the integral functional formulation,
that will be used in the following, is that it allows a particularly useful interpretation
of ensemble averages:

e Means and correlations of of ¢4, ¢, a, ¢/, a, af are the result of integration
over the domain of 75 (after the definitions (4.6-25) and (4.6-26) have been
introduced).

e Means and correlations of of cg, ¢k, b, b%, B, B! are the result of integration
over the domain of vJ (after the definitions (4.6-25) and (4.6-26) have been
introduced).

e Cross-correlations of ¢4 and ¢p, @ and b, etc., are obtained by simultaneous
integration over the domains of both wi and '7113.

Definitions (4.6-25abed) and the ensemble averaged form of (1.3-3)

EMCS =rg (13-—3)
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(where S stands for A, B or P) can be used to deduce relations between correlations

of c4,cpanda, a, b, B8, al, af, ! and B!. Thus, when the forward reaction in (1.3-1)
A+B=P (4.6 — 1)

dominates the backward (a situation which is expected to be valid in the near field

of plume dispersion), and therefore
(k1)) > (eale,t)), (ch(x,8)) > (calx, 1))
(cﬂ(x,t)cIB (x,t)) > (ca(x,t)en(x,t))
(ch(x,t)eB(x,t)) > (ca(x,t)en(x,t))
(ca(x,t)ch(x,t)) > (ca(x,t)cn(x,t))
it can be shown that
{cacs) = (aB), (cheh) = (a'pT) (4.6 — 27)

and
(a(x,8)) = (a'(x,8)), (b(x,2)) = (b (x,1)) (4.6 — 28)

Indeed (4.6-27) is a direct consequence of the definitions (4.6-26abcd) and the

inequalities listed above, from which one can deduce the independence relations
(ab) = (ae) = (apB) = (ba) = (bB) (4.6 —27q)
(a’dT) = (alal) = (a?B') = (b'aT) = (b18T) (4.6 — 270)
Relations (4.6-28) are proved as follows: Consider the equations
LMa+a)=cach

LMa'+al)=0
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Multiplying the first of these equations by a, the second by a! and then using the
definitions (4.4-25) and integrating both equations over the entire domain of 4§, one

finds that
(a£™ a) = — (a£M o)

(a? LM oT) = — (al LM of)

Now since a and « and a! and af are statistically independent (see relations (4.6-
27ab), the same will be true for arbitrary linear transformations of these quantities.
Thus the r.h.s. of both the above equations is zero and therefore (realizing also that
initial conditions, which can actually be incorporated in the mixing operator anyway,
are identical for a and a’ and for « and af) one has (a(x,t)) = (af(x,t)), and
similarly (b(x,t)) = (b!(x,¢))

Now, we introduce the mizing functions

M., = {c1c2) I (efed)

" {en) {ea)” e e (ed)

which allow formulation of the expression:

(4.6 — 29)

©w
HALB

{cacs) = Myp [(ca) — (1= na) (ch)] [{eB) — (1 - pp) (ch)] (4.6 —30)

where ¢ is the reaction parameter and u4, up are the mizing parameters defined by

p = ﬁ?ﬂ (4.6 — 31)
ap
and .
I
pa = é—;}, up = %%% (4.6 — 32)

In the special case of macroscopically uniformly mixed fields u4 and up represent
the fractions of the total quantities of the fictitious inert surrogates of A and B
that coexist in completely micromixed volumes. For arbitrarily macromixed feeds
these fractions can be interpreted as the probabilities for a structural unit of A or B

respectively to be in a micromixed state at a given space-time point.
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Equation (4.6-30) is an exact relation. It expresses the unknown correlation in
terms of mean values of the unknowns and in terms of parameters all of which except
one, namely ¢, depend only on inert scalar mixing. The problem of course has been
transformed in the problem of estimation of these parameters.

A substantial simplification of (4.6-30) can be obtained in the special case where
{(cB(x,0)) is nonzero for all x. This situation (which of course contains the case of
an ideally point source of A in a background containing B) means that <cIB(x,t)>
is also nonzero for all x and ¢ and therefore (a-’(x, t)) =0, (aI(x,t)> = <cf4(x,t)>,
which give ug = 1 for all (x,t) (notice, however, that g # 1 in general). As
it was discussed in Chapter 2 this result can be utilized for a typical atmospheric
plume where the emissions of A (e.g. NO) have near source concentrations that are
orders of magnitude higher than those of B (e.g. O3z). The fact {c4) > (cp) near
source implies that it will make no observable difference to the conversions of A if
it were assumed that B is perfectly mixed with the emissions at the source, at a
concentration equal to that of the ambient (in agreement with the idealization of the
point source). Indeed, in such a case it does not make an appreciable difference to
the overall evolution of reaction and the observed conversions of A if A and B are
initially premixed or unpremixed. This further means that fine scale segregation of
A and B inside the plume is induced mainly by the chemical reaction. This simplifies
the analysis considerably, especially if it is assumed that the reaction is not infinitely
fast and a local steady state with microscopic coexistence of A and B prevails. It is

then possible using intuitive arguments to suggest that

LB , andM‘,I‘le

T ML,
are acceptable closure assumptions. It can further be shown, by examining the sig-
nificance of the participating correlations under the aforementioned conditions, that
© should be of order one. This is corroborated by the analysis of Shu (1976) and
Lamb and Shu (1978) the main results of which are summarized in Appendix A4.1.

Hence, to recapitulate, in the case of a point release of 4 into an initially uniform
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field of B, and under the assumption that the concentrations of A, at least near
the plume axis, are much greater than the background concentration of B, we can

approximate the term (cacp) = (ca) (cB) + (c/sc'5) by
(cacB) ~ M4 {ca){cB) + (1 —Mi,) (k) (ca) (4.6 — 33)

where M1, is a function characteristic of the state of inert species mixing in the
plume.
Alternatively,if we consider the fluctuations cﬂ' about (¢4, ), M] 4 can be written

as M1, =1+ I where

I1\2
I = (of)2 where (afi)2 =
(ch)

is the relative intensity of concentration fluctuations of an inert emitted species in a

((cg)") (4.6 — 34)

plume (i.e. the intensity of stream segregation).

Introducing I} we can write (4.6-33) as

{cacs) = (ca) (eB) + I {ca) ((ck) — (cB)) (4.6 — 35)

which of course is equivalent to

(¢4 cp) = I4((ch) — (cB))
The overall mean rate of reaction (1.3-1) at a point will therefore be

(R) = R =ky(ca) (cB) — ksI} (ca) ({c5) — (cB)) — kb {cp) (4.6 — 36)

Hence, all the effects of turbulence (or incomplete mixing) on the chemical ki-
netics have been incorporated in the second term of (4.6-36) which involves
(i) the mean concentrations of the reactive species {c4), (cg) which are the actual
unknown variables we want to estimate,

(ii) the mean concentrations of inert surrogate species (c%), (c%), and
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(iii) the variance of fluctuations of an inert emitted species.

The form of the second term of (4.6-36) suggests that it can be interpreted as
representing a fictitious reverse reaction that retards the overall kinetic scheme in
comparison to perfectly mixed conditions. The kinetic constant k¢I% of this “reac-
tion” will depend on position in the plume because I shows a strong dependence on
axial and radial position. The “reactants” participating in this fictitious step are 4
and the portion of B at any point that has already undergone chemical reaction (and
therefore it is not actually available at that point). Thus the term (cL) — (cp) can
be viewed as representing “occupied” or “de-activated” B molecules that participate
in a backward reaction with A, with a kinetic constant that is determined by the
intensity of turbulent fluctuations. The behavior of this term is determined by the

relative magnitude of I}, (c4) and ({(c§) — (cm)).
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4.7 CONCLUSIONS

The major conclusions arising from the preceding exposition of the nature of
the reactive turbulence problem and of the methods used to study it, in connection
to the interest of the present study in environmental systems, and, in particular,

atmospheric plumes are:

(I) While the problem is extremely complex, it is sufficiently important to warrant

a quantitative description.

(II) There is not currently a specific method available that is definitely superior to
the others with respect to applicability in distributed parameters environmental

systems.

The spectrum of methods dealing with simultaneous mixing and reaction is very
wide, ranging from very simple, empirical or heuristic, models that simulate highly
idealized systems, to very complex mathematical formulations that either require
excessive computational effort to produce results, or, simply, cannot give results in
usable form. Somewhere in the middle lie the schemes on which we focused here:
Eulerian Statistical Formulations with approximations for transport closure that are

as simple as possible to keep the number of required partial differential equations to

a minimum.

As far as chemical closure is concerned we believe that indirect methods (Section
4.6) are presently at a better state of development (if there is a demand for simplicity)
and seem to be able to utilize more extensive and reliable theoretical and experimental
information (regarding behavior of inert scalars in turbulence) than that available for
direct methods (regarding the respective behavior of reactive species). So they should
be preferred in practical modeling procedures. Mixed closure methods are needed to
treat finite rate kinetics; however it is not always clear when the chemistry (especially

for reversible reactions) must be characterized not slow but also not “infinite”. Future
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research should insist on identifying the importance of the differences in predictions
between simple and well developed models for infinite rate chemistry and the more
complex models formulated for finite rate chemistry.

Specifically for atmospheric plumes, and if the reaction rate is assumed finite,
the Concentration Splitting model described in subsection 4.6.3 shold be considered
an appropriate choice at the present time, in terms of generality and computational
simplicity (especially when integrated with the concept of the local phenomenal ez-
tent of reaction defined in Chapter 2). Its disadvantage is the limited knowledge on
the behavior of its parameters. From this perspective other models may be better
supported for special conditions. For example, if the chemistry is infinitely fast, there
might be more reliable information for a model utilizing equations (4.6-21), (4.6-23).
In any case, current research promises substantial improvement of the prediction
of scalar behavior in turbulence and in particular in atmospheric boundary layers.
Closure schemes should be constructed in such a way as to utilize the most reliable

information available regarding this behavior.
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APPENDIX A4.1

Discussion
of the Chemical Closure Assumptions

in the Concentration Field Splitting Method

Chemical closure through the Concentration Field Splitting Method reduces to the estimation of

the mixing and reaction parameters p4, up and @ which are defined as

_{a) _

B = , pB = (44.1-1)
RCH {ck)
and
M.p
p= (A4.1-2
M, )

respectively. In the following we discuss these parameters.

The Mizing Parameters
Estimation of the mixing parameters in the case of a point source of A in a background containing
B (or in the more realistic case of a finite-dimensions source of A emitting at concentrations much
higher than those of the ambient concentrations of B) is particularly simple. The reason for this
simplicity is that the point character of the source and the finite speed at which the dispersion process
actually proceeds (despite the parabolic character of the approximate models that are used to describe
the latter process) produce a situation in which A is always and everywhere perfectly mixed (locally)

with B while B is not perfectly mixed with A. Thus
<a,I > =0
everywhere, and
(af) ={ck)
which implies that
pa=1 (A4.1 - 3)

everywhere. Furthermore, in typical environmental applications the ambient concentrations of the
species (pollutants) under consideration have very small absolute magnitudes. Thus it is reasonable,

for all practical situations, to assume that the local values of the concentration of the inert surrogate
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B are not affected by the presence of Af and, furthermore, that ¢k is almost deterministic. This

leads directly to the relations

Mip=M=1 (A4.1 — 4a)
and

On the other hand, straightforward calculations produce the following general expression for ug:

() Ma (1 i)+
_ My Mz, T HOTEA (441 5)
BB = masi M1, '
N
(A similar expression holds for p4).
Introduction of equations (A4.1-3) and (A4.1-4ab) into (A4.1-5) gives

MI

pp = o (A4.1-8)
Mi,

In deriving the final operational turbulent kinetics equations for use with the TRPM (Chapters

2 and 4) it was assumed that
(44.1-17)
that is, equivalently

MI ~1 (A4.1-38)

which is essentially the closure approzimation for the mizing parameters (all previous approxima-
tions being derived directly from the idealized model of the system under consideration). Intuitively,
(A4.1-7) can be justified by realizing that the probability of B! “molecule” to be surrounded by Af
“molecules” at a given point is inversely proportional to the intensity of segregation of A7 at that
point. This approximation is also consistent with the general closure assumption of Lamb and Shu
(1978) for unpremixed reactants in a monodimensional (i-e. macroscopically homogeneous} system,

which essentially states that

pa = KB = 7=

(The above closure approximation is basically justified on the basis of the asymptotic behavior of an
unpremixed system where g4, up — 1 as t — co and #a=up =0att=0).

A more formal evaluation of (A4.1-8) can in principle be performed on the basis of a micro-
structural model that considers the local dynamics of a typical (laminar) mixing zone at a point

(at a scale comparable to Batchelor’s microscale Lp—see Chapter 4), whose properties are assumed
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representative of the average properties of the entire ensemble of such mixing zones at this point.
In this approach the macroscopic variations of the mean concentration field (as well as of the higher
concentration moments) should be incorporated in the local model in the form of appropriate initial
and boundary conditions. However, although sophisticated microstructural models, that examine in
detail the mechanics of fluid mixing at the level of the microscale, have been appearing in recent years
(see, e.g., Ou et al., 1985), incorporation of the aforementioned side conditions in these models to
produce results relevant to the point source problem does not seem to be an easy task. Nevertheless,
some insight can be gained by the simple analysis of Shu (1976, p.33) who considered a simple B
- A - B configuration of “three adjacent layers” of unpremixed species (initially uniform), of total
thickness 245, and approximated M at a given time instant by the “spatial” average of cf‘cﬂ over
a single cross-section of thickness 2¢. In this extremely idealized situation e} is governed by the
one-dimensional molecular diffusion equation

ek _ p, %%k
at 47 552

with initial condition

I T 1
I = (cA)o’ lf—ng <z < 3ip;
¢4 (2,0) {0, otherwise.

Shu (1976) found M, to increase from a value of 1.0 at t = 0 to a maximum value of about 2.0 at
t = 0.1£5 /Dy, and then to decay to a final value of 1.0 within a period of about 104/ /D,. These
calculations, although steming from a very simplified picture of the mixing process, corroborate the
assumption that M, is in general of order unity (and actually is very close to unity for most of the
time).

Finally, before closing the discussion of the mixing parameters, it is interesting to examine their
form in a case of very simple mixing conditions, i.e. that corresponding to a tubular chemical reactor
in which the reactants are injected through alternate jets clustered over the entire cross-sectional
area of one end of the tube. For reactors of this type Toor (1969) predicted, and later confirmed by
measurements, that reactants that are fed into the reactor in stoichiometric ratio and that subsequently

undergo extremely fast reactions satisfy

4 4
(eac) = (cheh)

(where ensemble averages are approximated by spatial averages over a cross-section of the reactor).
This result provides a means of estimating # = u4 = pp for this reactor: If one makes the pseudo-

steady state assumption @ (¢4} /0t = 0, which is valid for very fast reactions, one finds that

(ca) = (1—p) {ch)
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{eB) = (1 - ) {(ch)

(where the analysis of Chapter 4 has been applied). Utilizing the fact that for very fast reactions

pa=pp=1-—1/1- Mg

{af) ~ 0, one finally obtains

The Reaction Parameter

The reaction parameter ¢ (equation (A4.1-2)) was assumed approximately equal to 1.0 in the
point-source plume case. Although this again is essentially a closure approximation it seems sufficiently
supported by the analysis of simplified cases.

The complete governing equation for ¢ can be formulated directly from the transport-rection
balances for the various random fields, for a given reaction system such as A + B — P, but it is too
complicated to allow direct deduction of (even qualitative) conclusions for the behavior of . However,
some insight can be gained if one considers some idealized situations. Thus, if one assumes a situation
where the mean concentration fields are spatially uniform (although this contradicts the pont source
concept), as it was done by Lamb and Shu (1978), and that (8) Da = Dp = D, (b) the reaction

between A and B is irreversible (with rate constant k), then the w-equation reduces to

100 _ Ly 4 any_pleBlatB) |, (aT8D)
por ~ DA ) k= byt

()52 ()2

(3255
Ox; 0x;
A= am
<8aI 8ﬂ’>
I _ 32,‘ B:c.-
4 =T

If one further assumes that (af) and (8) are in a pseudo-steady state, which is a reasonable approxi-

with

mation when a high-source/low-ambient concentrations (of A and B respectively) situation exists, one

13p 1 1\a{a") (1, 138"
e =4 (G- ) T+ (5 ) 2o

Initially the reactants A and B are totally segregated with A uniformly distributed in the source

obtains

emissions and B uniformly distributed in the ambient. However, suppose that B were present in the
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source stream of A in the same concentration as in the ambient fluid. In this case we have (¢ ) = (af)

and (afpT) = (af) (B?) and (during the time when (af) > (B")) the above equation simplifies to

m=zm(_<ﬂ)=

at 9t \ (alph)

with initial consition

v(0)=1.0

Hence
p(t)=1.0

Considering a typical industrial stack and taking into account the great disparity in the initial
levels of (source) NO and (ambient) O, whether ozone is actually present in the source stream has
virtually no affect on the evolution of NO concentrations in the plume. One concludes, therefore, that

® = 11is in general a reasonable approximation as long as (aI ) > (ﬁI ) initially, and the reaction is

fast, i.e.

(o) (p7) > 2450

Since the same result applies when the reaction is very slow (this can be seen easily by taking the limit
k — 0), Lamb and Shu (1978) assumed that in point source problems in general, p = 1.

We will now finish this discussion of the estimation of ¢ by summarizing the conclusions from a
simple one-dimensional microstructural model of the mixing-reaction process, studied by Shu (1978),
that is similar to the laminar layers model for the estimation of the mixing parameters that was
discussed earlier. This model is directly relevant to the multijet plug flow reactor case, that was
also mentioned earlier, where, due to the reactor design, the regions of mixed and unmixed reactants
compose a mosaic of small, intermingling patches of fluid which, statistically speaking, have identical
concentration probability distributions (at any fixed axial distance from the reactor head), and give
rise to time mean reactant concentrations that are uniform over any plane normal to the reactor axis.

Shu (1976) assumed that D4 = Dp = D, that the turbulent fluid has kinematic viscosity v, and
that turbulent energy is being dissipated at a rate ¢ . Since at scales large compared to £g, concen-
tration gradients are too weak to cause significant mixing Shu futher assumed that the generation of
the (laminar) mixed zone is confined primarily to those portions of the fluid where the reactant sheet
thickness is comparable to £5 . Thus he developed expressions for @ based on a one-dimensional model
of slugs of reactant fluids of initial widths and separations of the order of {p immersed in an inert

convecting fluid.
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Since the expansion of reactant fluid sheets of widths smaller than or comparable to £ is domi-

nated by molecular diffusion, the governing equations are assumed to be

dc d%¢
B = Daggs ~keacs
BcB _ ach k
ot B Tggz ~ eA°B
% _ 32c£
3t A 9z2
ok _ p, 2ch
at B 522

with initial and boundary conditions

o Ao, —3lB <z < —1tp;
ca (2,0) =cy (2,0) {0, otherwise;

o [P o << it
CB (xs 0) Cp (Z, 0) {0’ otherwise;

ca(z,t)=cp(z,t)=0 z— +co

Shu (1976) solved these equations numerically for a variety of values of feed ratio ¢ = By/Ao,

diffusivity ratio Dp/Da, and local (molecular) Damkdhler number

k22, Ay
D,

and from the results estimated ¢ using spatial (cross-section) averages. Although these estimates
were based on reactant and surrogate concentrations averaged over only the two patches of material
considered, rather than an entire reactor cross-section as is implicit in the mean values used in the
definition of p, the uniformity mentioned earlier of the concentration probability distributions within
the multijet reactor renders the patch and the actual cross-sectional averages equal.

The calculations showed that for the case of stoichiometric feed (e = 1) and given &, @ drops
quickly from unity to some minimum value (the higher the « the lower this value) until t* = ¢tD4 /€2 ~
10%. However, when ¢ # 1 the value of © returns to unity more quickly, but not, as it turns out, until
the reactant in the smaller quantity has been almost completely consumed. Thus, during the period
within which most of the chemical reaction occurs, ¢ has its minimum value p;;. Lamb and Shu
(1978) found from the analysis of the above numerical results that the dependence of ¢, on the
variables Ao, By, D4, Dp is described by the simple expression

1
1+ 0.16x

Pmin =
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where
_ kl% min [Ao, Bo]
"~ max[D,, Dg]

Shu (1978) also performed numerical calculations for the case of premixed reactants, in a com-
pletely analogous manner, considering the case of a single fluid pulse containing uniform concentrations
of both A and B. The temporal behavior of ¢ in this case was found to show two distinct patterns:
For the case of g = 1, ¢ stays at unity for all times; but for the cases where ¢ # 1, p decays to the

same minimum value as its nonpremixed counterpart.
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CHAPTER 5

Chapter 5 contains

* an introduction to the problem of modeling concentration fluctuations in point
source plumes, including a brief literature survey,

* an exposition of the fundamental concepts and problems of a meandering frame
Eulerian Approach for modeling the instantaneous “internal” plume concentra-

tion variance, with extensive discussion of the self similarity concept,

e a detailed discussion of the new “Localized Production of Fluctuations Method,”

that is the first choice for use with the TRPM.
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CHAPTER 5

INSTANTANEOUS CONCENTRATION FLUCTUATIONS
IN POINT SOURCE PLUMES

5.1 INTRODUCTION

Prediction of expected concentration fluctuation levels in point-source plumes is
a key need that arises in many problems related to turbulent dispersion. Typical

examples are:

(i) Estimation of quantitative measures for the inherent uncertainty in models of

contaminant dispersion in the environment.

This uncertainty is associated with the stochastic nature of the dispersion phe-
nomenon per se, as opposed to the potentially reducible uncertainty associated with
errors and approximations in the model structure and the input data (Fox, 1984;
Weil, 1985). Inherent uncertainty has to be taken into account for the proper in-
terpretation of model calculations for the mean field, e.g., in their comparison with
available measured values and in connection with the definition and evaluation of air

quality standards.

Indeed, consider for example Figure 3-2a, where short-term averages of plume
concentrations measured at source height at various distances downwind in a wind
tunnel and reported by Builtjes (1981), are plotted versus the non-dimensionalized
cross-wind distance y/o,. These are compared to calculations from a Gaussian plume

model that utilizes parameters directly measured from the plume. At first sight, it
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would seem that the model predictions are not very relevant to the actual physical
phenomenon. However, this is not true: the model calculations correspond to ensem-
ble averages and not individual realizations of the random concentration field. When
averages of the measurements corresponding roughly at the same y/oy (actually lying
between 0.9ys, and 1.1y/o,) are taken as approximations of the respective ensemble
values and compared against the model calculations (Figure 3-2b) the performance of
the model should be considered satisfactory. Another, even more illustrating, exam-
ple of the same nature is given in Figure 5-1 which is based on measurements reported
in Csanady (1973).

(i) Modeling situations concerned with the ezceedance of some critical value by a

rapidly changing concentration, even for very short times.

Examples of such situations are the accidental release of toxic or fammable gases
(Chatwin, 1982), and the creation of smoke screens for defense purposes (Ohmstede
et al., 1982). In these cases probabilistic properties of the concentration field are
essential in assessing the environmental impact.

(iii) Modeling nonlinear processes (usually chemical) within plumes.

For processes such as reactions with nonlinear kinetics, the effective conversion
rates may depend critically on the level and spatial distribution of turbulent con-
centration fluctuations (i.e., on the quality or completeness of the fine scale mixing
locally inside the instantaneous plume boundaries). The local intensity of segrega-
tion I, involving the variance of fine scale “in plume” fluctuations, can be used to
quantify the interaction of mixing and chemistry for second order chemical reactions.

In dealing with such problems it is essential to discern the spatial scales associated
with a given portion of the fluctuations spectrum as they may affect the phenomenon
under study and its consequenses in qualitatively very different ways. Thus turbulent
eddies that at a given location are of size comparable to and larger than the local
plume dimensions result in its irregular meandering, i.e., a bulk motion (Figure 5-
2). Only eddies smaller than these are responsible for the mixing process inside

the instantaneous plume boundaries, the state of which is described by the level
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of instantaneous “internal” concentration fluctuations and thus associated with the
processes of relative or two—particle dispersion. Thus, for example, rates of nonlinear
chemical reactions between plume constituents and the ambient are affected solely by
the internal fine scale fluctuations. On the other hand, assessing physiological effects
from the varying concentration of a pollutant requires taking into account the total
variability of the concentration field at the fixed receptor location.

A complete description of the fluctuations problem would require knowledge of
the entire probability density of random concentrations, and in the case of interact-
ing concentration fields (e.g. of chemically reacting species) of their joint probability
densities. Probability densities at every point in a fixed frame of reference, and the
associated statistics, reflect the total randomness of the concentration field which re-
sults from absolute diffusion; the respective densities and statistics for every point in
a frame of reference whose origin follows the random meandering motion of the center
of mass of an instantaneous release, or the instantaneous centerline of a continuous
plume, reflect internal randomness due to relative dispersion. To deduce fixed frame
probability densities and non-central moments of concentrations from the correspond-
ing moving frame quantities one has to calculate the convolution of the latter with
the spatial position probability density of the meandering origin of the moving frame
(see Appendix A5.1 and Csanady, 1973, Chapters IV and VII).

Although the problem of calculating probability densities of concentration fields
(of both conserved and reactive scalars) has been pursued through a variety of ap-
proaches (see, e.g., Hill, 1976; O’Brien, 1980; Pope, 1982, 1985) its complexity does
not presently allow for simple, practical models. (see also Chapter 4). A more feasible
goal is the prediction of the second moment <c2>, or of the variance o2, of the random
instantaneous concentration field, which, combined with the knowledge of the mean
{c), would provide a description adequate for most applications. Theoretical study
of the 02 dynamics originated in the works of Corrsin (1952, 1964) and Batchelor
(1959). Major results concerning 02 behavior in different turbulent flows are summa-

rized in various sources (e.g. Brodkey, 1967; Monin and Yaglom, 1971, 1975; Hinze,
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Figure 5-1
Instantaneous and average plume concentration profiles
measured relative to the plume centerline

(Source: Csanady, 1966, 1973)
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in,

S

Figure 5-2

Cross-flow profiles of expected instantaneous concentrations in a fixed and in a

meandering frame of reference ({¢) and (cgr) respectively) at the same downwind

)

distance z; and at various times t,t,,.. .»tn, for a plume that is assumed to be
transferred essentially intact by meandering. “Actual” instantaneous realizations of
the concentration field ¢ = cp, are also presented. (Note that (c) is the long term time

average of the ensemble average (cp) at a fixed position.)
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1975; Townsend, 1976; Bradshaw, 1978; Fischer et al., 1979). As far as dispersion in
ambient turbulence is concerned, the three major approaches commonly employed in
modeling the mean field, i.e. Eulerian and Lagrangian statistical methods (including
Langevin models) and dimensional (similarity) analysis have also been used, often
combined, to study the variance of concentration fields resulting from passive releases
(*) from strongly localized sources (Csanady, 1967, 1973; Thomas, 1979; Chatwin and
Sullivan, 1979a, 1980; Robins and Fackrell, 1979; Durbin, 1980, 1982; Sawford, 1982,
1983, 1985; Sykes et al., 1984; Hanna, 1984 — see also Weil, 1985). A separate class
of models originated with Gifford’s (1959) fluctuating plume concept which considers
fluctuations produced exclusively by the bulk meandering of the plume (“external”
fluctuations), neglecting all randomness inside the instantaneous plume boundaries,
and therefore calculates what we will call here the “external” variance. Various appli-
cations and extensions of this concept (Scriven, 1965; Diamante et al., 1976; Fackrell
and Robins, 1982b) as well as related formulations (Venkatram, 1979; Hanna, 1984)
have appeared in the literature. (A new generalization of the traditional fluctuating
plume model so that it accounts ezplicitly for both the external and internal fluctu-
ations is presented in Appendix A5.3 of the present chapter). Finally, the empirical
models of Wilson et al. (1982ab) provide expressions for o2 constructed so as to
fit wind tunnel data where meandering was recognized as the dominant source of

observed fluctuations (Fackrell and Robins, 1982ab).

Available data of short term fluctuation statistics for pure plumes from point
sources, that is for dispersion governed ezclusively by the ambient turbulence, are
basically relevant to the total variance observed at a fixed point, and include mainly
wind tunnel (Fackrell, 1978, 1980; Fackrell and Robins, 1981, 1982ab; Robins, 1978,
1979; Gad El Hak and Morton, 1979) and atmospheric field (Gosline, 1952; Barry,
1971; Ramsdell and Hinds, 1971; Kimura et al., 1981; Jones, 1983; Sawford et al.,

(*) The term “passive” is used in the sense that this release does not affect the

properties of the ambient flow.
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1985) measurements. Data on in-plume fluctuations, definitely more scarce, are also

available, both from laboratory flows with insignificant meandering (Becker et al.,

1966), and field measurements performed relevant to the meandering center of mass of

continuousoceanic (Murthy and Csanady, 1971; Sullivan, 1971; Chatwin and Sullivan,

1979b) and atmospheric (Eidsvik, 1980) plumes. Finally, some related information
can be found in the substantial fluid-mechanical literature on momentum jets and

buoyant plumes (List, 1982; Gebhard et al., 1984).

The brief preceding analysis is complemented by Appendix A5.2 where one can
find some further comments and explanations relevant to trhe works surveyed here.

Some rather general results on plume fluctuations, based mainly on data from
pipe flows and from wind tunnels simulating either homogeneous and isotropic tur-
bulence or the neutral atmospheric boundary layer are:

(i) Production of both internal and external fluctuations is in general significant
only close to the source.

(ii) Meandering is typically the most significant source of fluctuations in the near field
whereas internal fluctuations prevail far downwind. Further analysis suggests
that the external intensity of fluctuations at the centerline (i.e. the ratio of
external variance to the square of the mean concentration) reaches a maximum at
some distance downwind and decays towards zero thereafter; the corresponding
internal intensity does not decay but seems to to tend towards some constant
nonzero value.

(iii) Intermittency effects are very significant in the near field and are typically asso-
ciated with meandering; relative concentration measurements are very often free
of intermittency effects in the “core” of the instantaneous plume.

(iv) The variance of atmospheric concentrations from ground level sources exhibits
profiles that are approximately self-similar in both the horizontal and vertical
directions; further, it does not show significant dependence on source size.

(v) The same variance for elevated sources initially shows dependence on source size

that is eventually “forgotten.” Horizontal profiles of o2 are again approximately
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self-similar, but vertical profiles show a more complicated behavior: In the im-
mediate vicinity of the source they are self-similar until the effect of the ground is
felt. In the far field, however, these profiles become again self-similar, resembling

those of a ground level source.

(vi) A power law concentration probability density resulting from Gifford’s fluctu-
ating plume model seems to provide the best fit to experimentally measured
densities of fixed frame data in most cases. Log-normal densities offer the best

fit to sets of non-intermittent data.

However, in spite of the recent advances in analyzing and understanding the
problem of turbulent concentration fluctuations, a simple, rational scheme for rou-
tine calculation of the instantaneous internal plume concentration variance, for use
in conjunction with the Gaussian relative dispersion formulas for the instantaneous
mean field does not exist. Such a model can, in fact, be viewed as a counterpart of
Gifford’s (1959) model for the ezternal variance. The development of such a practi-
cal scheme is the object of this work. We start from the Eulerian transport equation
for 02, modeling the processes described by its components in terms of known or
measurable quantities, and continuing with an analysis of potential simplifications of
the mathematical description through self-similarity assumptions for 2. The infor-
mation that is systematized in this way is subsequently utilized in the formulation of
a new model that provides simple, closed form, analytical expressions for o2 for the

case of a continuous passive “point” release of material in a turbulent field of uniform

mean velocity.

Before proceeding to the development of models for the concentration variance
it is useful to recall the effects of averaging time on this property (compare also with
the discussion of Appendix A6.1). When the ensemble under study contains time
averages and not instantaneous values, the variance for this ensemble o2 r is directly

related to the variance of instantaneous concentrations o2 through (see, e.g., Tennekes
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and Lumley, 1972, p. 212)

2 _203/T _r —
e = 7 ] (1 T)p(r)dr (5.1 — 1a)

where T is the averaging time and p(r) is the temporal auto-correlation coefficient of
concentration fluctuations, commonly assumed of exponential form. For large times,
i.e. for T > T, where T* is the integral time scale of the correlation, (5.1-1a) reduces

to the approximate relation

orr =202 (5.1 —18)

(Note that in the special case of exponential correlation of concentration fluctuations

(5.1-1b) is valid under the milder restriction (7'/7*)% > 1.)
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5.2 THE TRANSPORT EQUATION
FOR THE CONCENTRATION VARIANCE

5.2.1 General Considerations

Eulerian models for the estimation of 02 are based on the fundamental transport
equation for ¢ for a fixed frame of reference
8c 8c d%c

ot s oz; - Daz,-az,- (52-1)

(summation convention implied) where u;, ¢ are stochastic variables that can be
viewed as consisting of a mean and a fluctuating part (Reynolds decomposition), i.e.
ui = (ui)+u}, ¢ = (¢)+¢’. In the following the operation (- ) denotes always ensemble
averaging; for (locally) homogeneous and stationary turbulence this can be replaced
by spatial or temporal avefaging,under an ergodic hypothesis (see, e.g., Hinze 1975)
as far as the velocities are concerned. For strongly localized sources the concentration
field cannot be homogeneous and thus only time averages can approximate ensemble
means (when,of course,the specific phenomenon under study is in steady state).

The equation for the variance of ¢ as obtained from (5.2-1) is

(@)

o), o)

ot (us) Az,

(iii)
(if) - e

e N
3 (c) 9 <° 3c’8c')
— D 2 -
=2 {uic’) dz; 82:,- Oz; ~ 2D i 0z;0z; (5.2-2)

This equation expresses the fact that the level of ol = <c’ 2> changes through an

imbalance of
(i) advection,

(i) the generation rate of scalar fluctuations by gradients in the mean concentration,
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(iii) the diffusive transfer produced by molecular dispersion and turbulent velocity
fluctuations (the former being usually negligible), and

(iv) the dissipation of fluctuations due to molecular diffusion in the fine scale struec-
ture.

The relative importance of the different proceses in the o2 budget depends on
the particular type of flow (see e.g. Launder, 1978); bulk meandering and internal
fine scale motions will contribute in a qualitatively different manner not only to the
observed overall level of fluctuations at a given point but to the relative balance of
terms in the governing equation for 02 as well. Here we confine attention to relative
dispersion in turbulence with a uniform mean velocity @, and to internal fluctuations
in plumes that generate an ensemble of instantaneous realizations which is in a steady
state with respect to a frame of reference that follows the randomly meandering
centerline translating parallel to itself. (The steady state concept here is, of course,
relevant to the mean of the ensemble and not to the actual concentration field.)
Equations (5.2-1) and (5.2-2) with 8(-)/8t = 0, (u1) = T, {uz) = (uz) = 0 are assumed
to hold for this moving frame of reference. In other words, if the moving frame
coordinates in the crosswind plane at z; are ys, y3 where y3 = z — by, y3 = z3 — ba,
b2, b3 being the random coordinates of the instantaneous plume centerline in this
plane, then (5.2-1) and (5.2-2) are assumed to adequately describe mass transport
in the meandering frame (see Chapter 6, for further discussion of this point). In the
case where flow conditions are such that the mean plume centerline is not a straight
line parallel to the horizontal plane (i.e. (bx), k¥ = 2,3, are not constant for all z1),
then the above equations are still sufficient approximations (for a translating frame
meandering about this centerline) for very small values of the derivatives (8 (bx) /9x;),
k =2,3, 1 = 1,2,3. The situation considered here is schematically represented in
Figure 5-2: The mean concentration in (5.2-1) is (cz) and the fluctuations in (5.2-2)
represent deviations of actual realizations cg from this value. In the present work
we limit attention to cr and (cg); fixed frame properties (such as (c) of Figure 5-2)

will not be examined. Thus in the following the subscript R for the concentration
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will be dropped without any loss of clarity. Another point to note is that in this
approach intermittency effects are attributed to bulk motions, in compliance with
available experimental evidence; the probability of exactly zero concentrations in the

vicinity of the origin of the meandering frame is assumed negligible.

5.2.2 Modeling Individual Terms
of The Variance Transport Equation
(a) The Production Term

In the perspective of this study we will consider as adequate a description of (ule”)
in terms of eddy diffusivities Kp; that will be assumed to be in general functions of
the distance from the source, and to correspond to the effects of small scale dispersion
processes (the subscript R used to denote the relevance to relative dispersion — or
absolute dispersion without significant meandering). In this way (5.2-2) continues to
hold locally inside the instantaneous plume. In a sense this is a “Lagrangian” mod-
eling step, since Kp,’s thus defined are not properties of the flow field but functions
of the dispersion time for specific emissions. Thus, locally

d {c)
dy;

(uie') = —Kpg, (1) (5.2—3)

where the point species source is located at z; = 0. The variation of K R; with

downwind distance from the source will be calculated from

_ {uy) dod, 1do},

Kr. _
r(z1) =5 dr, 2 dt

(5.2 — 4)

where o, is the standard deviation of relative dispersion in the ¢ direction. Methods
for estimating og’s can be found in Hinze (1975, p.406), Monin and Yaglom (1975),
and Seinfeld (1983). Thus

a{c) a(c)\?
= 9yl CNC _ g\ 2
I, = -2 (ulc’) o 2Kp, (2:1)( o ) (5.2 —5)
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(b) The Diffusive Fluz Term
Most approaches for modeling the diffusive flux of 02 have also adopted a gradient
type representation of <u:-c' 2>, usually neglecting all molecular diffusion effects (see
Launder, 1978). Various forms of gradient type formulas have been used (Bradshaw
and Ferris, 1968; Spalding, 1971; Wyngaard, 1975; Thomas, 1979; Sykes et al., 1984).
A simple approach, especially when eddy diffusivities are used in representing (ulc'),

is to assume a gradient transport relationship of the form

12\ 002 =~ 302 3
<u,~c > Da:c,- = K'an:.- (5.2 —6)

Assuming that the same dispersive mechanisms account for the spread of both (¢) and
o? weset K=K Rr;- Data from geophysical flows provide supportive but certainly not
conclusive indication for the validity and the limitations of such a gradient transport
scheme (Csanady, 1973; Netterville and Wilson, 1980). In any case, since higher
order closure schemes are beyond the scope of the present analysis, we will adopt the
closure assumption of (5.2-6) with K; = Kg; given by (5.2-4).
(¢) The Dissipation Term

Many studies have attempted to model this term by analogy to the dissipation
of velocity fluctuations (kinetic energy dissipation) for which there is more extensive
experimental information available. The most common procedure is to adopt an

expression of the general form

(8c’dc¢’)  nDo? o2
E — = = — . - 7
® =2¢. =2D Ee a ” (52-17)

where £ is a “dissipative length scale” (a “hybrid” Corrsin scale) analogous to the
Taylor scale for the dissipation of velocity fluctuations, and nD/f% = 1/tq is the re-
ciprocal of a characteristic decay time scale t4. The choice of the numerical factor n in
this relation is a matter of convention (e.g. n =4, 6 and 12 are used in the literature).
The time scale ¢4 is the single most important quantity in the characterization of the

mixing process; actually in most approaches all the effects of molecular diffusion on

mixing are lumped into this parameter.
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For the case of homogeneous, quasi-isotropic, turbulent velocity and concentra-
tion fields both theoretical considerations and experimental evidence suggest that
(Gibson and Schwarz, 1963; Hinze, 1975; Launder, 1978; Warhaft and Lumley, 1978;
Sreenivasan et al., 1980; Durbin, 1982).

ta =kt + ko (5.2 — 8)

where k lies in the range 1/3 to 2/3, t = z,/ (u1), and ko is a constant that can be
assumed equal to zero when the production of fluctuations is localized at t = 0.

In the case of a continuous plume generated by a concentrated point (or line)
source in a field of homogeneous turbulence we may also expect the rate of dissipation
of concentration fluctuations to be proportional to fluctuation intensity 02, because
essentially the same physical factors must govern across-the-spectrum transfer of con-
tributions to o2, regardless of the manner in which the fluctuation were generated
(Csanady, 1973). However, now the “ages” of the concentrations fluctuations cover
a broad range and the decay time-scale may vary in an unknown manner. Thus one
should set locally ® = ¢2/ty with t4 = ta(z1,y2,y3), i.e. assume that tg is some
function of position that has to be determined.

The approach described by (5.2-7) has appeared in some works relevant to air
pollution. Thus Donaldson and Hilst (1972) estimated a typical (constant) value
of tg ~ 5min for a (hypothetical) average turbulent mass of atmospheric air. This
(constant) value of the decay time scale was used by Kewley (1978) in a reactive
plume model. However, in plumes, the factors affecting the intensity of dissipation
(and therefore ta4) will change significantly with travel time and the assumption of
constant tq is not an appropriate one. In a more justifiable approach Csanady(1967,
1973) and Thomas (1979) adopted (5.2-8) with the theoretical value k = 2/3 (Hinze,
1975, p.301) and ko = 0. Modified forms of (5.2-8) were also suggested by Fackrell
and Robins (1979) and Netterville (1979) and utilized by Wilson et al. (1982ab) in
an empirical model for the total level of atmospheric plume fluctuations. However in

the latter case the dominant component in the overall observed variance values was
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bulk variance (Fackrell and Robins, 1982ab), the dissipation of which mainly reflects
the expansion of the instantaneous plume to the size of the time average envelope;
the approach of Sykes et al. (1984) is more appropriate for this situation.

For the dissipation of fine scale fluctuations by molecular diffusion in the moving
frame of reference we adopt (5.2-8) in the form

1+ zo 1

where A; = 1/k and zg is a “virtual origin correction” which accounts for the initial

ta

production dominated region near the source. This equation should be viewed as a
reasonable first estimate for t4(z1, y2, ys) for a relatively “slender” plume. The success
of this approximation for a given range of downwind distances will rely heavily on the
proper choice of A;; unfortunately, the uncertainty involved in this choice is large,
even for relatively ideal flow situations. Some further insight on this problem can
be obtained by examining the transport equation for ® (Launder, 1978). Indeed, for
point sources the generation terrﬁs involving mean concentration field gradients will
play a significant role in the overall & balance, especially in the vicinity of the source,
thus resulting in higher dissipation rates and lower characteristic dissipation times in

comparison with the quasi-isotropic cases to which most of the available information

is relevant.

5.2.3 The Effects of Boundaries

The presence of a boundary parallel to the mean flow @ (e.g. the ground in the
case of atmospheric dispersion) affects the balance of o? in two ways:

First, if this boundary does not interact chemically or otherwise with the plume
species, it imposes a condition of zero transfer of plume material, which, in addi-
tion to increasing the mean concentration near the surface, affects the intensity of
concentration fluctuations by controlling the production of ¢2. Since 9 (¢) /0z; is
normally small compared to the lateral gradients, a decrease in 8 (¢) /By will reduce
the production of fluctuations significantly, especially near the horizontal centerline

of the plume where 8 {¢) /3y, will also be small.
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Second, the boundary affects the flow field in such a way that advection and
turbulent transfer terms are expected to be small near the surface. In this analysis it
will be assumed that the mean velocity is uniform except for a very thin layer near the
boundary. However the no-slip boundary condition near the surface results in high
local mean shear and intensity of turbulence which rapidly distort and stretch plume
filaments, thus increasing the surface area available for molecular diffusion which
dissipates concentration fluctuations. Thus, in general the presence of production and
dissipation processes accounts for different behavior of (c) and 0?2 near the surface.
Wind tunnel studies suggest that very close to the ground there might be a well mixed
layer, where dissipation practically reduces o2 to zero; however, available data do not
extend close enough to the surface to show explicitly this effect (Wilson et al., 1982a).

Hence, 902 /3y; is not expected to approach zero gradually at the surface. It is

more appropriate to view the latter as an absorbing (possibly not perfectly) boundary

with respect to 02 and thus

02 >0 atza3=y3+b3=0 (5.2 - 10)

5.2.4 The Effects of Source Size

The assumption of a point source is an extreme idealization that is actually in-
compatible with the process of relative diffusion, since the latter requires a nonzero
initial separation of the diffusing fluid particles (see, e.g., Durbin, 1980). The de-
gree to which concentration fluctuations are influenced by source conditions, such
as source size (or initial separation) has been a subject of both theoretical analysis
(Chatwin and Sullivan, 1979a; Durbin, 1980, 1982; Sawford, 1983), and experimental
study (Fackrell and Robins, 1982a). The available experimental evidence for contin-
uous plumes relates important source effects to meandering processes and shows that
they persist for distances where bulk fluctuations are dominant; far downstream the
variance tends to “forget” these effects. Theoretical considerations (Durbin, 1980;

Sawford, 1983) show that the intensity of internal fine scale fluctuations tends to a
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constant value that in general must depend on the initial size of an instantaneous
release. However, the available data on relative dispersion of continuous plumes are
not adequate to provide reliable quantitative estimates of source size effects. In fact,
far enough from the source, data on both the total and the fine scale variance, and
for both elevated and ground level sources, show that under constant flow conditions
the centerline intensity of fluctuations approaches a constant value that is (almost)
independent of source size. In the present work, in order to retain simplicity, source
effects will not be accounted for explicitly; the species source is assumed localized at
a point and necessary corrections to this idealization are invoked a posteriori when
the mathematical manipulations cannot accommodate the point source concept. The
effects of the finite size of the actual source will have to be incorporated (either

explicitly or implicitly) in a parameter of the model.

5.2.5 The Assumption of Self Similarity
Introducing the approximation of (5.2-9) and the transport closure schemes of
(5.2-3), (5.2-6), equation (5.2-2) reduces to the following form for the steady state

(in the (z1,y2,y3) frame) point source plume in a mean flow field 7 = (u1) along the

1 = y; direction:

M @ _

i 2 2 \ 2
e =2 | (52) "+ (32) ] oo (32 4

(iii) (iv)
2 52 8202 o2

9?02
+ Kg, (zl)a_yg + Kg, (z1) o7 td(;l) (5.2 — 11)

where terms (i) to (iv) represent the respective terms of (5.2-2).

’

A rational approach towards the simplification of (5.2-11) is based on the hy-
pothesis of self-similarity for both the instantaneous (c) and o2 fields. As already
mentioned, this hypothesis has considerable experimental support (Csanady, 1973;

Fackrell and Robins, 1982a); it was first introduced as an approximation in the Eule-
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rian modeling of 62 by Csanady (1967) who studied the construction of self-similarity
models for isotropic turbulence and for an unbounded flow.

If (5.2-11) is satisfied by (c¢) and o2 that obey the self similar relations

() = {eo(z1)) f(7) , 02 = {co(21))?9(#) (5.2 — 12)

where

(eoen) = gy 1) =ex0 (-5

2TUCR, OR, ’

(S is the source strength) and

g
I
¢
~
74

with

¥=1/vio}, +1d0%,, ¥=or,on,
(notice that # ,¥ have units of (length)?), then it can be shown that two necessary

conditions for (5.2-11) to have self-similar solutions are

dURa __OR,

do Ra OR,

Or Op, = KOR, (5.2 —13)

and

OR,0R, - & (0%2 yg daRa 01333 yg daRz
F2 dz 1 }2 dz 1

(5.2 — 14)
where k£ and & are constants.

Here we will in general assume that the increase of og, and op, with distance
from the source obeys locally the same exponential law within a multiplicative factor.
(This exponential law will be different in the various phases of relative dispersion.)
Regarding atmospheric dispersion, experience shows the above assumption to be usu-

ally a reasonable approximation.

Now, for or, = kog, one has
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If or, obeys the power law

OR, = 00,7}

0o, being a constant of appropriate dimensions, then

>

il
= |8
EJIH
)

and, employing (5.2-9),

|2

z
P z1+ 2o

&
Thus, if A; and p are constants over a finite range of z;, the necessary condition
for self-similar solutions of (5.2-11) becomes zp = 0, in which case & = 4, /p. Hence,
the theoretical and empirical information that is available for p and A4; can be used
to provide first estimates for &.
When equations (5.2-13) and (5.2-14) hold then (5.2-11) becomes
d2g (1 dg df \ 2
—_— il 4—-a)g=-2| = 5.2-15
df2+<f-+r) df-+( &g df ( )
The boundary conditions for (5.2-11) arise from requirements of axial symmetry

and a decay of 02 to zero at large radial distances:
—=0atf=0, g—0at?— (5.2 — 16)

We must remark here that boundary effects, which would complicate not only the
formulation of boundary conditions but also the appropriate choice for f, are not con-
sidered in the above analysis. Therefore this approach is formally valid for unbounded
domains. Furthermore, for an elevated source, the existence of ground effects imposes
an “external” length scale on the dispersion process. This “destroys” the conditions
necessary for self similar characteristics of the physical problem, at least until far
downwind where the source height becomes negligible compared to the distance trav-
eled and a second range of self similarity is expected. Hence, the present self-similar
model formulation will be a reasonable approximation only as long as boundary effects

are not very significant, i.e. relatively close to the source.
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The general solution of (5.2-15) can be shown to be

o) =g /f. gz dn o /f. 77)91 (5.2 — 17)

(5.2 — 18q)

7@+ k)~ 20(1 + K) + Inn)

[(8) F T(@)T(1+ k) k!
(5.2 — 18b)
#e) = 1
W(n) =W [1F1(a,1;1),1F2(4,1;n)] = —:{1?((‘;7)) (5.2 — 18¢)
and
8= (4 — 6!)
2

1F1(@,1;n), 1F2(&,1;7) are confluent hypergeometric functions of the first and
second kind respectively (Abramowitz and Stegun, 1964; Lebedev, 1965) and are lin-
early independent. W (%) is their Wronskian determinant and ¥(z) is the logarithmic
derivative of the Gamma function. The constants of the integrations in (5.2-17) have
to be calculated so as to satisfy the conditions of (5.2-16).

Alternatively, the boundary value problem defined by (5.2-15,16) can be solved
numerically for specific values of & Csanady (1967, 1973) pursued this approach for
the isotropic case assuming Gaussian f(#), and presented typical g() profiles together
with the relative intensity of stream segregation I, = 62/(c)? = g{co)?/(c)?. These
calculations show that while the variance 62 (which is proportional to g(7)) decreases
from the center of the plume to the fringes, by analogy to the mean concentration, the
relative intensity of segregation — describing the degree of micromixing of the plume
with the ambient — increases at the fringes. Near the plume centerline both quantities

have very small gradients and thus can be considered approximately constant in a
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“core region”. For different values of & different profiles of g(7) are obtained. The
center value g(0) is a rapidly varying function of & For & > 4 the origin becomes a
saddle point (because d®g/d? turns positive) and a full section across the plume will
show a double-peaked profile for 02, a situation which is experimentally observed in
free jets (Fischer et al., 1979; List, 1982). The physical reason is that the maximum
rate of production occurs in the region of steepest gradients (around # = 1) from
where ¢? diffuses both inwards and outwards. High diffusion and low dissipation
(i.e., a low value of &) quickly smoothes the two peaks out resulting in a single peak
at £ = 0. The problem in the development of self-similar solutions relies to a very
large extent on the proper estimation of &. Csanady (1973) compared his approach to
the experimental observations of Becker et al. (1966) by fitting g(0) to the data. With
the value of g(0) obtained in this way, calculated profiles simulated measurements to
a satisfactory degree with corresponding values of & in the range 2.5 to 3.0. These
values clearly are in very good agreement with the estimate & = Ay /p; indeed, for
the theoretical values p = 0.5 and A4; = 1.5, one obtains & = 3.0.

In conclusion, direct application of the self-similarity concept to the o? trans-
port problem, although it offers an integral representation of the solution of (5.2-11),
does not lead to results appropriate for routine calculations (e.g. in conjuction with
the common Gaussian solutions for (c)). Indeed, the uncertainty in the parameters
involved in (5.2-17) and the restricted range of conditions to which it applies would
not justify the computational burden involved in its use. However, the conditions
associated with the existence of self-similarity that are derived here are useful for
reducing the complexity of the mathematical description of the fluctuations problem.
These conditions will be further used in the next section combined with a scheme

that is more appropriate for routine use than equation (5.2-15).
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5.3 THE LOCALIZED PRODUCTION OF FLUCTUATIONS MODEL

In the following we present a new model that fulfills the need for simplicity by
providing closed form analytical expressions for 02(z1,y2,y3), using a limited number
of parameters. This “Localized Production of Fluctuations (LPF) Model” is based
on the knowledge on the nature of the terms of (5.2-11) and of its solutions, already
discussed in the previous sections. Self-similarity of o2 profiles is not an a priori
assumption in the development of this model; however, when assumed to hold, it
simplifies further the structure of the final equations.

To avoid excessive notational complexity in this section we adopt a (z,y,2) co-
ordinate system and drop the subscript R from the dispersion parameters; however
it must be kept in mind that throughout the following discussion (z,y,2) are coordi-
nates relative to the meandering plume centerline and K’s, o’s, as well as (c) and o2,

describe relative dispersion.

5.3.1 Model Formulation

The solutions of (5.2-11) can in general be expressed in terms of the Green’s

function G of the corresponding non-dissipative equation (containing only terms (i)

and (iii)), through

[+ o) o0 x
o2(z,y,2) = / / / G(z,u, 22"y, /)L (', o, )X
—oo v —o0 JO

1 [*® da" Lata
X exp [—%L’ m] dz'dy'dz (6.3 —1)

where I.(z’,y’, 2’) is the spatial distribution of variance production, given by (5.2-5).

Since production of 02 is of important magnitude, relevant to the other processes
contributing to the balance of 02, mainly in the immediate vicinity of the source
(where boundary effects can be neglected), an estimate of II. formulated in terms

of a mean concentration field (¢) for an unbounded flow should be a satisfactory
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approximation. Considering for simplicity the isotropic case (*) with
Kg,(z) = Kg,(z) = K(z), og,(z) =or,(z) =0(z) = 0ozP

one has

I(z,r) = 2 K () [(aa<°>)2 + (‘9(6))2] =1L, + 1, (5.3 —2)

where

I, = 2K(z)(§(%)2, 1, = 2K (z) (aa(:))z

In general, studies of (5.2-11) have implicitly neglected production of o? due to
gradients of (¢) in the z—direction. In fact, locally (at a given point (z,r)) this term
can be important; however, the total generation of fluctuations due to these gradients
is small compared to the generation of gradients of (¢} in the r—direction. Indeed, for

Gaussian mean instantaneous concentration distributions in the meandering frame of

reference:

(o) = lole e (- 27) = 5=y (-1

11, 2z2r2

I p2(r2 — 202)2

is not necessarily much larger than unity for arbitrary (z,r).

the ratio

Consider, however, the overall cross-wind fluctuations production at a given z
from gradients of {c) in the r and z directions:
oo 2r p S2
B,(z) = / / rII,.(z,r) dpdr = P e puy (5.3-3)
o Jo

2702 (z)

(*) These results are directly extendable to the anisotropic case by an appropriate

transformation of coordinates.
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2 52

/ / (z,r) dpdr = ——a!r apz?P- SW (5.3 —4)

Statistical diffusion theory for small travel times demands that p = O(1.0) for

both the processes of absolute and relative diffusion. Thus, in the vicinity of the source

Br(z)/Bz(z) = O(1/0¢), which typically is much larger than unity and therefore the

production of fluctuations due to gradients of {¢) in the z direction can be neglected.

Thus, finally, for the overall cross-flow production of fluctuations

oo o0
= / / I(z,y, 2) dyd=
—~oo J —co

one can write B(z) ~ B, (z) with &,(z) given by (5.3-3).
The formulation of the LPF model consists of two steps. The first step utilizes the
fact that at every cross-flow plane the production of fluctuations is strongly localized

around its maximum value which is attained at r = o. Figure 5-3 shows the dimen-

sionless distribution of radial production of fluctuations, 1/4 zII,(z, ) (&) "'p—{co (z)) 73,

with respect to r/o, for arbitrary z. It is reasonable therefore to approximate the
distribution of production along a given radius by a delta function with strengfh es-
timated from (5.3-3). The optimal location of this delta function on each radius will
be slightly off the value r = o since the production extends asymptotically to infinity;

thus, for given ¢, we fix this location at

f0°°rH (z, )rdr_r(S) 3

— = - 53—-5
fo (z,r) rdr 2/° 4\/7—“7 ( )

i.e. at the “center of mass” of the actual production distribution. The complete locus
of these delta functions at any z will be a ring of radius r*.

Thus (for the isotropic case)

Oe(z,r) =B, (z) §(r —r*, ¢ — ¢,) with r* = Zﬁa (5.3 —6)

where ¢, arbitrary in the interval 0 to 27.

- 274 -




2

7T, (r/o)

PART IB

0.4

CHAPTER §

C.1 —

0.0

—_—

1 | l | \[ |
O

x
>

Figure 5-3
Dimensionless Radial Distribution of Fluctuation Production

at any Cross-Flow Plane
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This II. can be introduced in (5.3-1). However, (because of the nature of the
Gaussian solution of (¢)) production of fluctuations is infinite at z = 0 and the inte-
gral would diverge. Of course, this is just an artifact created from the assumed ideal
“point” character of the source producing the theoretical Gaussian solution that cre-
ates a singularity at the origin. Since in reality the maximum field concentration is
not infinite, it is justifiable to start the integration not at £ = 0 but at some point
Zo. To apply (5.3-1), one should actually have to estimate Zo from available data
so that it simulates measurements in a satisfactory manner. However, no general
a priori estimate of it should be expected since it encompasses a variety of source
and initial flow characteristics, specific to each particular application. Another major
problem that inhibits direct integration of (5.3-1) is the changing character of the
relative dispersion process with downwind distance. Thus, fundamental two-particle
dispersion theory predicts three asymptotic values for the exponent p and even if one
hypothesizes step changes and constant values in between there is significant uncer-
tainty regarding the location of these changes; similar uncertainties are associated
with the op’s. We circumvent these problems by introducing the second step in the
formulation of the LPF model. Applying the mean value theorem of Lagrange to the

isotropic form of (5.3-1) for the integration with respect to z, one has

2 - e 2"1 ! * ’ o gt
o%(z,y,2) = (¢, 2) / / S6(r' ~ r*)6(¢' — 6,)G (2,7, 81,7, ¢') ' ddr
o Jo T

X exp [—% /e Eﬁ_ll)] (5.3-7)

with

B(¢,z) = s 2p€™2P (g — 20) (5.3 — 8a)

where £ is some point between Z¢ and z (fixed for given %o,z). Setting ¢ = wz, with
0 <w £ 1, and assuming that z > £; one can further write
( pS? = wpS?

= — = 53—
271uolE® € 2nuo?(wz) (5.3 — 8b)

m»
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So, the problem of estimating £¢, or, more generally, integrating (5.3-1), is essentially
transferred to the problem of choosing the appropriate value (between 0 and 1) of
the dimensionless localization parameter w (that can possibly vary, within these lim-
its, with distance z). Now, (5.3-7) associates 02 at z to the dispersion parameters
corresponding only to z and to another single wz. In this way all the different kinds
of uncertainty implicit in (5.3-1) are now collectively lumped in one parameter, i.e.

in the unknown value of w.

5.3.2 Analytical Solutions
Equation (5.3-1) can now be used, through its reduced form (5.3-7), to obtain
approximate closed solutions to the variance transport (5.2-11).

For an unbounded flow (and 62 — 0 as y,z — oo) the corresponding Green’s

function of (5.2-11) (without terms (iv) and (ii)), is

Glz,y,2|2",y,d) =Gz — 2y —y',2 - 2) =

exp |— -
2noy(z —z')o.(z—z')u 202(z —2') 202(z—2z')
when dispersion is assumed negligible compared to advection in the z direction and
the o’s are related to the K’s through (5.2-4).
Using (5.2-9) one obtains

z dzll
/ = A1%In(z + zo) — In(z’ + o))

1 [* dz" z' + 2o \ A
P [—E ,/,,, td(z”)] B (x + zo ) (5:8-10)

Consider the general anisotropic (orthotropic) case, where the source of fluctua-

and

tions takes the form of an elliptical ring (of infinitesimal thickness) located at z = ¢

with semiaxes a, b such that

a = 3/4\/noy(£), b=ka
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where k = 0(£) /0y (€). We define
w? = ab ando?(z) = 0y (z) 02 (z)
and introduce the new variables

1/2

Y = K,l/zy andz; =k~ /“z

The transformation (y,z) — (y1,21) has a Jacobian equal to unity and therefore

preserves areas. The phenomenal variance source coordinates will transform to
Yis =wcosd, , 21, =wsing,

where ¢, is now the polar angle of point (y14,21,) in the new coodinate system. The

Cartesian form of (5.3-7) in this system will be

[+

2 S(¢) (€+$0)A1

- 27uo?(z — &) \z+ 2o

oo ©0 EWAY . 1\2
x/ / €xp [—“ 2 vi) +(21 ) :|5(y'1 —y1,)5(zi — 214) dyidzi

—o0 J—o0 20‘2(.’E - E)
where
N _ pSz
S = Sormo (0208

Introducing polar coordinates

r1=4\/y2+22, yi=ricosg, z; =rysing

the integral in the above relation becomes

) 2’rlﬁ(’— )6(8' — o) exp  — e 1 de'dr!

0 o ri T]_ w 8} €XPp m T]_ Tl
where

R? = (y1 — y’1)2 + (21 — :::i)2 =r24 r'12 — 2r17] cos(¢p — ¢')
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Thus,
_ 88 [(etm\* Tt )
o = 27u02(z — £) <$+$o) exp <—202($ - ¢€) %
I riw cos(@’ — ¢,) ,
[, o] e

which finally gives

___ S (E+ao\™ _r%+w2> ( rw ) _
02_27(%02(1:—5) (a:+:co) exp( 20%(z — §) fo o%(z — §) (5.3 —11)

where Iy(-) is the modified Bessel function of order zero.

For £,£ > zo (5.3-11) becomes

o= (125) A oo () 1 ()
(5.3 - 12)

Now, a sufficient condition for self similarity of the o2 profiles for a given z-range

(where p, A; are assumed constant) is that w is a constant in this range. In this case
o(§) =wPo(2), oz~ &) = (L-w)Pols), w=3/dyFuPo(z)

and o2 becomes

2 _ 2 ry _ 2 -1 T% 3\/7_rwp r

2 = (eole)’s (75 = (col@)0) exo (mwa) 0(35272) G319
where @ = 1 — w and g(-) = I;{c)?/(co)? is the dimensionless absolute intensity of
internal fluctuations. On the plume centerline g(0) will be

g(0) =

Ay—2p—1 9 2p
o~ "~ p( T ) (5.3 — 14)

(@)% 320%P

When experimental information for this quantity is available it can be used in con-
Jjunction with information on parameters p and A; to estimate w values (see next

section).
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Returning to the y,z coodinates, (5.3-12) takes the form

S 2

pw(z)4! z

ol(z,y,2 &) = (

(5.3 — 15)

Xexp(— ab )Io( Va2l +bhy? )
20y(z — &) oz(z — €) oy(z — §) oz(z - §)
Equations (5.3-13) and (5.3-15) constitute basic, usable, forms of the LPF model
when boundary effects can be assumed negligible, as in the immediate vicinity of the
source,
When the dispersion field cannot be assumed unbounded, one must take into

account the boundary condition of (5.2-10), i.e.
02 -0 at z(=y3) = —bs

where, because of meandering effects bz is a random variable. Far downstream, where
meandering is negligible and boundary effects most significant, one can obtain the
following result, assuming that the plume centerline is at a constant height & from

the boundary (notice that now the coordinates origin is fixed on the boundary):

5\? pw(z)4? oy
m) oy(§)ox(oy(z = oa(z—8) °F < 203(= —T)) g

ot =

) ab - (e h)? \a3(z — h)® + b2y?
X‘”‘p( zay(z—e)az(z—f)) e"P( 202(z —‘e)> o Ev ey P ey

(5.3 — 16)

—aexp | — (z+h)? I \/a,z(z + h)* + b2y2
P 202(z — §) 0 oy(z — €) oz(z — €)

The parameter a appearing in the above equation equals unity for a “perfectly
absorbing” boundary i.e., 02 actually equal to 0 at the surface. However, the effects of

dissipation might not be so strong, and a lower value for a may be more appropriate.
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5.4 MODEL TESTING AND DISCUSSION

The LPF model is a simple formulation for the internal concentration variance
that is directly derived from the physics of the point release problem, starting from
“rigorous” equations and utilizing empirical information and approximations to sim-
plify the analysis. The required inputs reduce to a set of “physical” parameters and
a “model specific” one. The “physical” parameters are the relative dispersion o’s
(which are assumed to obey simple power laws, at least locally) and a factor re-
lating dispersion time to the local dissipation time scale tq. The “model specific”
or “localization” parameter w actually defines the location of an effective source of
fluctuations. As already mentioned, uncertainties associated with a variety of fac-
tors such as source size, flow conditions, and the relative dispersion process itself,
are “lumped” into w. Introduction of w reduces the uncertainty associated with the
physical parameters since, instead of their complete — and unknown — variation with

downstream distance, only estimates of their local values are needed.

The problem of estimating w is facilitated by two facts: (1), the often observed
validity of self similarity, which is expressed by (5.2-12); (2), the observation that
g(0) is “at most a weak function of the distance from the source” — even for the
total fluctations variance (Sawford et al., 1985). This ¢(0) for given flow conditions
tends to a constant value after a certain distance (Becker et al., 1966; Fackrell and
Robins, 1982ab; Wilson et al., 1982ab, etc). These facts, although deduced from
observations that do not cover the entire range of possible conditions encountered in
laboratory and environmental flows, suggest that adequately reliable estimates of w
are possible, at least for specified ranges of the dispersion, even without a complete
understanding and analysis of all the mechanisms that affect the level of g(0). It is
therefore often justified to treat g(0) as an empirical constant typical of given flow
conditions. In this simplified approach w is completely determined from the physical

parameters (including g(0)) of the problem. Of course in order to be able to construct
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empirical estimates of, say, typical values of g(0) (and therefore w) for ambient tur-
bulence of various Reynolds numbers, many more experimental data bases than they
are currently available are needed. In a more fundamental approach 9(0) or closely
related functions have been modeled theoretically, in terms of statistical correlations
of the turbulent flow field, for source configurations that create mean concentration
fields approximately equivalent to that of the continuous “point” source. Numerical
simulations and analytical expressions that in general involve a measure of effective
source size are available (Durbin, 1980, 1982; Sawford, 1983). However, because of
the existing uncertainties and limitations in the formulation of the theoretical models,
it presently seems reasonable to confine this discussion to the previously mentioned
simplified approach.

As far as atmospheric dispersion is concerned, present knowledge suggests that
for neutral stability the far field value of g(0) is of order unity (for elevated sources),
and use of the typical (“theoretical”) values p = 0.5 (for the “far field”), 4; = 1.5
to 2.5 seems to offer a qualitatively acceptable simulation of many available relevant
field and wind tunnel data sets. (For example, see Figure 5-6). However the scatter,
the resolution and the uncertainty of these data often make quantitative comparisons
meaningless or impossible. The problems are even more severe in cases of more
complicated atmospheric conditions.

The measurements most appropriate for comparing with and testing LPF model
calculations are those of Becker et al. (1966) for point source dispersion in homoge-
nous, quasi-isotropic, pipe flow turbulence. Indeed, in the conditions of these exper-
iments meandering was insignificant and the structure of the turbulent flow, being
relevant to the conditions for which (5.2-8) was suggested, reduces the uncertainty
regarding the proper choice of A;; further, p = 0.5 fits accurately the entire range
of the data. Thus, the uncertainty regarding the physical parameters is minimum.
Self similarity of o2 profiles and a constant value of g(0) are observed in all these
experiments. Comparisons of LPF calculations with reported absolute and relative

intensities of internal fluctuations are shown in Figures 5-4a, 5-4b, 5-4c and 5-5. The
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parameter w is estimated directly (for A; = 1.5) from the centerline value g(0), whose
square root value, for all the flows studied, lies in the range 1.0 +0.2. The agreement
obtained by using solely the centerline value to “adjust” w, while p and A; are pre-set
equal to their theoretical values, must be considered very satisfactory (Somewhat dif-
ferent values of A,, can improve slightly the success of the simulation, especially near
r/o = 0.75 where the difference between predictions and observations seems higher).

A comparison with atmospheric field data is also shown in Figure 5-6. The data
are of Ramsdell and Hinds (1971) and the typical values p = 0.5, A; = 1.5 were used
while w is determined directly by the centerline intensity. Although the uncertainty

of the data is very significant the agreement can be considered satisfactory in this

case too.
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Figure 5-4a

Dimensionless Absolute Square Root Intensity of Segregation, \/g(r/o)
as Predicted by the LPF Model, Compared with Data from Becker et al., (1966)
Data (at five downstream distances) for Centerline Velocity 41 m/s

LPFM Calculations for p = 0.5, 4; = 1.50 (g(0) = 1.15)
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| Figure 5-4b
Dimensionless Absolute Square Root Intensity of Segregation, g(r/o)
as Predicted by the LPF Model, Compared with Data from Becker et al., (1966)

Data (at two downstream distances) for Centerline Velocity 49 m/s

LPFM Calculations for p = 0.5, 4; = 1.50 (g(0) = 1.05)

— 285 -

3.0




PART IB CHAPTER 5

..
-
-l
-
—
-
-
—
——
—
-
-
——
-
—
-
-
.
-
—
—
-
-
—
-
-
anul

0.75

0.50

0.25
(u=61m/s)

llllll[ll'llll'll

—

Illlllllllllllllllllll

0.00 |1|l|1||l|11||1||11|11|]|xnlq
0.0 0.5 1.0 1.5 2.0 2.5 3.0
s
o
Figure 5-4c¢

Dimensionless Absolute Square Root Intensity of Segregation, 1/g(r/ o)
as Predicted by the LPF Model, Compared with Data from Becker et al., (1966)
Data (at four downstream distances) for Centerline Velocity 61 m/s

LPFM Calculations for p = 0.5, A; = 1.50 (g(0) = 0.95)
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Figure 5-5

Dimensionless Square Root Relative Intensity of Segregation, VI,
as Predicted by the LPF Model, Compared with Data from Becker et al., (1966)
(The data were obtained at five downstream distances for centerline velocity 61 m/s
and the points shown correspond to the experimental curve in Figure 7 of Becker et

al. (1966) (note that in that figure /T, is plotted versus r/r1/2); LPFM calculations
for p=0.5, 4; = 1.50.)
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Figure 5-6

Dimensionless absolute intensity of segregation, \/W
as Predicted by the LPF Model
Compared with Atmospheric Field data from Ramsdell and Hinds (1971)
(LPFM calculations for p = 0.5, 4; = 1.5)
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5.5 CONCLUSIONS

Knowledge of statistical properties of point-source plume concentrations, such
as the variance o2 or the intensity of segregation, is essential in many situations
calling for plume modeling (e.g. in assessing the impact of releases of pollutants in
the environment), and in particular in estimating the effects of local turbulent mixing
on relatively fast nonlinear chemistry. Although recent experimental and theoretical
work has enhanced significantly the available information on the behavior of 62, this
had not resulted in the development of practical predictive methods, especially with
regard to fine scale in-plume fluctuations — as opposed to total observed fluctuations
that encompass bulk motion effects (meandering) which do not interact with the
chemical processes.

A new model for the “internal” o2, at a level of sophistication analogous to that
of the Gaussian formulas for the mean concentration field, has been developed here,
starting from the Eulerian transport equation for o2. A series of approximations
utilizing existing experimental and theoretical information for the processes involved,
combined with the Localized Production of Fluctuations (LPF) scheme allowed the
construction of closed analytic expressions for o?, directly from its governing equation.
The capability of this “LPF model” to simulate the variance profile was succesfully
tested against available data on point source plume concentrations.

In conclusion, the model developed in this work provides a rational, yet computa-
tionally simple, means for describing concentration fuctuations and the corresponding
intensity of segregation inside instantaneous plume boundaries. Although its appli-
cability is restricted by assumptions such as the uniform mean flow (or “mild” mean
plume motion), and slender plumes, this model can serve as a first approximation to
a wide range of point source dispersion problems. Further experimental information

will be useful to provide accurate estimates of its parameters for specific flows.
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Concentration Probabilities:
Summary of Basic Concepts
and Definitions

The main volume of work relevant to air pollutant concentration statistical characteristics is con-
cerned with defining concentration distributions and estimating extreme value statistics for use with
air quality standards; in this perspective the air pollution system is typically viewed as a “black box”
although in some approaches physical reasoning have been invoked to explain qualitatively the sta-
tistical results (see Chapter 8). The aforementioned work is directed primarily towards statistically
describing long-time averages (usually 1 hr and upwards) of concentration. Thus it must be remem-
bered that (empirical) results relevant to this work cannot be applied directly in the study of very short
term (“instantaneous” up to a few minutes averages) fluctuations in a rapidly changing concentration
field that results from an isolated source. In the following we summarize certain basic concepts related
to the probabilistic properties of instantaneous concentration fields.

The (cumulative) probability distribution associated with the random concentration ¢ at the fixed

space-time point (x,t) of the flow field is defined as
F(C,x,t) = Prob{c(x,t) < C} (A5.1—1)

The moments of ¢ are defined formally by the relations

EMe} = (" (x, 1)) = /F :0 C™ dF(C,x, t) (45.1—2)

BN} = (¢ (x,8)) = /; 1=0 (C — ()" dF(C, x, 1) (5.1 —3)

In particular we set E'{c} = (c), E2{c'} = 2.
In steady state cases, i.e. in continuous plumes (which are of interest in this work) the distribution
(and of course moments of all orders) become independent of time.

The probability density function (pdf) p(C,x,1) of ¢(x,t) is defined as

p(Cx,t)= f%é,x’tl (45.1—4)
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for all C' for which F' is continuous. For certain C, F may not be continuous. In fact ¢(x,t) = 0 usually
occurs with finite probability, at least for certain (x,t), and thus arises a discontinuity of F(C,x,t) at
C = 0. (This is the only case of discontinuity of F' that will concern us here.)

Various functional forms can be assigned to the distribution of the non-zero fraction of the en-
semble of concentration values. In practice, such a distribution must be determined by appropriate
statistical treatment of data at a fixed point. Experience has shown that skewed distributions such as
the lognormal are usually a satisfactory choice for the non-zero fraction (“subensemble”) of concentra-
tion values in atmospheric plumes. Semi-Gaussian or “clipped-Gaussian” (i.e. linear combinations of
Gaussian functions, defined over bounded ranges of values, and Dirac deltas), exponential, and other
types of distributions have been used to fit the entire range of concentration values, especially at points
close to the average boundaries of the plume.

A variety of theoretical methods for determining p a priori, from physical principles, is availablein
the literature dor both conserved and reactive scalars (see, e.g., Hill, 1976; Pope, 1982, 1985). However
most of these methods are either limited to highly idealized turbulent scalar fields and are formulated
for very specific flows, or represent formulations so general that are of little practical use (see, e.g.,
O’Brien, 1980). Analogous formulations for the moments of ¢ are in general much more tractable and
these are pursued in Chapter 5.

An intermittency factor or function Ye(%,t) can be introduced, specifying the fraction of the

ensemble in which the concentration is not zero (i.e the subensemble conditioned by ¢ 5 0):

1—9(x,t) = F(0,x,t) (A5.1—5)

The complementary intermittency factor ,defined through

Ye =1—7(x,¢t) = F(0,x,¢) (A5.1 - 5a)

is also used by some authors.

We will not elaborate here on the subtle and important concept of intermitency in turbulent
fields; for an illuminating discussion of both physical and mathematical aspects of this property one

may consult the monograph of Mandelbrot (1983).

With the introduction of 4, one can express the probability density function for all the members

of the concentration ensemble as

P(C,%, 1) = 7e(%,2) pu (C, %, 8) + [1 = 72 (x,£)] 6(C) (45.1-6)

where p,(C, x,t) is the “conditioned” pdf that describes the subensemble {es} of nonzero concentra-

tions and §(C) is the Dirac delta.
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F(C,x,t) is a result of absolute diffusion; so is 7. (x,t). However, a “decomposition” of the results
of relative diffusion and meandering is sometimes necessary in the study of the plume dispersion
phenomenon, as it has already been discussed. To study relative diffusion effects one can consider a
reference frame attached to the center of mass of a diffusing cloud (for an instantaneous release of
material) or “following” through parallel translation the line defined by the infinite sequence of the
centers of mass of “thin cross-wind slices” of a continuous plume (the centerline of the plume). An
extensive discussion of the description of turbulent dispersion in this frame can be found in Chapter
6 of the present work.

Thus let y be the distance of a fluid particle from the origin of this meandering frame (for uniform
wind y = (y1, y2, ys) reduces to a two dimensional vector ¥ = (21,2, ys), with the origin taken at z;,
since it is always perpendicular to the wind vector). Let also b(t) be the position of the center of mass
of the cross-section relative to which y is measured: Y =x —Db. Then if

F.(C,y,b,t) = Prob{c(x,t) = ¢,(y, b, t)<C} (A45.1-17)
moments of ¢,, a pdf p,, an intermittency function Yr. and a conditioned pdf p,, can be defined exactly
as for the c~field.

The general functional form of p,, is expected to display the same typical characteristics as D
(a skewed distribution) and experience shows that lognormal type distributions again offer successful
fit (Csanady, 1973). However, «, . is expected now to behave in a more predictable manner than
7Ye because the effect of meandering has been removed and F,(C,y,b,t) characterizes the process of
relative diffusion alone. Of course the spatial distribution of both v, and “rc 18 in general unknown
for most cases; however in a frame moving with the centerline of a continuous plume, ~, _(y) is known
to be near unity in the center portion of the plume and to be zero outside the plume, its distribution
across the plume being probably like that of the intermittency of turbulent velocities across a jet (see
Townsend, 1976; compare also with Eidsvik, 1980). In a fixed frame of reference 7, (x) can be as low
a3 0.65 even at the axis of the plume (Csanady, 1973) and much lower at the fringes, showing the
pronounced effect of meandering (see also Fackrell and Robins, 1982; Jones, 1983). The fact that in
a moving frame formulation the intermittency factor is likely to be near unity for much of the field
is a certain advantage of this description. Indeed, when using a frame of reference attached to the
centerline of the plume, v, . =~ 1 everywhere is an acceptable first approximation. In this way we assign
all intermittency effects to meandering: they assumed “bulk intermittency” effects. Seeing this from
an alternative viewpoint, we define the instantanous plume through the condition Yre = 1.

Plume meandering is described by the spatial probability density function of the position of the

center of mass:
Py (x,t) = Prob {at time ¢, b(t) has its endpoint in the volume element dx surrounding x}
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Py (x,t) and F,(C,b,x—b, t) are statistically independent in general and thus the following convolution

relation connects F, F,, and P;:

F(C,x,t) = /

F,(C,x,x — b,t) P(b,t) db (45.1-8)
allb

As a consequence of this general relationship, we have a similar connection between pdf’s (for contin-

uous F,’s) and non—central moments of the ensembles {c} and {c,}:
(e (x,8)) = f (e (%,% — b, £)) Pe(b, £) db (45.1—9)
allb

As far as Pi(x,t) is concerned, this pdf is typically approximated by the probability density
function for a fluid particle’s location at time ¢, in a turbulent field, ¥(x,t). (See Chapter 6). Thus
Py (x,t) can be expressed as the product of:

o the pdf that the center of mass was at x' at ¢/, P (x',t'), integrated over all possible starting

points x'.

¢ the transition probability density for a fluid particle in the turbulent field under consideration

Q(x,tjx’,t') = Prob{if the particle is at x’ at ¢’ it will undergo a displacement to x at t}. (This

probability will be introduced formally and discussed in more detail in Chapter 8 where it is

denoted by G.)

Pux,t) = /_ : /_ Z /_ : fo " Qo i, ) Pu(, ) ! i

Invoking initial conditions (at ¢/ = to = 0) for a point source located at x, we have

Pk(x,t)=/_: /_: /_: /:Q(x,tlx',t’)cf(x’—xo)dx'dt’

and therefore
t
Pert) = [ Qo tho, ) at
)

The analytical form of the transition probability density Q(x,t/x’,t') has been one of the main con-
cerns of the Lagrangian methodology for describing turbulent diffusion and extensive discussions are
presented elsewhere (see Chapter 6 and Monin and Yaglom, 1975). Gaussian type distributions are the
typical choice for Q; such a choice is theoretically founded for stationary and homogeneous turbulence
where, after a certain time has passed, can be deduced formally if the turbulent velocity fluctuations
are assumed normally distributed (Seinfeld, 1983). In this case Py(x,t) = P, {x) for a steady plume will
also be a Gaussian distribution in x. Then, relations (A5.1-8), (A5.1-9) define convolution transforms

with Gaussian kernel; these are known as Weierstrass transforms (see, e.g., Zemanian, 1968).
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Finally, we must note that equations (A5.1-8) and (A5.1-9) relating the statistics of the ¢ and c,
fields should not be misinterpreted as providing relations connecting analogous statistical characteris-
tics of the ¢ and ¢, fields. Although it is possible to identify the sets of ¢, and c. values by limiting
appropriately the range of the spatial variable Yy for ¢,, the information “carried” by each set is not
equivalent. (See also Fackrell and Robins, 1982, their Section 5.2.) To obtain statistics of ¢ from ¢,
(and vice versa), the spatial (and perhaps the temporal) dependence of v, is needed. Then it can be
shown that from equation (A5.1-8) follows

(c) =Ye (c:) (A5.1 — 10)

and

o =1 <c'.2> +%e (1= 7c) {ea)? (A45.1 - 11)
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APPENDIX A5.2

Discussion of
Earlier Work on Plume Concentation Fluctuations

and the Empirical Model of Wilson et al. (1982ab)

Experimental measurements of short term fAuctuation statistics in plumes under conditions met in
cases of interest to air pollution (either in situ or in wind tunnels simulating the atmospheric boundary
layer) are relatively limited. Most of these works have been reviewed by Csanady (1973) and Hanna
(1984). Useful information of closely related nature can be found in the substantial fluid-mechanical
literature about momentum jets and buoyant plumes (see e.g., the reviews of List, 1982, and Gebhard
et al., 1984).

A brief chronological survey of results that are of direct interest to the present analysis follows:

An early investigation of concentration probability distributions was carried out by Gosline (1952)
who measured “instantaneous” (10s averages) ground level NO and NO, concentrations downwind of a
24 m tall chimney at distances of 5 to 10 chimney heights. His measurements showed the importance of
intermittency effects (he noted that only 14 to 34% of the time there was a measurable concentration
at the site chosen). Also the duration of each NO bearing eddy at a given site was between 30
and 90 s. The non-zero measurements were found to obey a log-normal distribution to a very good
approximation.

Becker et al. (1966) studied plume dispersion and fluctuations in pipe flow. Their experiments
show self-similarity of o2 profiles up to significant dispersion times. The specific characteristics of these
profiles varied significantly with changing properties of the ambient turbulent flow. Self-similarity of
fluctuation intensities was also clearly observed in experiments involving diffusing dye plumes in the
Great Lakes, reported by Csanady (1966) and Murthy and Csanady (1971).

Lognormal curves were found to fit successfully the non-zero data from the Fort Wayne experi-
ments reported in Csanady (1973). An instantaneous line source was considered in this case.

Barry (1971) reported on the continuous monitoring of argon—41 emitted from a reactor stack, his
basic data being in the form of 6-minute averages. From his data Barry deduced a probability density
for these concentration time averages that is of exponential form. The same density was suggested by
Csanady for instantaneous fluctuations from the experiments of Becker et al. (1966)

Ramsdell and Hinds (1971) made limited measurements of short term (38.4 s averages) field
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concentration values in the wake of a continuous near ground level (at 1m) point source of krypton
gas. Near zero readings occupied from 35 to 80% of the time at the locations investigated (200 and 800
m from the source). A replot of the non-zero readings again approximated a lognormal distribution.
Eidsvik (1980) presented data from transverse line sampling of continuous plumes 500 m from the
source. He indicated that concentration distributions at fixed transverse location relative to the center
of gravity of the plume are well described by a log-normal curve for the non-zero measurements. The
parameters of the log-normal distribution are given as functions of the distance r from the centerline

in a cross wind plane. Thus the concentration pdf is of the form

1 1 2
p(C) = m exp {—F(r)[lnC(r) = InCy(r)] }

where Co(r) is the measured time averege concentration that was found to have a nearly Gaussian
profile and o, (r) is estimated to increase from approximately 0,(0) = 1 at the center to o, (r)~=15
at the boundaries of the mean cloud). Eidsvik stressed the fact that the transverse concentration
fluctuation profile was dominated by large scale variations. He also estimated the probability of zero
concentrations F(0, r); he found it to be of the order of only 1% in the interior of the mean cloud and
increase rapidly near the edges.

The most extensive experimental work directly related to atmospheric plume situations — yet still
confined mainly to studies of non-buoyant plumes in neutrally stable environments — is carried by the
research team under Fackrell and Robins for CEGB, UK (see Fackrell, 1978, 1980; Fackrell and Robins,
1981, 1982ab; Robins, 1978, 1979; Robins and F ackrell, 1979). Their research reveals a large amount
of useful information which we use extensively in the following sections, in our critical examination of
the transport equation for 02 to suggest or Jjustify approximation schemes and simplifications of the
mathematical analysis. Some of this work has been incorporated in an emiempirical model developed
by Wilson et al. (1982a,b, 1985) which is briefly discussed in the following.

To summarize briefly the experimental results of Fackrell and Robins ,their major conclusions
were:

(i) Meandering is the most significant source of fluctuation in the near field.

(i) Production of fluctuations is in general significant only very close to the source.

(iii) The variance of concentrations from ground level sources exhibits profiles that are approximately
self-similar in both the horizontal and vertical directions; further, it does not show significant
dependence on source size.

(iv) The same variance for elevated sources initially shows dependence on source size which is eventu-
ally “forgotten.” Horizontal profiles of o2 are again approximately self-similar, but vertical profiles

show a more complicated behavior: In the immediate vicinity of the source they are self-similar;
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then, as the effect of the ground is felt by the dispersing material, they differentiate. In the far

field, however, these profiles become again self-similar, resembling those of a ground level source.

(v) The power law distribution resulting from Gifford’s fluctuating plume model (see Section 5.7)
seemed to provide the best fit to experimentally measured pdf’s in most cases. Log-normal pdf’s

offered the best fit to sets of non-intermittent data.

Other sets of instantaneous plume concentrations measurements are presented by Kimura et al.
(1981) and Jones (1983); in general, the nature of these data is consistent with the observations men-
tioned above. In particular, Jones’ (1983) data reveal an exceptionally strong effect of the meandering
processes, even for downwind, as the total intensities of fluctuations reported are consistently almost

an order of magnitude larger than the respective in-plume intensities.

The theoretical study of the 02 dynamics was originated in the works of Corrsin (1952, 1964) and
Batchelor (1959). Since then, various approaches have been followed in dealing with the statistics,
especially (c) and 03, of scalar fields in turbulent flows (see, e.g. Monin and Yaglom, 1971, 1975;
Hinze, 1975; Bradshaw, 1978; Libby and Williams, 1980).

As far as the specific atmospheric plume situation is concerned, the three major approches com-
monly employed in modeling the mean field, i.e. Eulerian and Lagrangian statistical methods and
dimensional (similarity) analysis (see, e.g., Pasquill, 1974; Seinfeld, 1975) can also be used to model
second moments. In addition, heuristic models focusing on particular characteristics of the fluctuation
problem and empirical schemes, utilizing the information embodied in experimental data, have been

developed and applied in various cases.

Eulerian modeling for the atmospheric plume fluctuations has been pursued mainly by Csanady
(1967, 1973); some relevant work can also be found in Harris (1979) (see, e.g., Thomas, 1979). Csanady
(1967) formulated a model for the mean-square fluctuation of concentration (variance of the concen-
tration field) as a solution of the transport equation for this quantity, in the case of a continuous
point source in a uniform wind, for axisymmetric conditions of spreading. He avoided the problem of
accounting for meandering effects {large scale turbulence effects) by formulating his description in a
reference frame attached to the centerline of the plume, assuming intermittency effects to be negligible
in this reference frame. The crucial assumptions in Csanady’s model are the validity of a (modified)
gradient transfer-type theory for the transport of both the mean and the mean-square concentration
field and self-similarity for both these fields. As already mentioned the latter assumption has been
evaluated to some extent against experiments; for the first see also the works of Netterville and Wil-
son (1980) and Wilson et al. (1982a,b). Csanady’s approach has been extended to less restrictive

conditions in Chapter 5.

Lagrangian modeling has been given more attention in recent years (Chatwin and Sullivan, 1979;
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Durbin, 1980; Lamb, 1981; Sawford, 1982, 1983, 1984,1985; see also Weil, 1985). A particularly clear
exposition of the concepts and methods related to this approach, together with a critical review of the
work on the subject, can be found in Sawford (1983). To summarize briefly, in the works mentioned
o2 is typically related to the joint probability density for particle-pair displacements. Lamb (1980)
and Durbin (1980) used systems of coupled Langevin equations to model the particle pair velocities.
Sawford (1983) showed that the predicted behavior of 02 in dispersing puffs depended critically on
the form of the probability density for particle separations; he further showed that Gaussian densities
for these separations are not realistic because they smooth out the internal structure of the cloud
and the relative fluctuations, thus leaving meandering as the only source for randomness. For further

information, the interested reader should consult Sawford (1983, 1984).

Variances of scalars in the surface atmospheric layer can also be studied through dimensional
analysis following the Monin-Obukhov theory (see, e.g., Panofsky and Dutton, 1984). In a study more
closely related to the point source case Chatwin and Sullivan (1979) used dimensional analysis and
simplifying assumptions to deduce, from the fundamental transport equations, results concerning the
relative dispersion of a puff from instantaneous emissions that had an initial linear dimension. Their
analysis concludes that, in the bulk of the cloud 02 ~ Q2/03%03, where ¢ and op respectively are the
current and the initial linear dimensions of the puff and Q is the source strength, whereas in a central
core region, which decreases with time, fluctuations are of greater magnitude, that is, of order Q2 /o8

i.e., conditioned by the initial puff size. Extensions of this model were proposed and applied by Hanna
(1984).

Among the heuristic formulations, Gifford’s (1959) fluctuating plume model still remains the single
most influential work in the field. Gifford (1959) formulated a model of a meandering Gaussian plume
such that fluctuations in concentration are produced only by the random displacements (meandering)
of sections of the plume, ignoring fluctuations within each section. One cannot deduce predictions for
the detailed structure of the fluctuating concentration field from a model such as Gifford’s, however,
some of its more general conclusions may be sufficient approximations under certain conditions and
have been tested against experiments (see, e.g. Fackrell, 1978). Thus in the immediate vicinity of the
source, where meandering is the more dominant source of fluctuations, it is a valid approximation and
can offer reasonable estimates of the total 2. Two major conclusions of the model are that on the
plume axis the pdf of the concentration should obey a simple power law (see also Appendix A5.3), and
that the “peak to mean” ratio, which is often used to represent observational studies of atmospheric
diffusion along with the mean concentration (the “peak” value of a random variable can be specified
Precisely as a high quantile of the probability distribution of concentration), tends to unity for large
distances (see Gifford 1960, Csanady 1973).
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Extensions of the original model have also been presented in the literature (see, e.g., Scriven,
1965; Diamante et al., 1976). Other formulations that are related to the spirit of Gifford’s model have
been developed by Vencatram (1979, 1983) and Hanna (1984); however, in general the latter schemes
deal with averaged and not instantaneous-pointwise concentrations.

Finally, empirical models utilizing the experimental results of Fackrell and Robins (1979, 1982ab)
have been developed by Wilson et al. (1982ab, 1985) in the form of closed algebraic expressions for

ground level and elevated sources. The general model equations are

)= () ()7 (2)

where
B=2x
for an elevated source, and
_ 4 V21T (1/m)
(ln 2)1/m+1/2

for a ground level source. The dimensionless functions F, G are

6(2)=2{en |- (o) | o [ (2 o)

and

F (—z—) = exp [_ ln2<z;h")m] — aexp [— ln2(£hL)m]
Ox ! v2In 20, v2ln20,

where m = 2.0 for an elevated source and m = 1.7 for a ground level source. A, is defined through

N 1/2
h,:.;,[(a_) +21n2ﬂ2]

h being the source height. The “source” function §(z) and the constants a, 8 are estimated so as to
fit the observations. This model, although its structure is partially defended by physical reasoning, is
definitely an empirical formulation constructed 80 as to describe specific sets of available data. This
reliance on the aforementioned sets of data can be seen as a relative advantage (an “a priori validation”)
of the model; nevertheless, it limits significantly arguments for its applicability in situations not closely
resembling the conditions corresponding to these measurements. Further, even for these conditions
(i.e., neutral atmospheric stability), its parameters are estimated under the condition gy ~ o, ~
z%5 which limits the validity of the model to dispersion times (i.e., downwind distances from the
source) large enough for this assumption to hold to a sufficient approximation. However, the major

disadvantage of this model is that from the nature of its source data it estimates values of o2 that
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contain contributions from both internal fluctuations and partially “filtered” random meandering (a
portion of meandering processes related to very large time scales is “cut off” as the measurements are
typically 1hr averages). Actually, Fackrell and Robins (1982ab), commenting on the data on which
the model is based, say that their analysis “shows meandering to be the main source of fluctuations.”
This fact about the model does not allow its application to situations where only internal fluctuations
effects must be considered, as, for example, in modeling nonlinear chemical processes in plumes.

Far downwind however, where internal fluctuations dominate the value of 02 the model could be an

acceptable scheme for such applications.
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APPENDIX A5.3

A New, Simple, Model
for the Probability Density

of Instantaneous Plume Concentrations

The (experimentally supported) lognormality of instantaneous plume concentrations in the me-
andering frame of reference can be directly combined with the closed form solutions that we now have
available for both (c,) (the Gaussian type formulas) and ¢2_ (from the LPF model), to produce pdf

curves for the concentration, at each point inside the instantaneous plume. Indeed, the parameters of

the log normal pdf

1 (C —pr)?
Loy = exp |—~— T2/ A5.3-1
0= oo = (455-1)
are directly related to {(e,), oZ,, at each point, through
gL = 21n(e,) %m (ten? +02,) (45.3 - 2)
of =1n ((c,)* + 0%,) ~2In{e,) (45.3 — 3)

Thus, substituting (A5.3-2), (A5.3-3) in (A5.3-1), one has PL(C) as a function of position (relative to

the moving frame) inside the instantaneous plume:

77 (C) = pL(C; 2, 4y, 2,)

For ranges of the downwind distance z where the profiles of {¢,) and o2 are self-similar pE

becomes independent of z with the introduction of the transformation

= A5.3 -4
X~ o, ( )
where (co), is the expected concentration at the instantaneous centerline. Then
PF (Xri ¥ry 2) = {co), pF (L; z, yr, zr) (45.3 — 5)
{co),
Introducing the relations (5.2-12) (Chapter 5) one obtains
2
f2
In(XV+g
Ly .» 1 [ ’ ( f

pr (X3 7) = (A5.3—86)

w5 7| ()]
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where f(f), g(7) are estimated through the Gaussian and the LPF Models respectively (Chapter 5,
Section 5.3). For this choice of f and g the form of the resulting pdf is shown in Figure A5.3-
1 at dimensionless distances # = 0,0.5,1.0 and 2.5 from the instantaneous plume centerline. The
parameters used to calculate g are the “most typical ones” (i.e., p=0.5, Ay = 1.5) and a centerline
value of g of order unity is assumed. The figure shows the increasing probability of near-zero x,, and
the corresponding movement of the mode of the distribution, equal to exp(pr — 02), towards zero, as
one moves from the centerline to the edges of the instantaneous plume.

The rate of the relative dispersion process (i.e., the value of the exponent p) is the most important
factor in determining the shape of the pdf at a given dimensionless distance from the centerline. This
results from the fact that the overall production of fluctuations up to a given downwind distance is an
increasing function of p. So, intuitively, one expects the resulting pdf to show “increasing randomness”
for the values x, for increasing p. This indeed appears in Figure A5.3-2 where the pdf at # = 0.0 is
shown for the three different values that, according to the theory of two-particle dispersion, are assumed
by the exponent p at the different stages of dispersion, i.e., p = 1.0, 1.5, and 0.5. For increasing p the
tails of the pdf cover more extensive area in the pE — xr graph and values of Xr very close to zero (as
well as values x, > 1) become more probable than for lower p. If p could approach zero the most
probable values of x, would occur in the vicinity of its deterministic expected value.

The LPF model parameters w has an effect that is roughly the opposite of p. Figure A5.3-3 shows
the effect of changing the value of w on the pdf at the centerline. Low values of w result in increased
randomness and the probability of near zero values of Xr rises. For larger values of w the pdf mode
moves towards the expected centerline value (xr =1) and for w — 1 the pdf reduces to a delta function
at x, = 1 (since for this value of w the LPF model “places” the production of fluctuations exactly
at the point where the calculation is performed, thus no fluctuations have diffused to the centerline).
These results are easily extended to the behavior of the pdf at points not on the centerline. It must be
made clear at this point that, whereas the dependence of the pdf on the value of p reflects the physical
mechanism by which fluctuations are produced and transported, the respective dependence on the
values of w results simply from the structure of the LPF model and the artificial description of the
Physical processes embodied in it. Knowledge of this dependence, however, allows the proper choice
and adjustment of this parameter for a given physical situation when some experimental information
regarding the pdf is available.

The general convolution relation (A5.1-8) can now be used for the estimation of probability
densities for the instantaneous concentration C' observed with respect to a fixed frame of reference.

For convenience we define the dimensionless fixed frame concentration at (z,y, z) by

X= Ty (45.3 - 1)
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Figure A5.3-1
Probability p, of the instantaneous dimensionless concentration Xr

in the meandering frame of reference

at dimensionless crosswind distances r/o = 0.0, 0.5, 1.0, 2.5 from the instant. centerline
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Figure A5.3-2
Effect of dispersion intensity (expressed via the parameter )
on the probability p,

(calculations for r = 0)
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Figure A5.3-3
Effect of the parameter w on the probability p,

(calculations for r = 0)

- 319 -




-

PART IB APPENDIX A5.3
(Notice that the concentration scale addopted above is again the expected concentration at the in-
stantaneous centerline and not at the mean centerline.)

To apply (A5.1-8) we consider for simplicity the isotropic case with relative dispersion parameters

8y = 85 = 8 and meandering parameters my = my = m. Then, for Gaussian Pk(by,b,) it can be

shown that (A5.1-8) becomes

2r 0

o~ (X§ R) = i/ooo 2’rB’exp (—%) pr (x;R, B, ¢) d¢dB (A5.3 - 8)

where

and the argument £ of f, g is

F= ('—:‘-) \/R2+Bz—2BRcos¢,og¢<2qr

Thus, (A5.3-8) gives the pdf of instantaneous concentrations in plumes relative to a fixed frame,
at the dimensionless distance R, accounting for both the effects of meandering and internal plume

fluctuations.

The estimates provided by (A5.3-8) can be compared directly to the results of Gifford’s (1959)
fluctuating plume model where all the randomness in the concentration field is attributed exclusively
to the process of meandering. In the case of Gifford’s model the pdf of instantaneous concentrations
in the moving frame corresponds to a delta function located at the expected value of C (since in this

frame the concentration is assumed equal to its expected value in all realizations):
Pr(Ciz, %, 2) = p5(Ci 2,90, 2,) = 6 (C(z,9r,2r) — (er(z, 3r, 2¢))) (A45.3 —9)

For this (most ideal) choice of p, equation (A5.3-8) can be integrated analytically to give, for

isotropic dispersion and unbounded atmosphere,

5y B) = (L) ormyr-a o [ _ B2 s 1 _
2°(x; R) (m) X exp 5 I - 2In % (45.3 - 10)
This relation on the mean centerline reduces to
~ 8\2 o/m)? -
PGR=0)= (E) x(e/m) -2 (45.3 — 11)

The above equations, directly derived through the present formalism, are exactly the classical

results of Gifford (1959).

- 320 -



P

™y

7

~

PART IB APPENDIX A5.3

Figures A5.3-4 and A5.3-5 show the estimates of the classic fluctuating plume model and of the
combined lognormal internal pdf-fluctuating plume model, with parameters provided by the LPF
formulation, for m/s = 2.0 and m/s = 1, respectively, on the mean plume centerline. As expected,
the integrated model “adds randomness” to the concentration characteristics predicted by the simple
fluctuating plume model for m/s = 2.0, thus giving higher probabilities for near-zero values of x
and reducing the probabilities for near-expected {x = 1) values. The effect is more pronounced as
m/s — 1.0; for m = s Gifford’s model gives equal probability to all values of x. Clearly in this limit
the internal fluctuations are dominant in determining the probabilistic characteristics of the plume
concentration field, and Gifford’s model is insufficient. For s 3> m the LPF model can be used to

predict total randomness on a “stand alone” basis.
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Figure A5.3-4

Probability density p of the instantaneous dimensiomless concentration y
in the fixed frame of reference on the mean centerline for m/s =2
(solid line: calculations using the LPF-lognormal model)

(dashed line: calculations using Gifford’s fluctuating plume model)
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P (x;R)
P (5, R)

_ _C

Figure A5.3-5
As in Figure A5.3-4 for m/s =1
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