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CHAPTER 6

Chapter 6 contains

* an introduction to the formal description of fluid particle dispersion (in both
inertial and non-inertial frames) via stochastic and deterministic Green’s func-
tions,

e a discussion of the modified A.D.E. in relation to other dispersion models,

e a review of time-domain methods for determining relative dispersion parame-
ters (including similarity analysis, Langevin equation methods and conditioned
motion methods),

e a discussion of spectral methods for determining relative dispersion parameters

and presentation of an iterative filtering algorithm that utilizes observed atmospheric

spectra for this objective.
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CHAPTER 6

PARAMETERIZATION
OF RELATIVE DISPERSION

6.1 INTRODUCTION

This chapter discusses some aspects, both formal and practical, of the multi-scale
turbulent dispersion problem, as it appears in the overall reactive plume phenomenon.
The treatment of dispersion adopted in the TRPM formulation is explained here in
more detail than this was done in Chapter 2.

The present chapter is intended as a tutorial introduction to the subjects of
absolute and relative diffusion (in particular atmospheric), and a brief review of the
various modeling approaches in the area, which cover an enormous range, from simple
dimensional and similarity analyses, to sophisticated formulations involving complex
numerical schemes and methods of functional analysis.(*) What we intend to do here
is, in parallel to presenting and discussing the formulations of the particular schemes

proposed for use with the TRPM, to bring together and summarize various concepts

* Among many excellent general introductions to the subject of turbulent transport we
mention Tennekes and Lumley (1972, Chapters 7 and 8), Csanady {1973), Monin and
Yaglom (1971, Section 10) and Hinze (1975, Chapter 5). Some of the more advanced
methods of analysis are discussed in Leslie (1973, Chapters 8 and 12) and Monin and
Yaglom (1975, Section 24). The work of Monin and Yaglom focuses in particular on
atmospheric dispersion; for other specialized analyses of this topic see Seinfeld (1975,
Chapter 6; 1983), Hanna et al. (1982), Pasquill and Smith (1983) and Tchen (1984ab).
Further information directly related to the atmospheric dispersion problem can be found
in Panchev (1971), Haugen (1973, 1975), Berlyand (1975), Vinnichenko et al. (1980),
Nieuwstadt and von Dop (1982), Plate (1982), Randerson (1984) and Panofsky and Dut-
ton (1984).
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that are useful for a better understanding of these formulations, the conditions for
their validity, and their relation to other approaches. Thus this chapter should be
seen not only as an elaboration on a particular component of the TRPM but also as
a guide to the relative dispersion literature, linking ideas and methods that can be
found scattered in a variety of sources.

Formally, description of dispersion in the TRPM was based on the linear stochas-
tic Eulerian Mixing Operator LM, as given by equation (1.3-4), whose “ensemble
mean action” (equation (1.3-7)) was approximated by the action of the “modified
K-theory operator” L} (-) (also linear), given by equation (2.3-2), on the mean con-
centration field (c).

These operators were assumed capable of describing dispersion in a frame of
reference following the meandering motion of the plume centerline. Some further
discussion is needed on this point, which may be a source of confusion. Our ap-
proach i3 Lagrangian, in the sense this term has been used to describe a certain class
of air pollution models (trajectory models) but at a scale smaller than relevant to
those models. To make this more clear we must emphasize the fact that the term
“Lagrangian description” is in general used in a very loose manner in air pollution
modeling. In fact, in the trajectory models mentioned above the “Lagrangian descrip-
tion” concept applies only to the process of advection by the mean wind and not to
random movements caused by the smaller scales of atmospheric motion. Turbulent
transport processes inside the large scale (macroscopic) control volume (between the
different computational cells) that follows the trajectory are most often described in
Eulerian terms in these models, typically through conventional K theory (see, e.g.,
Appendix A1.2) with all the subsequent limitations (see, e.g., Corrsin, 1974). Thus
these models are essentially hybrid formulations. (The governing equations in the
moving frame are Eulerian equations with transformed coordinates.) A “fully” La-
grangian description of an advection-dispersion field would be formulated in terms
of fluid particles (see also Chapter 4) and would necessarily be statistical in nature.

(This kind of approach would perhaps conform better to the essense of Lagrangian
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methodology of continuum mechanics, which focuses on the kinematics and dynamics
of material points rather than on finite control volumes and their infinitesimal limit-
ing approximations to describe processes in continua). However, the whole problem is
essentially one of terminology and semantics and as long as the concepts and assump-
tions involved are clearly identified there should not be confusion in using the term
“Lagrangian methodology” either to refer to the description in terms of fluid particles,
which are subject to the entire spectrum of motions existing in the field under obser-
vation, or to the formulation of transport-balance equations in a frame of reference
that moves along some, appropriately defined “mean flow.” We could call these two
descriptions “micro-Lagrangian” and “macro-Lagrangian” respectively, understand-
ing that the latter might be a hybrid approach; then the dispersion scheme of the
TRPM could be called a “meso-Lagrangian” hybrid description (not to be confused,
of course, with meso-scale air pollution models) in the following sense: the moving
frame of reference follows not only the “mean” flow but is also affected by an addi-
tional portion of the velocity spectrum (of higher frequency than what is included in
the estimation of mean velocities), i.e., the portion that “causes plume meandering.”
The effects of this portion of the spectrum can only be estimated in a probabilistic
fashion. In this frame one can form Eulerian type equations accounting for trans-
port due to the rest (“unused”) portion of the motion spectrum. Nevertheless, we
will not adopt any further use of the macro-, meso- and micro- prefixes neologism to
discriminate between different Lagrangian methodologies, hoping that the concept of
the advected-meandering frame (with the axes always parallel to fixed directions) has
been sufficiently clarified.

A final question (that has already been addressed in earlier chapters) in under
what conditions does the fixed frame form of the mixing operator (in either its stochas-
tic original version or in any approximate form that results from closure) remain a
valid representation in the advected-meandering frame. A similar question appears
in Lagrangian Trajectory model formulation (see Liu and Seinfeld, 1975) where the

ADE is assumed valid, in its fixed frame form, in the transformed coordinates. There
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the answer is obtained by examining the equations resulting from a straightforward
Galilean transformation of coordinates. The requirement is that the local curvature
of the plume centerline is locally small. This limitation exists also in our approach as
far as the mean centerline trajectory, determined mainly by buoyancy effects, is con-
cerned; however one should expect the above requirement not to be violated except
in extreme cases.

Hence the main question here is: what is the effect of the random meandering
motions of the moving reference frame? This question is discussed in Section 6.3 where
we justify the assumption that, at least for homogeneous and stationary turbulene,
these motions should not affect the form of the mixing operator (although of course
they alter its parameters).

In the following we proceed in a more detailed analysis of the relative dispersion

and meandering concepts and of the modified ADE model.
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6.2 BASIC LAGRANGIAN CONCEPTS
AND FLUID PARTICLE DISPERSION

6.2.1 Lagrangian Methods

Proceeding from the stochastic representation of the mixing operator (1.3-5) to
the 1st order (non-local) closure scheme given by equation (2.3-2), involving coef-
ficients that depend on dispersion time, cannot be justified on a strictly Eulerian
basis (via, e.g., a conventional mixing length~gradient transport hypothesis). This
would result to a local, dispersion-time independent, scheme, i.e. a differential equa-
tion model with eddy diffusivities that are properties of the flow field and not of
the particular dispersion process. Furthermore, the associated practical problem of
estimating the appropriate values of the plume dispersion parameters and the re-
lated diffusivities in terms of statistical characteristics of the velocity field represents

another essential aspect of the modeling scheme for dispersion.

Having set the a priori requirement that the operational form of the dispersion
model adopted by the TRPM should be at the level of the complexity of the ADE, in
combination with the necessity to account for the non-local character of dispersion,
leads us to consideration of Lagrangian schemes. Indeed, the Lagrangian descrip-
tion of dispersion (the term to be exclusively associated in the following with the
representation of flow in terms of fluid particles) inherently offers a more general

perspective in a first order description of the phenomenon than a straightforward

Eulerian formulation.

The statistical fluid particle description of turbulent dispersion, originated by

Taylor (1921), has been pursued via three major approaches.

(a) In the direct kinematic approach, that follows the original analysis by Taylor, the
moments of the displacement of a fluid particle are related kinematically to the La-

grangian velocity correlation functions. Since typically Eulerian and not Lagrangian
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correlations are more conveniently measured and are available, the basic fundamen-
tal problem encountered in this approach is the derivation of the Lagrangian velocity
correlation from the respective Eulerian function. Although the original exact anal-
ysis was limited to the case of homogeneous stationary turbulence, the kinematic
approach has been extended over the years to approximate various more realistic
situations (see, e.g., Pasquill and Smith, 1983; Hunt, 1985). A point that needs to
be mentioned here (and on which we will further elaborate in Section 6.5) is that
applying the direct approach in the frequency (or wavenumber) rather than in the
time domain, and the consequent use of spectra instead of correlations, offers some
advantages, both conceptual and computational, that can facilitate relative dispersion
parameters estimation.

(b) In the second approach, originated by Batchelor (1949, 1952), one tries to deter-
mine the transition probability densities of the fluid particles positions, to be briefly
referred to as transition functions in the following. Originally this was done on the
basis of dimensional and similarity analysis, and it was thus limited to idealized flow
fields. From the perspective of current research the essence of this approach is to
construct a “master” equation that gives the evolution of the transition function
in space and time. From a practical standpoint what is necessary is to reduce the
master equation into a tractable form on the basis of reasonable assumptions and,
finally, express it in terms of Eulerian velocity correlation functions. A derivation
of the form of the master equation that most closely resembles the A.D.E., namely
the Fokker-Planck equation, can be found in Seinfeld (1975, Section 6.2.4), the anal-
ysis there being in terms of an appropriate ensemble mean concentration (instead
of the equivalent transition function). One should mention here that according to
the independence approzimation (Corrsin, 1959), to be discussed in the following,
the Lagrangian-Eulerian transformation requires the determination of a weighting
function, which is equivalent to the transition function.

(c) The third approach conceptually lies between the two others mentioned above.

It is based on the use of Langevin equations for the fluid particles velocities and
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although it is more narrow in perspective than the general transition function methods
(*) it seems able to provide more directly simple results relevant to both absolute
and relative dispersion providing at the same time conceptually simple models for
these processes. This approach was originated by Obukhov (1949) and currently
receives revived interest, in particular in connection with relative dispersion models

(see Sections 6.42, 6.4.3).

In the presentation that follows we will first briefly review some fundamental
concepts related to the approaches outlined in the preceding paragraphs and also
introduce the problem of relative dispersion. In the following sections we will use
this information, first to examine the transition function approach in order to explain
where the modified ADE adopted in the TRPM formulation (essentially of course a
Fokker-Planck equation) stands conceptually in this general Lagrangian framework,
and what assumptions are involved in its construction, and then to treat the practical

aspect of relative dispersion parameters estimation.

6.2.2 Fundamental Concepts and Definitions
Let x = (z1,%2,23), u = (u1,u2,us) be the Eulerian coordinates and velocities
in the flow field under consideration and y = (yl;yg,ys), v = (vy,v2,v3) the corre-
sponding Lagrangian (fluid particle) quantities. An elegant method of defining u and
v flelds is to consider them as special cases of a generalized or Kraichnanian velocity
field w (see Leslie, 1973). The Kraichnanian velocity w (t|x,t*) is defined as the
velocity at time ¢ of fluid particle that was at x at time ¢* (t is called the measuring

time and t* the labelling time). Then the Eulerian velocity is identified with w for

t=1*:

u(x,t) = w(t|x,t) (6.2—-1)

In fact this approach, in its most common form, is equivalent to a Fokker-Planck equation
governing the transition function of the derivatives of the fluid particles positions (i.e.
the Lagrangian velocities). For a brief but very informative discussion of the relationship
between the Fokker-Planck and Langevin equations methods of description of random
Processes see van Kampen (1981, Chapter VIII)
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and the Lagrangian velocity is identified with w for ¢ > t* with t* = ¢, (and x = xo):
v (Xo, t) =W (tho, to) (6.2 — 2)

The assumptions regarding the nature and properties of the fluid particles in a
general Lagrangian analysis may vary widely. In the present study we consider for
simplicity “ideal volume fluid particles” (see also Chapter 4) and ignore any transfor-
mations on the identity of these particles that may be due to molecular level processes.
If we assume that the differential volume element dx® “surrounding” the position co-
ordinates X can be “occupied” by one particle only at a time, we can view these
particles “marked” (or uniquely identified) by their position in Eulerian coordinates
at some fixed labelling time instant to. However this would be inconsistent with the
concept of the ideal instantaneous point source. To avoid further elaboration of this
point here (and of the associated need to properly define continuity requirements) we
proceed as follows:

Suppose that during the total period of observation (say from time 0 to t) a total
number of N marked particles each carrying mass m of some given species, has been
introduced (and remains) into the continuum field under consideration and each one
is assigned an abstract “identity number” k = 1,2,..., N (which remains unchanged
through the entire “life” of the fluid particle). If the particle with “identity number

k” was at xo at time #o (*), then its Lagrangian position vector will be denoted by

the equivalent notation

¥ (X0,8) =¥ (tx0,t0) = y® (2)

Two points are worthy of mentioning here:
(a) Different initial sets of assumptions regarding the fluid particle concept may be

more useful in specific situations. Thus for example one may want to apply the

A more precise expression of this statement would be: “in the differential volume element
surrounding the coordinate vector,” but in the following we will avoid these rather tedious
clarifications assuming that the meaning of statements like this are obvious.
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Lagrangian analysis to the case where an arbitrary number of fluid particles can
simultaneously occupy the same position coordinates, a condition that may be con-
venient when one wants to model interactions between the fluid particles, or one
may consider volume particles (see Chapter 4) that after any finite time interval since
their introduction in the flow field they obey conventional volume and mass continuity
constraints.
(b) The principles of the analysis to be presented here are valid if other properties of
the fluid particle - such as e.g. chemical composition, temperature etc. - besides its
spatial-temporal coordinates are taken into account. These properties can be viewed
as additional coordinates in which case the Lagrangian position vector y will follow
the evolution path of the particle in an estended configuration space that incorporates
these properties as extra dimensions. The only such property that we are going to
use in the present analysis is the age of the fluid particle, i.e. the time elapsed since
its introduction in the flow field. Identifying the subset of all particles with the same
age is useful not only in dealing with instantaneous releases but also with respect to
continuous releases where advection dominates turbulent diffusion in the downstream
direction.

Now, having the possibility of the aforementioned generalization of the present
analysis in mind, we return to the more standard version of the problem.

The stepping stone for
(i) a formal development of the transition function approach and,

(ii) establishing and understanding the relationship between Eulerian and Lagrangian

methodologies,

is the introduction of the quantity

¥ (%, t[x0,t0) = ¥ (x,t) = 6 [x — y (%o,t)] (6.2 —3)

subject to the initial condition

¥ (x,t[X0,t0) = 6 (x — %) (6.2 — 3a)
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which can be identified with
o the fundamental “conservative characteristic” of Monin and Yaglom (1971, p.
534),
e the “Lagrangian position function” of Leslie (1973) (see also Batchelor, 1952),
e the “microdistribution” or “nstantaneous transition function” of Jiang (1985),
o the “stochastic Green’s function” of Adomian (1963, 1983) employed by Seinfeld

(1983) in the description of turbulent dispersion,
and is also conceptually identical to

o the “fine grained density function” of quantum statistical mechanics that has also
been employed in studies of turbulent fluid mechanical phenomena (Lundgren,

1967; O’Brien, 1980)

(There are other terms that are also appropriate for 1 — e.g., stochastic Euclidean
propagator, stochastic resolvent kernel, etc.).

Some comments are necessary at this point regarding the nature of 3 (x,t|x0,t0).
This quantity is a function of the position variable x and a functional of the random
field y (x0,t), depending on the structure of the entire ensemble of values y can
assume. Consider a fixed value of x, say xr and fix (xo,t). Then ¥ (xr,tx0,t0)
is zero if y (xo,t) # XF in any one realization of the random field y and infinite if

Y (Xo0,t) = xp. For a given realization 1 has all the properties of a pdf, including

normalization since
/’(/) (x,t|x0,%0) dx =1

by the definition of the delta function.

Also the n-th moment of x is by direct calculation equal to y™ (xo0,t) for all n. In
other words, the fine grained density or microdistribution is a device through which
each and every realization of the random field can be expressed in a pdf-like manner.
However it must be realized that it is a generalized and not an ordinary function.

Now, appropriate averaging of v (x, tlﬁo, to) leads to the rational construction of

various quantities employed in the analysis of turbulent dispersion:

- 335 -



PART IB CHAPTER 6

(I) Averaging 3 (x,t|Xo,%0) over all possible starting positions (xo,to) (i.e. averaging
over all particles k) for arbitrary but fixed (x,t) produces a random function of (x,1),
T (x,1)

_ S J ¥ (x,t|x0,t0) dxodto

¥ (x,t) = [T dxdic (6.2 — 4a)
or B 1 N
Pxt) =5 ¥ (x1) (6.2 — 4b)
k=1

that can be identified with the random fluid particle concentration (and within an
appropriate factor that accounts for the dimensions involved in the definition of con-
centration used) with mass or molar concentration. Thus, in the idealized case under

consideration, the random instantaneous mass concentration at (x,t) will be
¢ (x,1) = Nm (x,1)

When the particular random realization corresponding to a random value of (x,t)

(i.e. for a given random choice of (x,t)) is to be specified, say through an index a,

we will use the left subscript notation

¥ (x,t) = o¥ (x,1)

Nevertheless, it must be clear that (even when this notation is not employed) ¥ (x, t)
is different for every realization of the turbulent field.

(IT) Ensemble averaging 1 (x,t) over all possible realizations of the dispersion field
(essentially over the ensembles of y-trajectories corresponding to all initial (x0,t0))
produces the probability density function that a fluid particle (i.e. any fluid particle)
will be at x at time ¢, which is equivalent to the ensemble mean (number) concen-

tration of fluid particles at (x,t). The corresponding mean mass concentration will
be

(e (%,1)) = Nm (3 (x,1))
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(IIT) Ensemble averaging 3 (x,t|xo,t0) for fixed (xq,t0) produces the deterministic
transition probability function G, giving the probability that a fluid particle, starting

from x¢ at time tg will be at x at time ¢:

G (x,t|x0,t0) = (¥ (x,t|X0,t0)) (6.2 — 5)

G is of course the (conventional) Green’s function for the forward diffusion of the
mean concentration field. Similarly, ensemble averaging v (x, t|x0,t0) for fixed (x,t)
(i.e. over all trajectories passing from X at time t) produces the Green’s function for
backward or reversed diffusion, G (xo,%o|x,1).

Thus, when we have adequate information about ¢ we can (in principle) solve
the one particle dispersion problem completely. The dynamics of of ¢ (x,t|x0,t0) are

governed by the generalized conservation (Liouville) equation (*)

a 2
— . N _ ) = 6.2—6
{o +wstr) o b v ot =0 6:2-6)
which has the following Eulerian (¢ = ¢*) form
9 i) 2V (xtixt) =0 (6.2 — 6a)
at 7 9z, e
and the following Lagrangian form (¢* = ¢ = const)
o
v; (Xo,1) T:ﬁ (x,t|x0,t0) =0 (6.2 — 6b)
Zj

Thus the essence of “approach (b)” of Section 6.2.1 is to introduce appropriate closure
approximations in (6.2-6a) in order to finally derive a solvable master equation for G
(see Section 6.3.2).

Knowledge of G allows direct calculation of the mean concentration field (c) at
{x,t), given its spatial distribution at ¢/, as long as this is affected solely by linear
processes, through the “fundamental Lagrangian theorem”

(c(x,t)) = /G (x,t|x',t") (¢ (x',t')) exp [— t k(") dt"] dx'+

t!

We note here that in more complicated Lagrangian models, that incorporate interactions
between the fluid particles, the dynamics of the instantaneous transition function will be
governed by appropriate extensions of the Liouville equation, analogous to the Janossy
equations described in Srinivasan (1969).
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t t
+ / G (x,t}x,t") S (x',¢") exp [— k(") dt"’] dt"dx’ (6.2 1)
t! "

where S represents the spatial-temporal distribution of sources and %k the rate of
linear removal of the species with mean concentration (c).

At this point a digression is needed in order to clarify that, formally, the above
equation must be written in terms of the Green’s function for backward diffusion, i.e.
with the point (x,t) determing the constraint of the conditional density, as realized
by Corrsin (1952) — see also Tennekes and Lumley, (1972, p.236). Nevertheless, for
homogeneous-stationary turbulence, i.e. for the case to which most of the theoretical
knowledge on turbulent dispersion is typically confined (and the starting approxima-

tion for more realistic descriptions),
G (x,tle,to) =G (Xo,tolx, t)

as it was formally proved by Corrsin (1972) twenty years later. Thus the above
requirement becomes a matter of notation rather than of substance; the same however
is not true with regard to many-particle transition functions and the estimation of
higher concentration moments (see relevant discussion later in the present subsection).

Another important point is that G also provides the connection between the
Lagrangian methodology and the approaches (typically Eulerian) that result directly

in some governing equation for {(c). Indeed if G and (c) are related through (6.2-7),

and G is governed by

‘93—?+£G=0 (6.2 —7a)

where L is an arbitrary linear operator, then (c) must obey the equation

ad{c
%2 + L{c) + k(t){c) =S (x,t) (6.2 — 7b)
At this point it is useful to introduce the Eulerian space-time and the Lagrangian
temporal velocity correlation functions (tensors), whose elements for stationary and

homogeneous turbulence are
Rﬁ' (x —xo,t — to) = (u; (x,t) uj (xo,t))
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R (¢ —tolxo) = R (t — to) = R (r) = (vi (%o,t) v; (X0, t0))
(Typically the turbulent velocity fluctuations about the corresponding ensemble mean

values are used in these definitions.) Now, the formal relation between Rg and Rf'j

can be obtained by writing R,-Lj as
RE (£ — to) = (1 (x =¥ (Xo0,2) ,#) us (o, t0)) =
- f (s (%,8) 1 (%0,8) 8% — ¥ (o, 8)]) = dx

- / (s (%, £) uj (X0, 2) ¥ (x, ¢|Xo,t0)) dx (6.2 - 8)

The above equation reduces to an “applicable” form through a hypothesis intro-
duced by Corrsin (1959, p.162), and known as “Corrsin’s conjecture” or “independence

hypothesis,” which, in the present framework of analysis, can essentially be stated as
(i (6,8) 15 (X0,t) % (%, tx0,0)) = (s (x,8) u; (%0, 1)) (¥ (,t[xo,t0)) (6.2~ 9)

The conditions under which this hypothesis should be valid, as well as corrections for
other conditions, have been studied and discussed by Weinstock (1976).
Introducing (6.2-9) in (6.2-8) one has

R (t—to) =/R5 (x —x0,t —20) G (x — Xo,t — to) dx (6.2 — 10)

From a practical viewpoint thé applicability of (6.2-10) is limited by our lack of knowl-
edge about Gj; in fact the most straightforward methods available for theoretically

predicting G are based on an a priori knowledge of R,’;
Finally, to complete this summary of basic concepts, we mention that two-particle

(and many-particle) stochastic (and deterministic) Green’s functions are similarly
defined:

¥ (x(l)’tl;x(z)’t2lx(()1),t01;x((,2),t02) _
=4 [x(l) —y (t|x(()1),t01) ;x(z) —y (t|x((,2),t02)]

- 339 -



Ty

PART IB CHAPTER 6
G (X(l), tl;x(z),tzlx(()l),t01;xc()2)ato2) - <¢ (x(l)’tﬁx(z),hlxc()l), t01;x(()2),t02)>

However the use of many-particle Green’s functions (e.g., for the calculation of two-
point covariances of concentration through equations similar to (6.2-7)) is associated
with some subtle problems, relevant to the concept of backward diffusion, that have
often been neglected in atmospheric dispersion modeling (see Sawford, 1983b, for
a relevant discussion). Indeed, contrary to what holds for single-particle transition

functions, for the corresponding two-particle functions one has
G (x(l),tl;x(z),tzlx(()l),t01;xc()2),t02) #G (xt(,l),t01;x((,2),toglx(l),tl;x(z),tg)

even for homogeneous-stationary turbulence. However, in connection to relative dis-
persion, that can be directly seen as a two-particle problem, these subtleties are
more relevant to modeling higher order moments, whereas mean concentrations re-
quire only appropriate “distance-neighbour” functions — to be discussed later — that
are obtained through integration of the two-particle transition functions. Thus, by
examining dispersion relative to the meandering center of mass, we essentially use

always single-particle Green’s functions.

6.2.3 Fixed and Meandering Frame Representations:
Position Moments and Relative Dispersion
We now proceed to define and discuss some quantities that are essential in the
description of relative or two-particle turbulent dispersion (equivalently dispersion
with respect to the center of mass of dispersion or with respect to a meandering
frame). Use of the stochastic and deterministic functions defined in the previous
section allows a formal construction of these definitions. For simplicity we confine

attention to instantaneous releases(*), or, equivalently, to subsets of particles that

A continuous release will be viewed as a sequence of instantaneous releases. For a (slen-
der) atmospheric plume in particular, where dispersion is negligible compared to advec-
tion in the direction of the mean wind, every cross-section of the plume perpendicular to

its centerline (of differential thickness) can be seen as the result of such an instantaneous
release.
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have the same age. Without any loss of generality we set xo = 0, tg = 0 (and assume
this implicitly included in the definitions that follow).
(I) The position of the center of mass of the marked fluid particles in any instanta-

neous (say the a-th) realization of the dispersion field will be

oY (t) = f a? (%,t) xdx (6.2 — 11)
Clearly this quantity is a random function of time. An alternative interpretation of
oY (t) is that of the random spatial average position of any single fluid particle in the
o-th realization.
(IT) The ensemble average position of the center of mass of all fluid particles at time

t (i.e. averaged over all possible positions of all fluid particles) will be

F ) = [x(@w0) ax (6.2 - 120)

¥ ) = / xG (x,t) dx (6.2 — 12b)

When there is no mean flow (or if we consider an snertial coordinate system that

follows the mean flow) (¥ (t)) = 0.

At this point we introduce the following definitions:

o Absolute Diffusion is diffusion with respect to (¥ (t)), i.e. with respect to a
frame of reference with axes that remain parallel to fixed directions and origin
that follows (¥ (t)). Since, for steady mean flow, motion in this frame is given
by a straightforward Galilean transformation of the corresponding motion with
respect to a frame fixed to the ground, we may use the term “fized frame rep-
resentation” for the description of turbulent dispersion in this frame. A more
exact term is “deterministic inertial frame representation.” Here the term “de-
terministic” has been used to discriminate from the representation with respect to

ensembles of inertial frames, each frame moving with constant velocity randomly

— 341 -



/‘

PART IB CHAPTER 6

selected from an appropriate set. This description constitutes a conceptually
subtle but very important approach that will be discussed later, in Section 6.4.2.
o Relative Diffusion is diffusion with respect to the (random) ¥ (t), i.e. with
respect to a frame of reference with axes that remain parallel to fixed directions
and origin that follows the random motion of ¥ (t). This is a “meandering”
or “non-inertial” frame (undergoing random accelerations). (In the following
we will further discuss the terms “two-particle dispersion”, “puff” or “cluster”

dispersion and “conditioned dispersion”.)

(III) The “extent of dispersion” of the systems of fluid particles, in the non-inertial

and inertial frames of reference, will be described by:
(IIXa) a dyadic (2nd order tensor) of instantaneous weighted deviations from the

(instantaneous) center of mass (of course these deviations will be stochastic variables)

- [EP)] = / (% = aF (£) (X = oF (£)) o (%, 8) dx (6.2 — 130)

(Note the use of the indefinite or dyadic product of the deviation vectors in the above
definition).
Now, let

r=x-—,y(t)
and let y(R) be defined exactly as y but in the system of r-coordinates (i.e. y(B) is

the position vector of the fluid particle in the meandering frame of reference). Then

(R) /rr(z,bxt)dx—

/rr< (r+/z,bxt)xdxt)>dr
GB) (r t)—< <r+/¢xtxdxt>> (6.2 — 13b)

(compare Monin and Yaglom, 1975, eq.24.56), to be discussed in the following sec-

tions, and

We define

=] = ([EP]) = (y®y®) (6.2 — 13¢)
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(IIIb) a dyadic of standard deviations from the ensemble average center of mass (a

deterministic tensor)
251 = [ (= (7 (0)) (x— (5 () (B x,0) dx =

2= [ - 7 (0)) (x— (5 () & (x,1) dx (6.2~ 140)

Thus, when the reference frame is chosen so that (¥ (t)) = 0, as is typically done for

the definition of Xijs
[Zi5] = {yy) (6.2 — 14b)
From definition (6.2-13a) now follows that
o [i‘(;%)] = /aa(xat) x
X[x={F @) x—FEN) - (¥ () —(F ) («F (&) — (F (1)) dx

and, after ensemble averaging,

EP] =24l - (T () - T ¥ () - T @)

) 2] = 2] + [547)] (6.2 — 15)
where
8] = (v 0 - 7O ¥ O - F ) (6.2 160)
or, for (¥ (1)) = 0
28] = (o7 (17 () (6.2 - 168)

In other words expression (6.2-15) states that each element of the variance tensor
of the ensemble of positions of all the fluid particles is equal to the ensemble average
of the corresponding element of the tensor of instantaneous spatial variances from
the instantaneous center of mass plus an ensemble mean square deviation of the

individual centers of mass of possible realizations from the ensemble average center of
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mass. More simply, the above states that total (i.e. absolute) dispersion is the “sum”
of relative dispersion and meandering.(*) The situation discussed in the preceding
paragraphs is also depicted schematically in Figure 6-1.

Typically, in atmospheric modeling, the off-diagonal elements of the above ten-
sors, X;; etc., are assumed negligible (see also Seinfeld, 1975, for the relevant discus-
sion concerning K-theory applications). In the present work we have also adopted
this assumption (nevertheless, it should be noted that the analysis of the following
sections is not in general restricted by this approximation). Discussion of its validity
is beyond the scope of this presentation; however, the interested reader is referred to
Tavoularis and Corrsin (1985) for a relevant study.

The diagonal elements of X;; etc. will be denoted as

T =o? (6.2 — 17a)
=) =0}, (6.2 — 17b)
E‘(‘M) = o}y, (6.2 —17c¢)

and are recognized as the absolute dispersion relative dispersion, and meandering
parameters respectively.
Two-Particle Dispersion Concepts
and Distance-Neighbour Functions
(or Special Transition Functions)
In the preceding paragraphs relative dispersion was identified as dispersion with
respect to the instantaneous center of mass of the system of fluid particles. Another
description of the same process is formulated in terms of the separation of two ar-

bitrary fluid particles in the instantaneous release (or two particles of the same age

* This is true for homogeneous-stationary turbulence. In general one can also identify

components of the total observed dispersion due to other effects, such as buoyancy and
shear (see, e.g., Pasquill, 1975; McRae et al., 1982). For an introduction to the dispersive
action of these effects one may consult Csanady (1973) or Fischer et al. (1979) - see also

the discussion of the kinematic analysis of dispersion in Section 6.3 for further relevant
references.
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Figure 6-1
Schematic Representation of

Relative and Absolute (Relative plus Meandering) Dispersion
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in a continuous release). Indeed, it was first perceived by Richardson (1926), and
exploited theoretically by Batchelor (1952), that relative diffusion is closely linked to
the rate at which two individual fluid particles separate. The first analyses of instan-
taneous dispersion were actually in terms of the probability densities of two-particle

separations.

The equivalence between two-particle dispersion and dispersion with respect to
the center of mass in an instantaneous release is implicitly or explicitly assumed in
almost all standard references of the subject of turbulence and turbulent dispersion.
However, there are various subtle points in formally relating the statistics of the
motion of a single pair of particles to the “observable” statistics of puffs and plumes
that are typically attributed to relative dispersion. Many authors simply do not
address this problem; however one can find an informative discussion of relevant
concepts in Monin and Yaglom (1975, pp.536-584 — see in particular pp.551-555,
577). What needs to be stressed here is that the equivalence between single pair
motion and relative dispersion is strictly valid only for homogeneous turbulence and

after the fluid particles have “forgotten” their initial separation (see also Fischer et

al. 1979, p.75).

Studying the separation of a pair of fluid particles is of course, always equiv-
alent to studying the random motion of a single particle (labelled, say, #1), with
“fixed” frame position vector y(1), in a (noninertial) reference frame Os that follows
the random motion of another arbitrary particle (#2) with “fixed” frame position
vector y(2), (in the same way the meandering frame that was introduced earlier fol-
lows the motion of the instantaneous center of mass). The first step towards defining
the equivalent of the inertial frame transition function G in the Os frame (which
of course gives the expected concentration in the random non-inertial frame 0s), to
be called G(9), is to integrate the joint (two-particle) deterministic Green’s func-

tion G (x(l),t1;x(z),t2|x((,1),t01;x(()2),t02) with respect to x(?) (see also Leslie, 1973,
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p-179). In fact, setting x(()z) = Xo, xc()l) = Xp + 80, X(¥ = x, x(1) = x + 8, we define
GCP) (8,1, t20%0,80,t01,t02) =

= / G (x + S,tﬁX,tngo + 80,t01;X0,t02) dxg (6.2 - 18)

Thus G(2P) is the transition probability density of the two-particle separation vector,
conditioned on the initial separation. In the special case of homogeneous-stationary

turbulence and fluid particles of the same age (to1 = toz = 0,%; = t3 = t) we have
G?P) = G(2P) (g, ¢|s,)

If g (s0) is the probability density of the initial separation vector, then G(5) is defined

as

GS) (s,1) = / GP) (s, 1]s0) ¢ (s0) dso (6.2 — 19)

After sufficient time from the release (when initial separations are forgotten)
G(?P) (s,t) = G(5) (s,1)

The dispersion process described by G(5) is typically what is called “puff” or “cluster”
diffusion in the literature; for Monin and Yaglom (1975) this is is defined to be the
“relative dispersion process”.

Another common approximation is that the information carried by G(5) (s,t) is
equivalent to the information carried by G{(F) (r,t), as this was defined through (6.2-
13b). Of course G(5) is the transition probability of the position of any fluid particle
as seen in the frame of another (arbitrary but fixed) fluid particle; this transition
function is essentially equivalent to the distance-neighbour function introduced (in
a less formal manner) by Richardson (1926), although this term is often attributed
to G(2P) rather than to G(5) (e.g. Leslie, 1973). G(R) is the transition probability
of fluid particle positions in the meandering center of mass frame. We will refer to

G(2P), G(5) and G(B) as “special” (non-inertial frame) transition functions and focus
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on G(B) which has been the basis for the description of instantaneous dispersion in
the TRPM model.

The single most important direct relationship between the Or and Os descriptions
concerns the second order dispersion tensors in these frames. Letting y(5) be the
position vector of any fluid particle in the Os frame one can define the second moments

of G(5) with respect to the separation vector. The corresponding dyadic is

E,(-‘-g) = s—y®) (s —y?®)G¥) (s,t) ds (6.2 — 20a)
=] = [ (s-v) (o-v)

or
[2,(3'.’")] = <y(s)y(s)> (6.2 — 200)

Straightforward calculations (Brier, 1950; Batchelor, 1952 — see also Monin and
Yaglom, 1975, p.555) then show that

29| =2 ([z41 - 237]) =2[=] (6.2 — 21)

Thus, the ensemble mean-square separation in all the pairs of diffusing particles, in

an instantaneous release, is just twice their mean square distance from the center of
mass of this release.

A final point to note is that in (6.2-20) E,(f) is defined in terms of G(%) (s,1),

which incorporates a full statistical description of the initial distribution of fluid

3P that is

conditioned on the value of the initial separation by using G(2F) (see Monin and

particles. An alternative approach is to define a dispersion tensor ¥

Yaglom, 1975, where this approach is employed). Then

55 (8,8) = / £EP) (s,t1s0) ¢ (s0) dso (6.2 — 22)
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6.3 THE MODIFIED ADE:
DISCUSSION AND JUSTIFICATION

The objectives of the present section are

(i) to discuss the character of the special transition function G(®) in relation to that
of the inertial frame G, (equivalently: the nature of the expected concentration profile

in the random meandering frame), and

(ii) to explain the nature of the assumptions leading to a representation of G and
G®), (or of the corresponding expected concentration fields) and of the differential
evolution equations that govern these quantities, in terms of diffusivities that depend
on diffusion time, showing also the connection of these representations to various
common dispersion models.

6.3.1 Fixed and Meandering Frame Representations:

Point Releases and Green’s Functions

As it has often been repeated in this work, a fundamental assumption in the
formulation of both the master and peripheral components of the TRPM is that the
expected concentration fields in both a fixed and a meandering frame of reference are
governed by (parabolic partial differential) equations of identical structure (differing
only in the values of the diffusivities employed). In other (but equivalent) words it is
assumed that G and G(®) are identical in form, with different parameters. We will
discuss this assumption here, focusing first on our knowledge regarding the aforemen-
tioned Green’s functions for ideal situations; the general structure of the governing

equations is discussed in the next subsections.

Let us consider in particular a “point” release of inert material in homogeneous
stationary turbulence. Confining attention to the common case of slender plumes,
where downwind advection dominates turbulent dispersion in the same direction, we

can equivalently consider the instantaneous puff problem: a cross section of the plume
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(of differential thickness) will essentially contain all the fluid particles released from
the source in a given differential time interval. Thus the terms Green’s function and
expected concentration (for both the fixed frame and the puff or meandering frame
cases) can be used interchangeably.

In the special case of homogeneous and stationary turbulence with random ve-
locity compomnents that obey Gaussian densities the inertial frame Green’s functions
G are of course Gaussian (the boundary conditions imposing appropriate finite or
infinite combinations of Gaussian functions). This exact theoretical fact is indeed
the first step towards the Gaussian plume approximation of actual field dispersion.
However, even in the idealized case where G is exactly Gaussian for all times ¢, the
correspondind G(B) is not always unambiguously known. Without delving into fine
details (for which the reader is referred to Monin and Yaglom, 1975, secs.24.2, 24.3)
we note that the relative motion of fluid particles undergoes a sequence of stages.
Very schematically these stages are: (i) first, a “source conditioned motion,” depen-
dent on the initial distribution of separations among the fluid particles, (ii) second,
a so called “gquast-asymptotic motion” (Batchelor, 1952), where the effect of the ini-
tial conditions has become negligible, but the motions of any two particles are still
correlated, (iii) third, an “asymptotic motion,” where the motions of different fluid
particles are practically independent, and, finally, (iv) a “arge scale motion,” where
the average separation between two particles becomes very large compared with the
integral scale of turbulence and relative diffusion becomes identical to absolute diffu-
sion (and of course G = G(R)). The common A.D.E. is relevant to this final stage.
Here our interest is mainly in stages (ii) and (iii), since, on one hand, we consider
“point” sources and thus in general wish to avoid introducing source parameters other
than the emissions rate in our models (*), and, on the other hand, available obser-

vations show that this stage in the atmosphere lasts for only a few seconds (see, e.g.,

Hanna et al. 1982, p.42).

* One must also take into account that identifying an effective initial distribution of sep-

arations for an actual source is far from being a trivial matter.
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Let us consider first the stage of asymptotic motion where the trajectories of
different fluid particles in the puff (i.e. of same age in the plume) are statisticaly
independent. Then, if the number NV of these fluid particles is large enough (N — o0),
the random trajectory of the center of mass of any N — 1 particles is practically
identical to that of the center of mass of all N particles, and, further, this trajectory
and that of the IV-th particle are statistically independent. In other words r and ¥ ()
are independent random variables whose sum x = r+¥ () has a Gaussian probability
density G. This however directly implies that, according to an important theorem
due to Cramér (see Papoulis, 1965, p.222), the probability densities of ¥ (t) and r
(the latter being exactly G(®)) are also Gaussian. The Gaussian character of G(R)
for the asymptotic stage, which plays a key role in the formulation of the TRPM, was
demonstrated here in a very straightforward manner (that-to our knowledge-has not
appeared formally in the literature before) strictly for point releases in homogeneous
stationary turbulence, but it can be considered a plausible approximation in more
general cases where homogeneity and stationarity of the turbulent velocity field are
not strongly violated (the mean concentration field is of course inhomogeneous).

In the stage of quasi-asymptotic motion the shape of G(R) (more commonly re-
ferred to as the expected concentration distribution relative to the center of gravity
of a cloud) has been a subject of continuing controversy. Typically it is assumed that
for a substantial fraction of the duration of the stage of quasi-asymptotic motion the
instantaneous dimensions of the dispersing cloud “most probably” do not exceed the
maximum scales of the inertial subrange. Inertial subrange scaling and similarity
analysis for locally isotropic turbulence allow for various modeling schemes that lead
to different forms of G(R), (see also Monin and Yaglom, 1975, p.577, and Pasquill and
Smith, 1983, p.153). Among the possible admissible models (on similarity grounds)
the three most widely considered and discussed are essentially equivalent to semiem-
pirical parabolic partial differential equations for G(®) (r,t), with eddy diffusivities
that depend on either the dispersion time t or the distance from the center of mass

r = |r|, or both. These are
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o the Batchelor-Obukhov equation (see, e.g., Monin and Yaglom, 1975, secs. 24.2,
24.3), with

K ~ et?

producing a Gaussian solution (that decreases at infinity as exp (—br2), b being an
appropriate constant),

o the Richardson (1926) equation with

K ~ el/3p4/3

producing a solution that is more steeply peaked than the Gaussian (and decreases
at infinity as exp (—5r?/2)), and
o the Okubo (1962) equation with

K~ 62/3T2/3t

producing a solution that decreases at infinity as exp (—br%/2).

(Note that the average value ¢ of the actually fluctuating energy dissipation rate
is used in the above equations).

Thus, in the Batchelor-Obukhov formulation — the one leading to a linear equa-
tion for G(®) (r,t) - only statistics of the fluid particle positions in the meandering
frame (or the two-particles separation), i.e. their variances, affect the parameters of
the governing equations for relative dispersion, whereas in the nonlinear models these
parameters are functions of the actual position in this frame.

Available observations have not allowed for a definite conclusion on the superior-
ity of the above schemes. Although some sets of data show excellent agreement with
the Gaussian model (e.g. Csanady, 1966; Sullivan, 1971 — see also Figure 5-1 of the
previous chapter) in certain cases some researchers have found a slightly better agree-
ment with nonlinear models (e.g. Okubo, 1962). In view of the analytical advantages
of the linear model, its proven validity for times beyond those of the quasi-asymptotic

stage, and supportive observational evidence, it seems very reasonable to accept it
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as the universal model for all dispersion times. This is in agreement with the recom-
mendations of Monin and Yaglom (1975, pp. 562 and 578), and with practically all
applied studies of instantaneous plume properties, such as Gifford’s (1959) fluctuating
plume model and Csanady’s (1973) relative dispersion and fluctuations models.
What comes as an overall conclusion of the above discussion is that (at least in the
ideal case of homogeneous stationary turbulence examined here) assuming G (x,t) and
G(R) (r,t) to have similar forms, and be governed by equations of similar structure, is
a reasonable assumption. We will adopt this assumption as a first approximation for
studying dispersion processes in more complicated turbulent fields. In the following
we overview the most common equations that have been used to model G (most of

which are also assumed appropriate for modeling G (R)).

6.3.2 Master Equations
and Practical Models

Obtaining the analytical form of the transition function G (x,t|xo,%0) or, more
generally, deriving a governing equation (a “master equation”) for this probability,
that, under certain simplifying assumptions, can be reduced to solvable form (analyt-
ically or numerically), constitutes the fundamental problem of the transition function
Lagrangian approach.(*)

In the special case where the turbulent Lagrangian velocity field is unbounded
and, beyond being homogeneous and stationary, is also Markovian and Gaussian
with independent components (i.e. every component of the velocity vector is Gaus-
sian and has an exponential autocorrelation: an Ornstein-Uhlenbeck process), and,
furthermore, the fluid particle trajectories are independent, it can be directly shown,
through kinematic considerations and the definition G = (), that G (x — Xo,t — to)
is Gaussian. The details of the proof can be found in Seinfeld (1983, pp. 218-222).

Under the conditions where the common ADE is valid (briefly when the fluid

* The alternative to this theoretical determination of the transition function is of course

to use laboratory (e.g. Willis and Deardorff, 1978, 1981) or numerical (e.g. Deardorff,
1974; Lamb, 1978) simulations of turbulent flow fields.
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particles motion can be seen as a discrete random walk that is a 1st order Markovian
process with effective step lengths in space and time that are comparable to the
Lagrangian space-time scales) G will correspond to the fundamental solution (i.e. the
response to an impulse forcing term) of any linear form of the ADE (which is local
in space and time).

On smaller scales, however, the equation governing G must reflect the persistence
of correlation over finite space and time. Batchelor and Townsend (1956, p. 360) first
suggested that this non-localness may be best expressed by an integrodifferential
equation. Such an equation was first derived by Bourret (1960) who generalized a
property of a simple model of turbulent diffusion due to Taylor that assumed a finite
Lagrangian time, i.e., a persistence of velocity correlation over the fluid particles

trajectory. Bourret’s equation uses the Lagrangian velocity autocorrelation

RE (t — to) = (v} (2) v (to))
and holds for homogeneous-stationary turbulence:

BG(x,t)_ 92 /t L ' NN
3~ 9z:9a ORI.J.(t t') G (x,t) dt

Other general integrodifferential master equations, for both one- and two-particle
transition functions, utilizing Eulerian velocity autocorrelations, were subsequently
derived by Roberts (1961) who employed Kraichnan’s Direct Interaction Approxima-
tion to obtain closure for equation (6.2-6a).(*) Since then many interesting results
of similar nature have been obtained, e.g., by Deissler (1961), Bourret (1962, 1965)
Kraichnan (1966), Saffmann (1969), Knobloch (1977), Lundgren (1981), and Jiang
(1984, 1985). In general the evolution of G is found to be described by nonlinear
integrodifferential equations, closely resembling that of Roberts, which are closed by
a truncation of a series of correlations. Recently developed methods are reviewed by

Jiang (1985) who, for the dispersion of a single particle, derived an equation for G

* The monograph of Leslie (1973) provides a comprehensive review of Kraichnan’s methods

and discusses extensively the equation of Roberts.
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that, at the zeroth order, reduces to that of Roberts (while there are some differences
regarding the behavior of the two-particle transition function dynamics).

From the perspective of the present discussion Roberts’ equation (1961) provides
a general framework of analysis that is more than adequate for practical purposes. In-
deed, practically all first order operational models of (absolute and relative) turbulent
dispersion, including the common ADE as well as the modified ADE adopted by the
TRPM, can be derived as special cases of this equation when appropriate approxima-
tions are introduced. This procedure provides a most useful insight into the relative
capabilities, limitations and relationships among the various “usable” models. So,
in the following we will examine briefly the reduction of a general integrodifferential

master equation into practical expressions.

The most general form of Roberts’ (1961) equation (for the fixed frame G) is

iG (x',t,IXQ,to)

t’
a
t|%o,to0) dt’/dRE t;x',t") —G (x, t)x', ¢/
G (x,t|x0,%0 »/to xR (x,8;x', )az; (x,t|x t)a:c,-

For homogeneous—stationary turbulence this equation becomes

a 62 I ! E 1 3! ' !
2 Gy = 8:1:.6:2:_,/ dt/de (') G(x',t) G(x—x',t—¢) (6.3 — 3a)

Roberts (1961, p.266) replaced the product R-E- (x,t) G (x,t) with a general correla-

tion Q; (x,t). Hence, if Corrsin’s conjecture holds, Q;; is formally related to to R‘J,

and Roberts’ equation is now written as

a

t
!
5 G (x,t) = | dt

dx'Qi; (x',t') G(x — x',t - t')

or, equivalently (for x’ ranging from —oo to oo),

0 92? t , ’ , o
atG( t) = axiazj/;dt/deij(x—x,t—t)G(x,t) (6.3 — 3b)

a result that is found to resemble strongly the equation of Bourret (see also following

paragraphs).
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Evolution equations for the special non-inertial transition functions have also
been formally derived (in particular for G(2P)). The reader is referred to Leslie (1973)
and Jiang (1985) for detailed analyses. As a representative example we mention that
on the basis of the analysis of Roberts (and the equivalence of G(5) and G(®) after

very small times) the analog of (6.3-3a) for G(®) (r,t) becomes approximately

d o2 f*
EG(R) (r,t) = Bror; ‘/0 dt’/ dr’' [RE (¢',t") — RE (r —¥',t")] x

xG (x',t") GB) (xr —x',t — ')

One should notice the dependence of the term replacing the Eulerian velocity cor-
relation of (6.3-3a) on both r — r' and r’. For the purposes of the present work it
seems reasonable to assume that the last equation can be represented in general by
an equation identical to (6.3-3b) but with Q;; depending on ¢ as well as on ¢t — ¢/
to reflect the nonstationarity present in the Lagrangian velocity correlations in the
non-inertial frame (to be also discussed in the next section).
Dispersion Parameters
(through the G-formalism)

Equations (6.3-3ab) - or the corresponding equations for G(F) (r,t) — can be
combined directly with the definitions of the dispersion parameters £;; etc. in order
to express the latter directly in terms of the general correlation Q@:;. Defining the

turbulent diffusivities

Kij = 5=y

d
dt

DI -

and using definition (6.2-14a) one has
K--—E/z-x-dx & /tdt'/d'Q (x-x,t-t') G(x',t") =
) R T o X fmn * () =

¢
=/ dt’/dxdx’Q.-_,- (x-x',t—t) Gx',¢t)
0

and, since [ G (x,t)dx =1

t
K;; = / dt’ / dxQij (x —x',t —t) (6.3 —4)
0 .
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A similar general expression will hold for the relative turbulent diffusivities Ki(f').
Applicable Models of Dispersion
Let us now examine the applicable models that are obtained for various choices of

Qi; in (6.3-3b). Without loss of generality we consider an one-dimensional situation

with Q;; = Q.

e A.D.E.: The Classic K-Model
If

Q=Ké(z—2z6(t -1t (6.3 — 5a)
(with possibly K = K (z,t)) (6.3-3) reduces to the conventional K-model

aG (x,t) _ K %G (x,1)

= o~ (6.3 — 5b)

Notice that condition (6.5-4a) implies that the velocity of a fluid particle is delta-
correlated (i.e. “immediately forgets” its earlier values) in both space and time.
This of course can be true only when the “time instants” are actually longer than
the Lagrangian time scale of the flow (and the adverb “immediately” is interpreted
analogously). Thus the severe limitations in the description of turbulent dispersion

through the ADE, already discussed in Chapter 1, are obvious.

e The Equation of Bourret

If correlation is assumed only in time, i.e.

Q=6(z—z)RE(t -1 (6.3 — 6a)
one obtains the (one-dimensional) form of Bourret’s (1960) equation

G (x,t) 82
ot  9z2?

/ t RE (t —t') G (z,t) dt’ (6.3 — 6b)
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o The Hyperbolic Telegrapher’s Equation
Assuming correlation only in time (as before) that is specifically of exponential

form

Q=6(z—z"\RL(t—t)=6(z—2z')o2exp (—t;Lt,) (6.3 — 7a)

where TZ is the Lagrangian time scale, one obtains the well known telegrapher’s

equation (see, e.g., Goldstein, 1951).

G 1 G  , 9%
Cr T 20 6.3 -7
52~ TL 3t T v gy ( b)

e The Modified (Non-Local) A.D.E.
The modified ADE is obtained through the same choice of Q as for the equation

of Bourret (i.e. autocorrelation of fluid particle velocities only in time)
Qz—z',t—t)=6(z—z)RE(t -t (6.3 — 8a)
or
Q(r—r',t—t,t)=6(r—r")RL (t,t - 1) (6.3 — 7b)

under the additional assumption that the positions of the fluid particles constitute

Markovian processes (with arbitrary step). Then, the Chapman-Kolmogorov equa-

tion for G gives (for arbitrary (z*,t*))

G (z — 20, — to) =//G(z—z',t—t‘)G(:c" — z0,t* — to) da* dt*

Introducing this property to the master equation one obtains

G (17 — zg,t — to)
ot

t
32G($-—$0 t—to)
= [ d'RE(t—+¢ 2
4R (=) -

which corresponds directly to a linear (non-local) differential dispersion equation with

eddy diffusivities that depend on the travel time:

oG (.’E - .’Eo,t — to)
ot

82G’ (22 - .’Eo,t - to)
0z2

= K (t — to) (6.3 — 8c)

- 358 -



PART IB CHAPTER 6

where (for to = 0)
t
K(t)= / dt' RE (t - t') (6.3 — 8d)
0

and similarly for G(®) (r,t) with

t
K® () = / dt’' R (t,t —t')
0

o The “Spectral Diffusivity” Model

If one assumes correlation only in space, i.e.
Q=R*(z—2z')6(t -1 (6.3 — 9a)

where R# is an appropriate space correlation function, equation (6.3-3) reduces to

aG(m,t) _ 62 1 D ! 7
=t xzfde (z— ) G (2, 1)

The r.h.s. of this equation can be writen as

g

_— ' p# (0 !
az/dzR (z' —z) G(',1)

Integrating by parts this expression allows us to write

oG (x,t) @

) ;s _
o = B bl SR LT P (6.3 — 9b)

This equation is essentially equivalent to the pseudo-spectral model of Berkowicz and

Prahm (1979ab, 1980).

Thus now, after clarifying how the modified ADE is related to other turbulent
dispersion models, we proceed to examine methods for the estimation of the (relative)

dispersion parameters appearing in this equation.
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6.4 RELATIVE DISPERSION ANALYSIS:
I. TIME DOMAIN METHODS

6.4.1 The Direct Kinematic Approach:
General Relations and Asymptotic Results

In this section we briefly review the fundamentals of the direct kinematic ap-
proach for estimating dispersion parameters. The general kinematic relations that
describe the statistics of the fluid particle motions provide some direct information
regarding these parameters in the form of asymptotic expressions; howeverin the case
of relative dispersion this information is more limited than in the case of absolute dis-
persion. Further results can be obtained through dimensional/similarity analysis and
on the basis of assumptions regarding the turbulent velocities correlation tensors;
these results are also reviewed in the next sub-sections.

In the following exposition the turbulence is assumed (locally) homogeneous and
stationary (unless it is specified otherwise). Furthermore, for simplicity (and without
any loss of generality) the analysis of the present section assumes that there is no
mean flow (or equivalently the equations are formulated in an inertial frame following
the mean flow), i.e.

(w) =0, (v)=0

and

and therefore

We further set xo = 0, y (0,0) = 0.
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e Review of Absolute Dispersion I
General Relations and Definitions

Under the assumptions stated above

2= 005 0) = ([ [0 @1a) =

t t
E;j (t) = ‘/o ‘/; RiLj (t' _ t") dt'dt" =
t— t'
/ / & (r) drdt! (6.4 — 1a)

Equation (6.4-1a) and its differential counterpart

or

Sw0uo =2 [ REe-r) (64-1)

are the well known Taylor’s relations and constitute the basis of the direct kinematic

approach (Taylor, 1921). Now, by definition Rf‘j (r) = Rf'j (—7). Hence

i (t) = /0 (t = ) [RE (r) + BE (r)] dr (6.4 —2)

This relation was first obtained (in a slightly different form) by Kampé de Feriet
(1939).(*)

* At this point it seems worthy of mentioning that relations analogous to (6.4-1ab) and

(6.4-2) can also be directly formulated for the case of dispersion in uniform shear flow
(“second order homogeneous” turbulence); the corresponding exact expressions were
first obtained by Corrsin (1953). Various (approximate) extensions of the fundamen-
tal (homogeneous-stationary turbulence) kinematic Lagrangian analysis to more realistic
situations, involving wind-shear and convective motions, are also possible, but discussing
them is beyond the scope of this presentation. An excellent introduction to the problems
of dispersion in flows with shear and density differences can be found in Csanady (1973,
Chapters V and VI); for more recent relevant reviews of kinematic methods for decribing
fluid particle dispersion in complex (nonhomogeneous-nonstationary) flows one should
consult Pasquill and Smith (1983) and Hunt (1985).
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The (modified) eddy diffusivities Kf'j are defined again as

{vi (t) y; (1)) (6.4 — 3a)

&l

1
KiL]- (t) = 2

where the superscript L is used to note that they are derived from a Lagrangian

analysis. Hence, in general

Kk () =1 fo [RE (7) + RE ()] 6 (6.4 - 3b)

The elements of the Lagrangian time scale tensor are defined as

e GE)) / )+ By )] dr (644
e Review of Absolute Dispersion IT
Asymptotic Results
The general relations {6.4-1ab) allow us to conclude directly that at very small
and very large dispersion times the elements of [Z;;] are independent of the particular

form of the Lagrangian velocity correlation. Thus, for ¢t — 0

Ti; (t) = (v: (0,0) v; (0,0)) t2 (6.4 — 5a)
KE (t) = (v (0,0) v; (0,0)) ¢ (6.4 — 5b)
whereas for t — oo
5 () = () (v2)* (T + T) ¢ (6.4 — 6a)
KE (00) = 3 ((w3)w2) ™ (Th + T (6.4 — 6b)

In particular for ¢ = j one has

(fort—0) o? =02t?, KF=02t (6.4 — 5¢)
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(fort — 00) of =202 TFt, KF =0l TF (6.4 — 6¢)

Of course for homogeneous-stationary turbulence

o Review of Absolute Dispersion III
Eztensions

As it was stated earlier, the above results were obtained for arbitrary Lagrangian
velocity correlations; however, in order to calculate dispersion parameters for any
(intermediate) dispersion time the shape of the above correlations has to be specified.
The functional forms and properties of various permissible correlations are presented
and discussed, e.g., in Monin and Yaglom (1975) and Pasquill and Smith (1983). For
historical reasons the correlation of Sutton (1953), that was most extensively used
for atmospheric applications, especially in the 1950’s and early 1960’s until it was
replaced by the introduction of the Pasquill-Gifford curves, should be mentioned.

Among the other possible correlations the simple exponential

r
R;r;- = 03‘ exp (—-E_‘-’—L—)

has often proved to be a very useful approximation, and, as it has been pointed out
by Tennekes (1977, 1979) provides also a connection between single and two-particle
dispersion, that is of particular interest from the perspective of the present work (and
for this it is worth mentioning). Integrating (6.4-2) (for ¢ = j) for an exponential

autocorrelation gives

2| t t
0,‘2 (t) = 20'12,..T5L [Tf -1 -+ €Xp <—ﬁ>:|
3 t

which reduces to the asymptotic forms (6.4-5¢) and (6.4-6¢) for small and large times
respectively. (It is interesting to note that the lines corresponding to these asymptotic

limits meet roughly at ¢t = 2T). Tennekes (1979) noted that by expanding the above

relation in a Taylor series near ¢t =0

2 2 432 1 2 t3
O"- (t) =0'v',t —_ Eﬂv‘ﬁ‘l-...
1
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(valid for t/TF <« 1, i.e. for the inertial subrange of turbulence), one can associate
the first, linear, term, that actually decribes random advection with persistent veloc-
ities, with the process of turbulent diffusion very close to the source, and the second
term with the gradual loss of correlation of Lagrangian velocities as dispersion time
increases. This process of “decorrelation” allows the separation of neighbouring par-
ticles to increase and is therefore directly related to relative dispersion in the inertial

subrange.

We next proceed to discuss the kinematic analysis of relative dispersion without
considering the various approximate and semiempirical or empirical methods that
aim at extending and applying the preceding analusis of absolute dispersion to actual
atmospheric situations, and, finally, in providing “optimal” estimates for the parame-
ters of Gaussian plume models (as well as for other atmospheric dispersion schemes).
Among the many available references that review and summarize such practical meth-
ods we specifically mention Hanna et al. (1982), Seinfeld (1983), and Pasquill and
Smith (1983) (see also Irwin, 1983); a collection of relevant review papers that cover
some more recent information can be found in the November 1985 issue of the Journal
of Climate and Applied Meteorology, whereas, at a more fundamental level, current
reviews on methods for treating non-ideal turbulent environmental dispersion can be
found in the 1985 issue of Annual Reviews of Fluid Mechanics. A final note that is
appropriate at this point of our discussion should concern the effect of sampling time
that is implicit in the values of the (semiempirical) dispersion parameters reviewed
in the above references. As it will be further discussed in Section 6.5, the distinction
between relative and absolute dispersion, for givén dispersion time, can be essen-
tially associated with the choice of the proper sampling period (or equivalently the
turbulent frequency band relevant to each process). On the other hand empirical
expressions relating dispersion parameters for different sampling times are sometimes

available. For example Gifford (1975) suggests the following formula for the horizintal
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crosswind dispersion parameter o, corresponding to sampling times T.,(l) and Ts(z):

o (Ty))q

0!(12) - Ta(z)
where ¢ is in the range 0.25 to 0.3 for 1 hr < T,(I) < 100 hr and equals approximately
0.2 for 3 min < T,(l) < 1 hr. Thus, if one can identify approximately the value of the
sampling time that will produce an estimate of relative dispersion parameters (and
this value is in the range of validity of the above or a similar expression), one would
have a crude model for these parameters. An approach following roughly the same
lines, but based on general theoretical rather than empirical relations, is pursued in
detail in Section 6.5.

o Relative Dispersion I
General Relations
The kinematic analysis of single particle motiéns was extended to relative disper-

sion in the early 1950’s by Batchelor, Brier, Obukhov, and others (see, e.g., Monin
and Yaglom, 1975, for detailed references), who initially considered the statistical
properties of two-particle separations and relative velocities. Here we adhere to the
(almost) equivalent but more practical concept of dispersion relative to the instanta-
neous center of mass and examine elements of the tensor [Esf)] rather than [E’(-J?P)]
or [Eff)] , where always

(5) _ o5(R)

Now, the fluid particle velocity in the meandering frame is

where

For an inertial frame that follows the mean flow (v) = 0, (¥) = 0 and therefore
!
<V(R)> —0, (V(R)) — y(B)
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The relative displacement and velocity vectors of a diffusing particle are related

by
t
0

and hence

t t
(B _ (,(® (1) (® (1)) = (B) (1) o ®) _
2P = (4P )P ) =2 /0 fo (o™ () of® @)y at'at” (6.4~ 1a)

% <y’gR) (t) y® (t)> 9 /0 t <U§R) (t) vi® (t’)> dtdt’ (6.4 —70)

However, even in homogeneous-stationary turbulence, the relative velocity com-
ponents v§R) (t) do not constitute stationary processes. As the cloud of diffusing fluid
particles grows increasingly larger eddies contribute to v(E) (t) and the relative ve-

locity correlation <v§R) (¢) v}-R) (t')) is a function of the dispersion time ¢ as well as

of the lag time r =¢' — ¢
B (t,7) = (o (1) o (¢ + ‘r)> (6.4 —8)

(Notice that we omit the superscript L when we refer to relative diffusion properties
since it is obvious that we use a Lagrangian approach for their description).
Relating the general Rff’ ) (t,7) to absolute velocities statistics is a rather com-
plicated task since this will involve the Lagrangian correlation for a single particle,
the Eulerian correlation referring to two particles at a given instant, and a mixed cor-
relation referring to two particles at different instants (see, e.g., Pasquill and Smith,
1983, pp.154-155). Expressing the latter correlation in terms of more manageable
quantities is a major problem that has been pursued on the basis of different assump-
tions; Sawford (1982a) provides a rather detailed discussion and comparison of such
assumptions and the reader is referred to this work for further details. Here we limit
ourselves to the examination of the relative velocity variance in the i-th direction,

defined as

0122,0.- = R;(;R) (t,O)
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which is a function of the dispersion time. For a “point”-source release, one finds

that since

OR0e = (V) + (97) — 2 (viTs) (6.4 — 9a)

then, in the limit of very small times, where v; ~ v;, it will be
(fort - 0) 0%, ~0 (6.4 — 9b)

whereas for large times, where v; and 7; are independent

(fort - o) o}, — 202 (6.4 — 9c)
Thus we see that 0% . grows from zero to a value twice that of 62, (or 62,) as the
dispersion process evolves.

A most important point point has to be stressed in relation to equation (6.4-
Ob): the fact that the relative velocity variance is zero at the beginning of the time
coordinate for a point release allows one to identify the process of relative or two-
particle diffusion with the conditioned diffusion of a single particle, i.e. that at t =0
has a deterministic velocity (zero variance); we will elaborate further on this point in

the next sub-section.

The non-stationarity of R( ) implies that Taylor’s theorem does not hold for

relative dispersion; one thus has

t
By = /0 /0 [R§f Y (¢,7) + BRIP (¢, r)] drdt' (6.4 — 10a)
and for: =75
t,
E(R) = U = 2/ / (R) (t' det' (6.4 _ 10b)

Lagrangian time scales for relative diffusion are also functions of ¢:

1 t
TP = T /0 [R}f) (t,7) + RSP (¢, r)] dr (6.4 — 11)
(020930 )
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T‘-(]-R) (t) is characteristic of those eddies that contribute to relative dispersion at
time t after a (point) release; these are expected to be mainly the ones comparable
to the typical fluid particle separation in the dispersing cloud, i.e. approximately
comparable to the cloud size (Csanady, 1973).

e Relative Dispersion IT
General Asymptotic Results
The general relations (6.4-10ab) allow derivation of a direct asymptotic result

only in the case of very large times. Using (6.4-9¢) one can write for the final phase

of dispersion

0% =202 T\t (6.4 — 12)
where
=R) _ 1 ' / (R) _
T 02 t,_.oo t’/ R;" (t,7)drdt (6.4 — 13)

is an averaged integral time scale of relative velocities in the ¢-th direction. One must
note that an tmplicit assumption appearing in most works relevant to two-particle

dispersion is that

=(R
TS;' = TF

o Relative Dispersion IIT
Dimensional Analysis for the Inertial Subrange

For small and intermediate diffusion times Batchelor (1949, 1952) applied Kol-
mogorov’s hypothesis and dimensional analysis to determine Eff P) for dispersion
taking place at scales that belong in the inertial subrange of turbulence. He argued
that in this subrange dEg-P) /dt depends only on the initial separation of the fluid
particles, the rate of turbulent energy dissipation € and the time ¢ for “small” diffusion
times (¢ < t*), but it depends only on € and ¢ for “intermediate” times. Batchelor’s
analysis is summarized, for example, in Seinfeld (1975, pp.313-316) and will not be
repeated here. We only state briefly its main results (formulated in the meandering

frame we consider here) for ready reference:
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After a “molecular phase”, that will take place when the initial dimensions of the
dispersing cloud are smaller than the Kolmogorov microscale g = (1/3 / e) Y 3, and
in which the species under consideration will spread only due to molecular diffusion,
one has (recall also the discussion in Section 6.3.1)

(I) the Short Time Inertial Subrange Dispersion or simply Initial Stage, where
0%2.‘ = 0(2).' + ﬁa(l) (600.')2/3t2 (6.4 - 140,)

KE® = 80 (e00,)/3 (6.4 — 14b)

and
(II) the Intermediate Time Inertial Subrange Dispersion or Accelerated Dispersion

Phase, or simply Inertial Stage, where the quasi-asymptotic motion of fluid particles

(Section 6.3.1) takes place in the inertial subrange and
o, = BMe(t —1*)° (6.4 — 15a)

K = 25 et - 1)’ (6.4~ 15%)

t* being a (small) correction for an effective “inception of dispersion” that is often

set equal to zero. Relation (6.4-15b) can also be writen as

1/3
K® = %(ﬂf"e) i3 (6.4 — 15¢)

which is of course typically referred as Richardson’s /8 power law, and is mentioned
that it was first proposed by Richardson (1926) on purely empirical grounds. However,
if we want to be precise, we must mention that Richardson proposed his 4/3-law
with respect to some actual, observable (and therefore stochastic), dimension of an
expanding puff, and not with respect to the deterministic statistical property OR;; in
fact the latter formulation is due to the (independent) work of Batchelor and Obukhov
(see, e.g., Monin and Yaglom, 1975). The major differences of these formulations have

already been discussed in sub-section 6.3.1.
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e Relative Dispersion IV

Quasi-Asymptotic Results
Lin (1960ab) (see also Lin and Reid, 1963, p.513; Monin and Yaglom, 1975,
pp.547-551) extended the 4/3 power diffusion law beyond the inertial subrange on
the assumption that the mean-square relative particle acceleration is statistically
homogeneous and stationary and has a short-ranged autocorrelation. Stating the
homogeneity and stationarity assumptions in terms of the velocity relative to the

center of mass and setting
R
A(B) — dv(R)

= (6.4 — 16q)
and
AP (r) = <a.(-R) (t+7)al® (t)> (6.4 — 16b)
one finds that
t
2P =2 (t3 / AP () ar - 212 / rA® (1) dr+
0
1 [* 5
+3 / A5 () dr) (6.4 — 17)
0

subject to the conditions of zero initial separation and
R
oD () =0, of®(0)#0

From equation (6.4-17) one immediately has that, if A;(-f ) is effectively zero for
t > tg, i.e. if the acceleration covariance is sufficiently short-ranged, then for ¢ > ta
it follows that 0122‘, ~ t3. The coefficient of proportionality in this relation is easily

found to be equal to the integral time scale of aER).

One also has for sufficiently long dispersion times
AP (r) =245 (r)

where AL is the covariance of the single particle (fixed frame) acceleration.
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The general behavior of both absolute and relative dispersion parameters, based
on the asymptotic results of the preceding paragraphs, is summarized schematically
in Figure 6-2.

e Relative Dispersion V
Empzrical Information

Empirical information for relative dispersion parameters is very limited compared
to that for absolute dispersion (see, e.g., Hanna et al. 1982, pp.41-45, and Pasquill
and Smith, 1983, pp.220-232; note that these works focus on puff rather than on
instantaneous plume dispersion). Thus, nothing equivalent to the Pasquill-Gifford
curves (or any of the other general semiempirical, stability dependent, schemes for
absolute 0;’s) is available for the estimation of og,’s. Nevertheless, available observa-
tions support the dimensional analysis results (6.4-14a), (6.4-15a), the latter actually
for ranges extending significantly beyond the inertial subrange. Indeed, these obser-
vations suggest that (6.4-14a) is valid for dispersion times typically less than 102 sec
(approximately 1 min) whereas (6.4-15a) is valid for times up to 10® to 10* sec, i.e.
approximately of the order of 1 hr (see Hanna et al., 1982, pp.43-44, for relevant
references).

The currently available information regarding the constants 8(0), 8(1), for atmo-
spheric conditions, can be roughly summarized as follows (typically for neutral and

unstable conditions):

B9 40 = 40 =1
BN ~ 0.4 t0 2.0, B ~ (0.5 to 1.0) AL

with t* = 0 (see also Hanna, 1984, p.1099). The effect of atmospheric stability is
introduced through the value of the local (average) energy dissipation rate in (6.4-
14a), (6.4-15a). A typical estimate of the time after which the influence of the source
size is no longer important is ¢ ~ 03{ % /€1/3, However it must be mentioned here that
oo; does not necessarilly correspond to an actual dimension of the source (and also

reflects effects of initially enhanced dispersion due to momentum and buoyancy fluxes)
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In o2

In TRAVEL TIME

Figure 6-2
Asymptotic Behavior

of Absolute (0;) and Relative (og, )Dispersion Parameters

-372 -



A

™

PART IB CHAPTER 6

and thus is typically treated as a parameter that is fitted to the data for applying (6.4~
14a); hence, a priori estimates involving this quantity are more or less meaningless.
Another interesting time point is that when the relative dispersion parameter in the
i-th direction equals that of meandering; according to Hanna (1984) available data

show this time to vary in general from 0.5 to 1.5TF.
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6.4.2 Conditioned Single Particle Motion
and Its Relationship to Relative Dispersion

In this sub-section we discuss briefly the close relationship between (inertial sub-
range) fluid particle dispersion observed in a non-inertial frame fixed to another fluid
particle (or to the center of mass of a cloud of particles) and in an inertial frame
moving with a constant velocity that results from a Galilean transformation of the
instantaneous initial velocity of the particle.(*) Although this relationship was de-
rived in the early 1960’s (Novikov, 1963; Lin and Reid, 1963 — see also Monin and
Yaglom, 1975, p.546) and was touched upon by Smith (1968) in his analysis of the
statistics of conditioned particle motion, it has only recently come in the focus of rel-
ative dispersion modeling as a means for addressing atmospheric diffusion problems,
basically in the context of the Langevin equation and related Monte Carlo methods
(see sub-section 6.4.3). Schemes based on this relationship, commonly referred to
as “ome-particle models for relative dispersion,” were applied by Gifford (1982) to
horizontal dispersion from a continuous point-source, and by Lee and Stone (1983ab)
to diffusion from a finite-size, finite-duration source. The approach adopted in these
schemes was criticized by Smith (1983), defended by Gifford (1983), discussed by
Sawford (1984), and further discussed and compared with two-particle models by Lee
et al. (1985).

To summarize the theoretical basis of the method let us consider the ensemble of
random realizations of the initial (fixed frame) velocity of an arbitrary fluid paricle
v (0,0). Then we consider an inertial reference frame moving with fixed in time (for a
given realization) velocity vo relative to v (0,0) in the fixed frame. Thus the velocity
of the new reference frame, v (0,0) — vy, is constant for each realization, but different
from realization to realization. However, in this frame the “tagged” arbitrary fluid

particle has the same initial velocity vo in all realizations; thus a conditioned ensemble

* This can equivalently be considered as the relationship between relative dispersion and

conditioned absolute dispersion, i.e. dispersion of single fluid particles that are con-
strained to have the same initial velicity.
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of fluid particle motions is defined. Let the random position vector and velocity of

the particle in this frame be y(©) (t) and v(©) (t) respectively, where
v(©) (t) = v (t) — v (0) + vo

the superscript (C) indicating conditioned motion. Now, one can write for the ele-

ments of the tensor of fluid particle displacements in this frame (Monin and Yaglom,

1975, p.533)

25 (1) = (y.(c) O (t)> = / t t' DL (t') dt’ (6.4 — 19)

where Df'j is the Lagrangian structure function for homogeneous-stationary turbu-

lence, defined in general as (see, e.g., Monin and Yaglom, 1975)
D,-LJ- (T) = pL (T) biy =

= <(v§c) (t+7)— v.gc) (t)) (vj(-c) (t+7)— v](-c) (t))>

However, in every inertial frame of reference
DLr = Cper (6.4 — 20)

for dispersion in the inertial subrange (Monin and Yaglom, 1975, p.359), where Cy is

a universal constant. Thus (6.4-19) gives
1
=0 (1) = 3 Coet® (6.4 — 21)

which is equivalent to (6.4-15a) with 8(I) = 3C,. Thus single-particle dispersion
with fixed initial velocity is equivalent to dispersion relative to the center of mass.
Further discussion of conditioned dispersion models is presented in the next-

subsection, after summarizing the fundamentals of Langevin equation methods.
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6.4.” Langevin Equation Methods

Langevin equation methods (well known through their application to Brownian
motion problems) constitute “dynamic extensions” of the direct kinematic approach,
described in the previous sub-sections, by introducing explicitly random force effects
in the study of (fluid or other) particle motions. Langevin equations essentially are
convenient models (approximations) of Newton’s second law where the force (per
unit mass) acting on the particle is assumed to consist of a “restoring” component,
dependent on the random instantaneous velocity, and an uncorrelated part (the so
called Langevin force).

Although generalized Langevin eqations with nonlinear restoring forces or with
memory kernels (i.e. of integrodifferential form) have been used to describe the dy-
namics of random motions (see, e.g., van Kampen, 1981, Chapter VIII) the term
“Langevin equation” is most commonly assigned to a linear stochastic differential
equation whose nonhomogeneity or Langevin force (forcing term) n (t) constitutes
white noise. Its typical one-dimensional (without any loss of generality) form is

dv (t)
dt

+v(t) =n(t) (6.4 — 22q)

where by definition

{(n(t) =0, (n(®)n(t))=ab(t-1)

Because a stochastic process with the above properties of n (t) does not formally
exist (in the sense of an ordinary function) many researchers prefer to use instead
the integral of n (t), which is the Wiener process (or Wiener-Lévy process or simply

“Brownian motion”) b (t),
t
b(2) = _/ n(t') dt'
0
with
op = va

- 376 —



PET

I’

PART IB CHAPTER 6

where division with o, produces the standard or normalized Wiener process (*), and,

since the latter is nowhere (mean-square) differentiable, they write
dv (t) + v (t) dt = opdb () (6.4 — 22b)
where
@)=t (@#)?>()) =min ()

(Note that op has units of acceleration).
The solution of (6.4-22ab) is given by

t

v (t) = voe~ " + f e~ 7¢""oydb (1) (6.4 — 23)
0
t
y(t) =yo + b} (1—e ) + 1 / (1 - e""‘_’)) opdb (1) (6.4 — 24)
g YJo

Avoiding all discussion of the deep mathematical subtleties involved in the for-
mal interpretation of the above equations and of their solutions we limit ourselves
here to some brief comments concerning the physical meaning of the processes and
parameters appearing in them. At first we must note that when the white noise n (t)
is Gaussian (which is implicitly assumed in practically all applications), then the
Langevin equation is equivalent to a Fokker-Planck equation for the random velocity
process (see, e.g., Van Kampen, 1981, for details). The latter process is Markovian,
and is characterized by a Gaussian transition density, whereas the fluid particles’ po-

sitions y = f; v (t') dt’ are not Markovian processes (although the joint vector process

* The Wiener process is a nonstationary Markovian process — and also a martingale —

with Gaussian independent increments and Gaussian transition probability density. It
constitutes a model of the positions of particles undergoing Brownian motion (recall
however that the Langevin equation produces non-Markovian positions) and has been
studied extensively, essentially giving rise to many of the fundamental concepts of the
modern theory of stochastic processes such as the Wiener measure, stochastic integra-
tion, etc. For an elementary introduction to the Wiener process one may consult, e.g.,
Papoulis (1965). A somewhat more advanced — but very readable — treatment can be
found in Arnold (1974). From the extensive advanced mathematical literature relevant
to the subject of Brownian motion, we mention the monograph of Chung (1982) and the
three-volume treatise of Gihman and Skorohod (1974, 1975, 1979) — in particular volume
III. Finally, the reader interested in the fractal aspects of Brownian motion can find a
fascinating relevant discussion in the monograph of Mandelbrot (1983).
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(v,y) is Markovian in phase space). This fact constitutes the relative advantage of this
approach compared to the eddy diffusion models (with either constant or dispersion
time dependent diffusivities), that result from either gradient transport hypotheses
or as Fokker-Planck equations for the mean concentration (or, equivalently, the tran-
sition function). Indeed, these models (essentially all parabolic transport equations)
are based on the Markovian property for the fluid particles’ positions (see also our
discussion in Section 6.3.2 of the present chapter, in the derivation of the modified
ADE, and Seinfeld, 1975 , Chapter 6). The improvement of dispersion modeling ob-
tained through the Langevin description lies in the fact that now velocity is allowed to
change over a finite time scale, possibly comparable to the time scale over which the
concentration changes (whereas, as is well known, this is not the case with equations
like the ADE). This is achieved by assigning the Markov property to the derivative
of the process y instead to y itself (see also Durbin, 1983).

The parameter v is a characteristic reciprocal time scale for the v-process. Fur-

thermore the temporal velocity correlation is found to be (for ¢ > t')
0'2 1 [}
(v v () = ﬁ (1 —e 27 ) e=(t=%)

and letting
(v?(0)) = (vd) = 03,
one obtains (setting ¢’ = 0)

2 _ 2
oy = o= 270y,

This is a significant result that relates what is essentially an initial condition to the
statistical properties of the external forcing field. (Actually this last equation is the
simplest form of the general fluctuations-dissipation theorem of statistical mechanics;
see van Kampen, 1981, p.238, for a relevant discussion).

We further see that for t > 1/~ the random function v (t) tends to a process
that besides being Gaussian-Markovian is also stationary (i.e. it is an Ornstein-

Uhlenbeck process), independent of initial conditions, with zero mean, variance ol /29,
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and covariance R (1) = o2 /2~ exp (—v|r|). Here we must note that one can formally
define the Langevin model in such a way that it directly produces a stationary v (t).
This can be done either by setting the initial conditions at ¢t = —oco instead of t = 0,
or by a suitable transformation of the time coordinate and the time scale (see, e.g.,
Syski, 1967). Alternatively this can be controlled by the initial conditions: if one
assumes that the statistical distribution of v (0) = vg is equal to the above large-time
limiting distribution, then the distribution of v (t) itself is independent of ¢t and equals
the limiting distribution (a direct consequence of the Markov property).

Now, in the case of turbulent fluid particle dispersion « is typically taken to be
the inverse of the Lagrangian time scale (see, e.g., Durbin, 1983; Sawford, 1984, 1985)

and thus, in a given direction, the corresponding Langevin equation can be writen as

dv; () = l"%’,ﬁ + oo.p, \/%db (t) (6.4 — 26)

Pasquill and Smith (1983, p.138) note that when the velocity autocorrelation is
not of exponential form then the appropriate time scale (characteristic of the rate
of exchange of momentum between fluid particle and environment) will not be equal
to the Lagrangian time scale. (Recall however that in the theoretical case of an
Ornstein-Uhlenbeck proces the autocorrelation is necessarilly exponential).

Although the analogy between Brownian motion and turbulent dispersion was
implicit in Taylor’s (1921) concept of the “diffusion by continuous movements,” and
has been theoretically discussed by Obukhov (1959) and Lin and Reid (1963), it
has only relatively recently (after 1975) becoine popular as a means for studying
dispersion phenomena (and in particular atmospheric), mainly as the basis of Monte

Carlo computer simulations (see also Pasquill and Smith, 1983; pp.133-141 *).

* It must be noted here that Pasquill and Smith (1983, p. 133) refer to these approaches as
“Markovian random walk methods.” However it is clear from the above discussion that
the Markov property is used in various other occasions in models of turbulent dispersion,
typically in relevance to the trajectories of the particles; thus it must be stressed that
this explicit use of the term Markovian property refers to the random velocities.
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The majority of these simulations have used the Langevin equation concept (of-
ten only implicitly) to model single-particle, i.e. absolute, dispersion statistics in
fixed coordinate frames and for time averaged mean concentration fields. (e.g. Reid,
1979; Durbin, 1980; Durbin and Hunt, 1980; Wilson et al., 1981; Lamb, 1982; Legg,
1983, etc. — see also Seinfeld, 1983; Sawford, 1985). Although such numerical mod-
els do not always offer significant fundamental improvements over techniques using
Taylor’s theorem (see, for example, Panofsky and Dutton, 1984, p.247, for relevant
comments), since in both cases Lagrangian velocity correlations (or some equivalent
restrictions concering the nature of the velocity field) have typically to be assumed a
priori, they are much more versatile, allowing for complicated boundary conditions.
Furthermore they are not restricted to homogeneous-stationary turbulence and can
be used with dispersion time dependent velocity correlations (although most numer-
ical experiments adopt stationary velocity correlations of the exponential type). For
a study of applications of the Langevin equation to “non-ideal” turbulence we refer
the reader to the works of Durbin (1983) and Sawford (1985).

In the numerical Monte Carlo simulations one estimates the “actual” random
positions of many particles; thus not only the variance but many other statistical
characteristics of the trajectories can be derived. Starting point of the numerical
models is typically a linear recursive relation for v (t), which in the case of one-

dimensional homogeneous-stationary turbulence (0, = 0¢,,) has the form (Smith,

1968)

v{t+7)=p(r)v(t) + 9 () (6.4 — 27)
with
pvr=R0Y)

typically assumed of exponential form. The variance of 9 (the latter typically assumed

Gaussian) is taken to be
o2 = o2 (1 — p? (r))
so that the variance of successive v’s remains the same. Thus in practice trajectories
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are calculated numerically by selecting wind velocities randomly (but so that their
statistics obey some restrictions imposed either by theory or by results of numerical
turbulence models), choosing ¥ from a Gaussian distribution of prescribed variance,
and finally calculating successive positions y from (6.4-27). A point worthy of noting
here is that (6.4-27), with the variance of 9 as above, constitutes a so called First
Order Autoregressive (AR1), Stochastic Time Series Model. It is in fact in the context
of such a time series that many of the Monte Carlo models have been formulated,
without explicit reference to the relation with the underlying Langevin equation (for
the limit of continuous time). This relation can be shown to hold in the limit of small
time lags. Indeed, for small 7 (say 7 = 7,) (6.4-27) (after expanding in a series of
powers of 7 and discarding higher order terms) reduces to

dv(t) [1—p(ra)] ., _ 9(t)
dt + Ts v(t) = Ts

which is an approximate Langevin equation with

1~ p(rs)]

’7:

and
o2 [1 —p? ('r,)]
Ta

Q=

One can see that for p(r,) = exp(—77,) ~ 1 — 47, the equality @ = 2y02 that
relates the parameters of the Langevin equation holds (approximately) for the first
order autoregressive series model. Thus, for Gaussian Markovian stationary processes
there is a strong connection between AR1 models and Langevin equations.

Let us now focus on the problem of relative dispersion in the perspective of the
Langevin approach. As already mentioned this problem has been pursued along two
different lines. One group of models considers the motion and separation of two fluid
particles and is based on a set of two coupled Langevin equations governing the dy-
namics of each particle, that is essentially solved numerically (Durbin, 1980; Lamb,

1981; Sawford, 1982ab). The basic aspects of these models have been discussed by
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Sawford (1983, 1985). As he points out, apart from points of detail, the fundamental
difference between individual models lies in assumptions regarding the rate of two-
particle separation: In both Sawford’s and Lamb’s models the instantaneous rate
of separation of the pair of particles is a function of the ensemble-mean-square pair
separation, with the result that the distribution of separations is Gaussian (for a
Gaussian velocity distribution) and the two-particle displacement probability density
is bivariate Gaussian. On the other hand in Durbin’s model the instantaneous rate of
separation is a function of the instantaneous separation, an assumption that leads to
a non-Gaussian distribution of separations. These differences correspond respectively
to the already discussed differences between Batchelor’s (1952) notion that it is only
the statistical tendency for particles to separate which is related to the size of the ed-
dies, and Richardson’s (1926) concept in which the probability density of separations
depends on an eddy diffusivity that is a function of separation. For further details
the reader is referred to the aforementioned publications and in particular to Sawford
(1983, 1985). Finally we mention the more recent works of Faller and Choi (1985)
and Faller (1985) who also use a two-equations Monte Carlo formalism to model rel-
ative dispersion in both the inertial subrange of three-dimensional turbulence and in
the enstrophy(*) cascade of large-scale two-dimensional turbulence; however it must
be noted that according to Sawford (1984, p.2408) “the Langevin equation is specif-
ically applicable to three-dimensional turbulence” and “it is likely that ... it does

not model the two-dimensional enstrophy cascade inertial range.” In fact there are

various unresolved problems in this area.

Another group of models for relative dispersion that use the Langevin equation is
based on the equivalence between conditioned single particle dispersion and relative

dispersion, that was discussed in the previous sub-section. As mentioned in that

. sub-section, recent interest in this conditioned dispersion method started with the

* Enstrophy is defined as the mean square vorticity of turbulence (se, e.g., Lin, 1972)
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proposal of Gifford (1982) of using a simple formula for both ¢? and 0%,

s bon (]2l )]
2K;(00) TE T TE 2 02, TE
(6.4 — 28)
2

where o3 ,,. is the fluid particle velocity variance at the source, and, of course,
K; (00) = 03; TiL

Thus as 0§ ,, approaches o2, (6.4-28) o is found to describe absolute diffusion, (as
predicted for an exponential velocity autocorrelation),
of L l—exp|— !
2K; (00) TF  TE P\TTE

whereas as 08,,,., approaches zero, i.e. as the dispersion becomes conditioned by the

fixed random initial value, one obtains the 4/3 diffusion power law, appropriate for
relative dispersion (without initial size effects).

Equation (6.4-28) is obtained directly from the general solution (6.4-23) of the
Langevin equation after squaring and ensemble averaging. Smith (1983) has pointed
out that his (1968) statistical relations may also be used to give exactly the same
equation and further discussed the problem of its proper interpretation in relation to
observational data, a matter that is not simple (see also Pasquill and Smith, 1983,
pp.122-123, for relevant comments). Lee and Stone (1983ab) extended Gifford’s model
to clusters of particles from finite-size, finite-duration sources. Lee et al. (1985) fur-
ther discussed this approach, also comparing their earlier calculations with results
from a two-particles, two-equations scheme they developed. The validity of the con-
ditioned dispersion approach in relevance to atmospheric relative dispersion modeling
was also reviewed and discussed by Sawford (1984) who stressed the generality of the
equivalence (in the sense that it does not rely a priori on a Langevin model) between
conditioned single particle motion and particle pair motion in the inertial subrange

of atmospheric turbulence.
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Sawford (1984, 1985) also discussed in general the applicability of Langevin type
equations to atmospheric relative dispersion modeling and in particular the agreement
of equation (6.4-28) with atmospheric observations. Although open to some questions,
his major conclusions seem to summarize the most important points of our current
knowledge in this area and for this reason are briefly reproduced here:

e Langevin type equations are good models for Lagrangian velocities only in high
Reynolds number three-dimensional turbulence where the particle acceleration au-
tocorrelation is short-ranged (a typical case being the inertial subrange where the
equivalence between conditioned and relative dispersion holds),
¢ Langevin equations seem not applicable to relative dispersion on the very large
(global) scales of atmospheric turbulence, at least partly because of the quasi-two-
dimensionality of motion on these scales,
e For horizontal dispersion at smaller scales the application of equations like (6.4-28)
is complicated by the lack of a well defined upper limit to the scale of the turbulent
kinetic energy,
- ® Conditioned single particle models cannot appropriately model higher moments (or
the pdf) of the separation; a pair of Langevin equations is needed for this task.

In conclusion, modeling of relative dispersion through Langevin equations (either
a single one or a pair) is currently an active — and relatively controversial — field of
research. Although several questions remain unresolved and the interpretation of
various assumptions is not always universally accepted, many useful concepts have
been recently clarified (and the present sub-section attempted to further organize
and relate them), and some powerful mathematical tools have been brought to the
attention of those interested in environmental dispersion. From a more practical (and
perhaps narrower) perspective we point out the potential of (6.4-28) as a simple model

for relative dispersion for the stages of quasi-asymptotic and asymptotic fluid particle

motion.
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6.5 RELATIVE DISPERSION ANALYSIS:
II. SPECTRAL METHODS

In this section we present a new method for estimating relative dispersion param-
eters from (observed) atmospheric turbulence spectra. This method is based on the
association of the relative dispersion and meandering processes with appropriately
defined space-time scales. This allows the computation of specified dispersion param-
eters from the spectral form of Taylor’s theorem after filtering out the frequencies
at scales that do not contribute to the process under consideration. The parameters
for the appropriate high-pass filter functions, required for the calculation of in-plume
phenomena, are not assumed a priori but are determined through an iterative integral
technique. The basic steps of this method were outlined briefly in Chapter 2. In the
present section we explain the rationale behind these steps, discuss various relevant
questions, and present some typical results obtained with this method. It must be
mentioned at this point that since typically Eulerian and not Lagrangian atmospheric
spectra are available with sufficient accuracy (and for a variety of atmospheric con-
ditions), there arises the need to use a transformation tecnique in order to use the
former spectra in conjuction with Taylor’s theorem.

6.5.1 General Considerations

Scale of Atmospheric Motions and Plume Spread

Let us now briefly recall some aspects of the concepts of averaging and sampling
times and of the associated scales, in relevance to plume dispersion (see also Ap-
pendix A6.1). A continuous plume from a point source in the atmosphere encounters
a wide range of atmospheric motions associated with different scales, which we asso-
ciate with the concept of eddies. Now, the very large eddies contribute to changes
in the instantaneous wind vector while the smallest eddies cause slight dispersive

spreading of the plume. The eddies of about the same size as the local plume width

~- 385 —



PART IB CHAPTER 6

are the most effective in producing turbulent plume dispersion. Eddies larger than
the instantaneous plume width but smaller than the characteristic horizontal scale
of the region of interest (typically the downwind distance from the source) produce
the meandering characteristic of the instantaneous plume. Thus if Lz is a character-
istic eddy dimension, z is the characteristic horizontal scale of the region (typically
the downwind distance) and Dp is an (ensemble) average tnstantaneous plume width,
then the role of eddies in plume dispersion is given by (see, e.g., Seinfeld, 1983, p.262)
(1) Lg < Dp, slight plume dispersion; internal plume mixing
(2) Lg ~ Dp, most effective in plume dispersion
(3) Dp < Lg < z, produces plume meandering
(4) Lg > z, produces changes in the wind vector

Since Dp = Dp (z), it is obvious that as the plume is advected downwind the
effect (on its spread) of atmospheric motions associated with a given spatial scale be-
comes qualitatively different. Furthermore, although in general eddies of a very wide
range of scales are expected to be present in the atmosphere, they are not expected to
be found with the same probability (i.e. the spectrum of eddies will be more “dense”
in certain scales — more precisely in frequency or wavenumber bands — and less in
others) this variation also holding for different directions. It is therefore imperative,
in relating relative dispersion parameters to atmospheric turbulence properties, such
as turbulent energy (i.e. fluctuating velocity variance), to discern between the contri-
butions to these properties from different scales, of motion and, furthermore, to take
into account the change of this contribution with advection time.

Turbulence Spectra (versus Correlations)
Comments and Definitions

In principle correlation functions and spectral densities contain the same infor-
mation regarding the distribution of the variance of a given quantity over different
spatial scales and frequencies (or eddy sizes). However, in practice, spectra are more
useful than correlations or other statistics because (besides possible computational

advantages) they give directly the distribution of the variance of interest (in our case
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of turbulent energy, either total or in a given direction) with respect to frequency
(or wavenumber), in a way such that the effects of particular frequency bands are
independent from the effects of other frequency bands. This important advantage
is shown schematically in Figure 6-3 (from Panofsky and Dutton, 1984) that shows
a time series of data with an approximately linear macroscopic (i.e. low frequency)
trend. The respective correlation functions and spectral densities are also given, cal-
culated both without and with removal of this trend. One sees that whereas the values
of the two correlation functions, for a given time lag, differ significantly, even for small
time lags, the behavior of the spectral densities at large frequencies is independent of
the slow variations (see Panofsky and Dutton, 1984, pp.174-176, for further relevant
discussion).

In this work we adopt the following definitions for the frequency spectrum (*)
Fo (w) of the fluctuations of the random quantity « (that is either Eulerian or La-

grangian with temporal autocorrelation R, (7)), following Monin and Yaglom (1975):

Fo (w) = % /Ooo Ry (1) coswrdr (6.5 —1)

(We will not consider specta corresponding to cross-correlations in the present work).
Regarding the notation, it must be mentioned that, in the present work, when an
¢ = 1,2,3 index notation is used for the velocities, then the index alone is used to
specify the correlation (i.e. we write R; (r) instead of Ry, (r) - see previous sections).

For symmetric R, (7) (i.e. stationary a') one can alternatively use the spectrum

Eq (w) = 2F, (w), defined for 0 < w < oo instead of —00 < w < 0o, and thus the

correlation R, (r) will be given by

Ry () = /m Fo (w) exp (iwr) dw = /;°° Eq (w) coswrdw (6.5 —2)

-0
We also use the absolute spectral density in terms of “arithmetic frequency”

n=w/2r

Sa (n) = 27Eq (27n) (6.5 —3)

The reader is reminded that there are some differences in the definitions of turbulent

spectra adopted by various authors; the major of these differences are summarized in
Appendix A6.1.

*
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Figure 6-3
Effect of Trend Removal
on Correlation Functions and Spectral densities

(from Panofsky and Dutton, 1984)
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which gives

/(;ooSa(n)dn:/ocoEa(w)dw:ag (6.5 — 4)

and note the identity

(o=}

/()00 Sa (n) dn=/ nSy (n)dlnn (6.5 —5)

0

according to which the area under the curve defined by the function nS, (n), which
is often called the “logarithmic frequency spectrum,” plotted against Inn represents
variance and nS, (n) represents the variance per unit logarithm frequency interval.
This identity is useful in the computations through the iterative algorithm proposed
later in this section.

We further denote with S, (n) , Ro (1), the normalized spectral density and the

temporal autocorrelation coefficient respectively

[ A Ra'r
Sa(my =210 p (r) = Rl
[+ 4 [

(6.5 — 6)

(Note also that we will use the superscripts E and L to discriminate between
Eulerian and Lagrangian spectra, as we have done with the correlations).

In the following o will be identified exclusively with the fixed-point wind velocity
component in the i-th direction, u;, or with the lagrangian fluid particle component
v;. Thus the direction ¢ will suffice in characterizing the turbulent frequency spectra
S# (n) and S% (n). As far as (one-dimensional) spatial spectra are concerned, we
assume that they are directly related to the frequency spectra through Taylor’s “frozen
turbulence” hypothesis, if, e.g., they are available and are to be used as a substitute
of frequency spectra.

Another quantity, extensively used in atmospheric applications, also useful in

our work, is the so called meteorological frequency, f, which is dimensionless and is

defined as

f=n_ (6.5 —17)
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where z is the height above the ground and u is the mean wind velocity (sometimes
substituted by the mean square-root-sum <\/E§—+—ug:u_§> that is larger than the
mean wind but is the quantity that is often measured in practice — see Panofsky and
Dutton, 1984, p.98). The reason for using f is that, as we will briefly discuss later,
on the basis of simple dimensional considerations for the surface layer, the spectra of
any particular wind component are expected to scale with f (i.e. to be invariant, for
given atmospheric stability conditions, when expressed in terms of f).
Spectral Form of Taylor’s Theorem

Direct application of the Fourier transform to Taylor’s theorem for single particle

dispersion in homogeneous-stationary turbulence — equation (6.4-1a) — and for i = j

gives

*® . sin? nnt

It is easy to see that in the above expression, where — as always in this chapter —
012,‘_ is assumed to correspond to the theoretical value, obtained for infinite sampling
time and zero averaging time, the term containing the dispersion time t essentially
plays the role of a low-pass filter that cuts out the high frequencies. Indeed, t is acting
as the equivalent of an averaging time T, that “smooths out” effects of the random
v; corresponding to time scales shorter than ¢ and thus produces the statistic o In

the notation of Appendix A6.1, where 02 [T,,T,] denotes the value of 02 evaluated

for sampling time T, and averaging time T,, equation (6.5-8) can be writen as

o} =t?02 [0o,1] (6.5 —9)

The implicit sampling time is infinite, thus allowing (in principle) even the slowest
variations in the turbulent field to affect the value of ¢2. In practice the concept of an
infinite sampling time in the evaluation of turbulence statistics must correspond to
intervals “long enough to accomodate all turbulent variations” but “short compared

to the time scales of variations in the mean motions.”
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The Relation of Eulerian and Lagrangian Properties

Before proceeding to discuss the application of (6.5-8) in describing turbulent
dispersion properties we must stress the (already mentioned) need to transform ob-
served Eulerian spectra to the corresponding Lagrangian densities appearing in this
equation. However, relating Eulerian and Lagrangian spectra or, equivalently, cor-
relations, is a most complicated (and in general unresolved) problem, the detailed
discussion of which is beyond the scope of this work. A brief introduction to the
methods used for tackling this problem (and in general for measuring Lagrangian
properties), can be found in Pasquill and Smith (1983, pp.81-87; see also pp.127-128)
while for a more comprehensive analysis of such methods one may consult the report
of Koper and Sadeh (1975). Some more recent dicussions of the subject can be found
in Lee and Stone (1983b), Li and Meroney (1985ab) and Sadeh and Koper (1985).

In the present work we have already given equation (6.2-10), which is perhaps
the most fundamental relationship among Eulerian and Lagrangian correlations, de-
rived directly on the basis of Corrsin’s (1959) independence hypothesis. The limits
of the validity of this equation are discussed in Weinstock (1976). As we mentioned,
the applicability of (6.2-10) to real situations is limited since it requires the a priori
assumption of the transition density G. The most widely used alternative to the for-
mal approaches based on this equation is the application of the so called Hay-Pasquill
hypothesis (Hay and Pasquill, 1959) which states that Lagrangian and Eulerian cor-
relations and spectra are similar in shape but are displaced by a scale factor 8 equal
to the ratio of (typically the maximum) Lagrangian and Eulerian integral time scales
B =TL/T® (see Figure 6-4).

Thus

nSL (n) = fnSE (Bn) (6.5 — 10a)
RL (Br) = RE (1) (6.5 — 10b)

Although this approach is strictly not valid in the high frequency range (inertial sub-

range), where the spectra have different limiting slopes, it appears to be a satisfactory
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£'= Bt

nSE:L(n)

n An’ | Inn

Figure 6-4
Relation of Lagrangian and Eulerian Spectra and Correlations

According to the Hay-Pasquill Hypothesis
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approximation for the largest part of the spectrum according to available observa-
tions (see, e.g., Hanna, 1982). Thus it is adopted in the present work as the standard
means for transforming observed Eulerian statistics to Lagrangian ones (especially
when the calculations are relevant to the energy range).

Given the correlations or spectra, the only parameter required for applying the
Hay-Pasquill hypothesis is 8. Various methods have been proposed for its estimation.
One approach has used equation (6.2-10) to infer some qualitative results concerning
the Eulerian-Lagrangian time-scale relationship: Assuming isotropic turbulence, a
Gaussian G with variance related to RY through Taylor’s theorem, and convenient
forms of R¥, Saffman (1963) and Philip (1967) estimated the ratio of Lagrangian and
Eulerian integral time scales f = TL/TF as a function of the intensity of turbulence

Ou; = 0y; [, and found that, for small &,,,

(6.5 —11)

The estimated values of the constant § were 0.8 (Saffman) and 0.35 (Philip).
Relation (6.5-11) was also proposed by Corrsin (1963), who, in a simplified anal-
ysis, assumed that the Eulerian and Lagrangian spectra are represented by their well

known inertial subrange forms (obtained through dimensional/similarity analysis)
SE (n) = A;u¥%e2/3n75/3 (6.5 — 12a)

SE (n) = Byen™? (6.5 — 12b)

forn > nf = 1/TP and n > nl = 1/TL respectively, and are equal to zero for
n < n® n < nl, Indeed, integrating the above equations from 0 to co and taking

into account that for homogeneous turbulence 62, = o2, one obtains (6.5-11) again,
with

5o 3 3/2 A?/z

2 B;

More realistic forms of the spectra, with finite values at small frequencies, have pro-

duced similar results with ,[§ in general in the range 0.35-0.8 (see Pasquill and Smith,
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1983, p.84). Current information regarding the value of ﬁ (for time scales along the
mean wind direction), based on available observations, narrows the above range to
0.4-0.6, with the value 0.44 (= /7/4 — see Panofsky and Dutton, 1984) being the
most common suggestion. Thus, typical values of 8 (calculated for typical values of
&u;) wll be 8 ~ 4 in neutral conditions, 8 ~ 2 in the typical unstable daytime plane-
tary boundary layer, and § ~ 10 in stable conditions (Hanna, 1982). The value 8 = 4
has often been adopted as a representative average of 8, independent of stability
conditions.
6.5.2 An Iterative Spectral Algorithm
for Estimating Relative Dispersion Parameters

General Discussion

The spectral form of Taylor’s theorem for absolute dispersion, that shows ex-
plicitly the filtering role of travel time — and in particular expression (6.5-8a) which
exemplifies the fact that absolute dispersion is (in principle) related to infinite sam-
pling times — are the starting steps for developing a practical scheme for the estimation
of relative dispersion parameters. The essense of our proposal is the following: at a
given downwind distance (i.e. at a given dispersion time) apply the spectral for-
mula (6.5-8) modified so that it corresponds not to“infinite” sampling time but to a
time period that is just long enough to take into account the effects of eddies of sizes
smaller or comparable to a representative instantaneous “diameter” of the plume. In
this way, according to our discussion in the beginning of sub-section 6.5.1, meandering
processes are excluded and the resulting o7 will be relevant only to relative dispersion

processes.

In fact, the concept of finite sampling time, its effect on observed spectra, and the
nature of dispersion parameters corresponding to such sampling times, have been the
subject of study and discussion since the 1950’s with the work of Ogura (1957, 1959)
— see also Smith (1962), Hino (1968), Rowe (1979). In direct relation to relative dis-

persion parameter estimation, the most important work, formulated on conceptually
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similar grounds, has been that of Smith and Hay (1961), specifically in the context
of the growth of a finite cluster of particles. (See also the discussion in Pasquill
and Smith, 1983, pp.154-158). Their analysis, valid ezclusively for isotropic condi-
tions and for clusters with a priori assumed Gaussian mean concentration distribution
about their center of mass, essentially starts from the differential form of equation
(6.4-10b), makes use of the Hay-Pasquill hypothesis for the relation among Eulerian
and Lagrangian correlations and spectra, and results in the following expression for

the rate of growth of the isotropic cluster (with standard deviation og from the center

of mass)
dop 2 /°° /m//a sinks 1 — exp (—o}x?)
— =33 . E(3p) (x) s p— dsdk (6.5 — 13a)
which for wt/B8 > og simplifies to
dor 7B [* 1 — exp (—o}k?)
& =32 ) Fep — dk (6.5 — 13b)

where E(3p) is the integrated three dimensional Eulerian spectrum in terms of the
magnitude of the wavenumber vector « and 8 is the Hay-Pasquill parameter. Based
on the above expressions and making various simplifying assumptions Smith and
Hay (1961) proposed a simple working approximation for the range of the expansion
where the size of the cluster is of the same order of magnitude as the Eulerian integral
length scale of turbulence (or — Pasquill and Smith, 1983, p.157 — where the downwind

distance from the source of an initially small cloud is 10 to 80 times the Eulerian ssale):
pé2 (6.5 — 14a)
or, approximately (and for 8 = 4) (*)

—Et—— ~ 0.3Uu (6.5 - 14b)

* Note that Pasquill and Smith, 1983, p.230, suggest a factor of about 0.22 instead of 0.3

in this expression.
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(which — after squaring — suggests that in this range only about a ninth of the total
variance of turbulence contributes in the dispersion of the cluster). This expression
corresponds to the maximum of the dog/dt slope predicted by the Smith-Hay model
and requires that 0% ~ t2. It should be observed at a “central stage” of dispersion
(Panofsky and Dutton, 1984, p.252), as the exponent of ¢ in 0%, (t) drops from the
value of 3.0 in the inertial stage to the value of 1.0 in the final stage of dispersion.
The model of Smith and Hay (in its simplified form) was reviewed and compared
with atmospheric data by Sawford (1982a) who indeed identified a certain range of
agreement between predictions and observations; for further information the reader
is referred to this paper and also a to a relevant discussion in Pasquill and Smith
(1983, pp.230-232).

An important thing to observe at this point is that the general equation of
Smith and Hay (6.5-13a) resembles the general spectral form of Taylor’s single par-
ticle theorem with the additional presence of a low-pass filter function, of the form
[L — exp (—0%?)] /or. This particular form of this weighting function is due to
assumptions concerning the two-particle velocity correlations in isotropic turbulence.
In fact both the concept of isotropy and these assumptions constitute important re-
strictions on the generality of the Smith-Hay scheme; these restrictions are also, of
course, extended to the permissible form of the spectrum that can be used in this
scheme. As far as the simple approximate equation (6.5-14a) — which is actually the
form of the model that has been used the most in applications — is concerned, it has
been derived on the assumption of a specific, very simple (exponential type) Eule-
rian correlation. It is therefore obvious that the (even approximate) applicability of
the Smith-Hay model to dispersion in the highly anisotropic energy range of atmo-
spheric turbulence, with spectra that are sensitive functions of stability and height,
is questionable.

So there arises naturally the problem of extending the Smith-Hay approach to
more realistic situations. However, although the above approach is now twenty five

years old there have not been — to our knowledge — any significant steps towards a
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practical generalization. An attempt to combine the theoretical scheme with informa-
tion from actual atmospheric measurements was presented by Sheih (1980) who ap-
plied the approach of Smith and Hay directly to observed, Eulerian, one-dimensional,
atmospheric frequency spectra. This attempt, which used isotropic theory results to
model anisotropic conditions and directly substituted the one-dimensional frequency
spectrum for the integrated three-dimensional wavenumberspectrum, contained some
obviously serious errors and produced predictions that disagree with observations.
However, it is still worth mentioning, at least because of the discussion it caused
in the literature; indeed, Gifford (1981), who strongly criticized the model of Sheih,
and also Mikkelsen and Troen (1981) and Rowe (1981), not only pointed out various
problems and errors of Sheih’s scheme but also provided some interesting comments
regarding the spectral description of the relative dispersion prroblem.
Model Formulation

In the present work we avoid use of the Smith-Hay formula and propose a scheme
based directly on the spectral form of Taylor’s dispersion theorem, as stated in the
beginning of the present subsection. The use of a theoretical result relevant to single-
particle dispersion as a starting point might at first seem as an inappropriate step but
in fact it is consistent with the relative dispersion concept (through the equivalence
between relative-to-the-center-of-mass and two-particle dispersion). Indeed, filtering
out the relatively low frequencies, that correspond to meandering, by using a small
sampling time, is essentially equivalent to adopting a meandering frame (that follows
the motion of the center of mass), since “an observer” moving with this frame does
not “feel” exactly these frequencies.

The general relation for o2, for finite sampling time T}, (see also Appendix A6.1),

is

[o.+} - 4 t =2 T
oF (t;T,) = o2, f gk (mySnmnt [y smianl) (6.5 — 15)
0 (mnT,)

a result that was discussed by Smith (1962).

In terms of the Eulerian spectrum (and assuming the Hay-Pasquill hypothesis is
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valid) equation (6.5-15) becomes

oo . 2 .. 2
20, _ 3 AE sin® rnt/B _ sin® mnT, d 16
oF (1:T,) = o2, /0 S T (1 ——-—(st)z) n (6.5 — 16)

In order to calculate 07 (t; T,) = 0%, (t) one must set T, set equal to the maximum
sampling time that still corresponds to the instantaneous or fluctuating plume, a
typical estimate of which is

2 \/EUR.'
u

T, = (6.5 — 17)

(clearly T, will be different in the horizontal and vertical directions). An important
point to note here is that the proper characteristic velocity appearing in the definition
(6.5-17) does not have always to be exactly equal to the mean wind speed; in fact
we define it here as being always identical to the characteristic velocity scale that
appears in the definition of the meteorological frequency, and that results in invariant
representations of the Eulerian spectra.

Of course T, defined in through (6.5-17) is a function of the unknown op,, that
is to be estimated, and hence (6.5-16) becomes a nonlinear integral equation for og,.
The solution to this equation is obtained through an iterative algorithm as follows:
Step 1: Given the spectrum function .§’f (n) calculate the absolute diffusivity o;
(corresponding to T, = oo) for given ¢:

oo =2
o2 (t) = o2.t2 /0 SE (n) de (6.5 — 18)

Step 2: Use o; as a first estimate of op, for given ¢

o) (t) = o: (t)

and set

to calculate

in2 T(l)
(02, (0] = 02,2 / B (n) 22Tt/ 0 tnt/f (g STy ) (6.5 — 19)

(mnt/B)* (”"Ts(,li))2
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Step 3: Use the value o(2?) (t) obtained from the previous step to calculate Ta(:‘:-)
that improves the filter function, and introduce in the last equation above to obtain
a refined estimate of op, = agi,). Repeat until convergence is obtained (e.g., until
two successively calculated values of og; do not differ by more than, say, 5%). We
note here that an obvious requirement for this iterative process to converge is the
absolute diffusivity to be a “sufficient” approximation for og,, a condition that might

be violated very close to the source (in which case a fraction of o; might be used as

a first estimate for op,).

Actually, numerical integration of the spectral formulas above is better performed
with respect to Inn since the logarithmic frequency spectrum has a much smoother
graph. Universal results (for given stability conditions) are obtained through the
use of the meteorological frequency. An example of such calculations is given in the
following paragraphs.

Model Application: An Ezample

The most important step in the implementation of the computational algorithm
Jjust described is the selection of the appropriate Eulerian spectral density. A variety
of empirical and semiempirical models of S’;’f (n) that fit extensive sets of observa-
tions have been proposed and tested during recent years. Excellent comprehensive
reviews of the information and references relevant to these models can be found in
Caughey (1982), Pasquill and Smith (1983, Chapter 2), Panofsky and Dutton (1984,
Chapter 8), and - in a somewhat more concise form — in Jensen and Busch (1982). In
particular, worthy of reference are the spectral function models proposed by Kaimal
(1973) and Hojstrup (1982), for stable and neutral-unstable conditions respectively,

that seem to be based on the currently most comprehensive data bases.

An extensive discussion of the spectral properties of atmospheric turbulence
(which are covered satisfactorily in the works mentioned above) is beyond our present
objectives. However, it is useful to recall briefly some important points: First, it must

be clear that the interest here is in the spectra corresponding to the energy range of
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atmospheric turbulence. Observed inertial subrange spectra are in general found to
follow the similarity analysis predictions, as given by equation (6.5-12a), in a satis-

factory manner, the constants of this equation being approximately equal to
Al >~ 0.15, A2 ~ A3 ~ 0.20

Of course a sound general model for the energy range must produce the inertial

subrange charactersistics at high frequencies, i.e.
nSE (n) ~n~¥®  (large n)
On the other hand, for very low frequencies S’f (n) must tend to unity, i.e.
nSE (n) ~n (small n)

A plot of ngf (n) is expected to have these two asymptotes with a maximum (or
“spectral peak”) in between. This maximum is attained at a frequency n,, corre-
sponding to the scale at which the predominant production of turbulent energy takes
place. For an observer at height z above the ground this scale is expected to be pro-
portional to %/z in the surface layer (see, e.g., Jensen and Busch, 1982, p.204). Thus
the spectra S‘-’f (n) of any particular velocity component are expected to scale with
respect to the dimensionless meteorological frequency f = nz/%, and, futhermore,
nS# (n) at any height are expected to fall on a universal curve when plotted against
f. (An interesting point to note is that the inertial subrange is typically always well
confirmed for f > 10 and often for f > 1).

Perhaps the most simple spectral function that obeys the asymptotic rules stated

above is given by

sm oy _nSE(n) _ of _
nS,-,- (n) = 012“ = (1 n bf)5/3 (6.5 20)

Although the above expression contains two parameters, a and b, integration from
0 to oo on one hand and differentiation for determining the position of the spectral

extremum on the other, show immediately that

a= 71—, b=15fn (6.5 — 20a)
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where f,, is the meteorological frequency corresponding to the maximum of the log-
arithmic spectrum, a parameter that is directly obtained from observations.

Introducing the spectral function (6.5-20) one calculates the ratio

as follows:

Step 1: Calculate the absolute diffusivity o? over oﬁi for given dimensionless t* =

tu/z:
u 20‘? 2 =< G,f sinzrft*/ﬂ
7)oz =F dl 6.5 — 18*
(z> A /o (1+5£)*° (nft*/B) i ( )

Step 2: Use 07 /02, as a first estimate of 03 /o2, for given t* and set

. 2\/50?2‘
T,:(t) = 201 T
Ug

to calculate

(H>2‘7122;_t.2 /°° _of sim’mftr/B | sin®nfT
o (

— 1ldl 6.5—19
14+ bf)5/3 (ﬂ.ftt/ﬂ)z (,n-fT;,i)z nf ( *)

Step 3: Use the value of ‘7%%; /03‘, obtained from the previous step to refine the
estimate of T, ;, and introduce again in the last equation above to obtain a new value
of 0% /o2.. Repeat until convergence is obtained.
Comments: (i) In practice a general infimum and a general supremum for the lower
and upper limits of integration respectively are f = 10~23 and f = 103; in most cases
however minimum and maximum values of f equal to 10~2 and 102 are sufficient.
(ii) To obtain absolute values of og, the relevant values of o2 are needed. Current
knowledge regarding these values is reviewed in various sources, such as Nieuwstadt
and van Dop (1982), Panofsky and Dutton (1984), and Weil (1985).

Given the frequency of the spectral maximum, f,, the above procedure gives

us afi‘_/ 03__ as a function of the dispersion time ¢t. As an example we present here
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calculations for both 0? /02, and 0%, /o2, for dispersion in the vertical (s = 3), with
fm given by the following equations, based on atmospheric measurements (Panofsky

and Dutton, 1984, p.189):
z
fm = 0.183 (I < —0.7)

fm = 0.482 + 0.437% (—0.7 < % < o)

fm = 0.482 + 0.87% (% > 0)

where L is the Monin-Obukhov length. Figures 6-5a, 6-5b, and 6-5¢ contain the
results for 2/L = 0.0 (neutral atmosphere), 2/L = —1.0 (unstable atmosphere),
and z/L = 1.0 (stable atmosphere). Typical values of 8 = 4, 2, and 10 were used
respectively for these three cases.

It is easy to see that these figures show quite good agreement — at least on a
qualitative basis — with the known asymptotic results from similarity theory: ol ~ t2
for small times and o2 ~ ¢ for large times; also 0?2., ~ t3 in the beginning of the
calculations for the og, and 0}, ~ o7 at large dispersion times. (Recall that the
early, source-dependent, phase of the relative dispersion process is not modeled by the
present algorithm). As expected, the effect of meandering is much more profound in
unstable atmospheric conditions and reduces significantly with increasing atmospheric
stability. For intensely unstable atmospheres o; seems to be a bad first approximation
for o, for a significant downwind distance; thus, if for an application OR, cannot
simply be neglected with respect to meandering (which dominates dispersion there),
it seems that one should calculate relative dispersion from some semiempirical formula

that involves an effective source size.
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NEUTRAL ATMOSPHERE: Z/L=8.8 (LOGF CALCS)
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Figure 6-5a
Absolute and Relative Dispersion Parameters over o2, (z/7)*
(Solid and Dashed line respectively)
in the Vertical Direction, versus tu/z,
for Neutral Atmospheric Conditions (2/L = 0.0),
Calculated through Iterative Filtering of the Turbulent Spectrum
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UNSTABLE ATMOSPHERE (LOGF CALCS)
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Figure 6-5b
Absolute and Relative Dispersion Parameters over 02, (2 /5)?
(Solid and Dashed line respectively)
in the Vertical Direction, versus t%/z,
for Unstable Atmospheric Conditions (z/L = —1.0),
Calculated through Iterative Filtering of the Turbulent Spectrum
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STABLE ATMOSPHERE: 2,/L=1.8 (LOGF CRLCS)
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Figure 6-5¢
Absolute and Relative Disp‘ersion Parameters over o2, (z/%)’
(Solid and Dashed line respectively)
in the Vertical Direction, versus t%/z,
for Stable Atmospheric Conditions (z/L = 1.0),
Calculated through Iterative Filtering of the Turbulent Spectrum
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6.6 CONCLUSIONS

The discussion in this chapter attempted an overview of different concepts and
methods employed in the description of relative dispersion, focusing in particular on
their interrelationships. A point that was stressed here is that various important
questions, regarding sometimes widely applied hypotheses, remain unresolved and
waiting for definitive answers. However, the attention that is given to the subject of
relative dispersion has been steadily increasing in recent years (partly due to realizing
its importance in modeling short term incidental releases of hazardous gases and to
the problems related to concentration fluctuations), and a better understanding of
the problems involved is a certain fact. It is hoped in particular that comparison
of both the underlying fundamental assumptions and of the results from different
methods employed to study relative dispersion will significantly improve the insight

on the ambiguous points.

Among the methods presented here, those based on stochastic ordinary differ-
ential equations (Langevin equations) and their discrete counterparts (autoregressive
time series models) seem to have the potential for improving our fundamental un-
derstanding of phenomena related to relative dispersion process in a more tractable
manner than formulations dealing directly with the dynamics of transition functions.
Nevertheless, the generality of the formalism that is developed in connection with the
dynamics of the (stochastic and deterministic) transition functions allows us to see
the various practical models of dispersion from a more broad perspective, derive and
classify them in an elegant and general manner, and identify the connection of the
assumptions involved in their formulations. In particular the discussion in this chap-
ter tried to show that the use of time-dependent diffusion coefficients in an ADE-type
equation is not an “illogical concept,” as it is often claimed, but constitutes an — ad-
mittedly artificial — compromise that turns the parabolic partial differential equation

of transport into a non-local scheme, avoiding the introduction of integrodifferential
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models that formally account for the non-localness of the turbulent dispersion process.

From a more practical point of view, application of appropriate filtering tec-
niques on observed turbulent spectra seems to offer a promising method for estimat-
ing dispersion parameters, with the effects of sampling and averaging time explicitly
incorporated in their estimation. In this way these parameters reflect the action of
the random fuid motions associated with a particular range of temporal and spatial
scales. Thus not only the nature of the different “components” of dispersion is made
clear, but also a means for exactly identifying the scales relevant to “mixing” and
“advection” on a quantitative basis is possible. Of course various problems associ-
ated with this method expect some future improvement in their treatment; perhaps
the most important are related to the Lagrangian-Eulerian spectra relationship and

to the incorporation of an effective source size in the overall scheme of calculations.
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APPENDIX A6.1

Frequency Spectra
and the Statistical Effects of
Finite Sampling and Averaging Times

The apparent statistical properties of random fluctuating aerometric quantities such as wind
velocity components, temperature, concentrations etc., are implicit functions of the averaging time T,
and the sampling duration T, involved in their measurement or estimation. In the modeling schemes
of the present work we employ mainly the variances, temporal autocorrelations, and frequency spectra
of such quantities. Here we focus on the effects of finite sampling and averaging time on the variance,
considering its spectral representations.

Let 02 [T, T,) represent the apparent variance of the (Eulerian or Lagrangian) quantity a obtained
by averaging measurements over the time interval T, and sampling for time 7,. The fluctuation of o
about its mean value is assumed to be a stationary stochastic function of time; thus the “theoretical”

ensemble variance of a will be
E{a’?} = <a’2> =02 =02 [00, 0]
where o = a — ().
Let R, () be the temporal autocorrelation coefficient of a’
Ra(r) =E{a’ (t) o’ (t + 1)}

and F, (w) be its {cyclic) frequency spectrum. At this point it is necessary to summarize a few
remarks regarding the definition of spectral functions in studies of turbulence. (It must be noted
of course that although the present discussion considers temporal single-point autocorrelations and
related frequency spectra these remarks also apply to cross-correlations in both space and time and
to all relevant frequency or wave-number spectral functions and tensors).

The majority of works in turbulence (see,e.g.,Monin and Yaglom, 1975; Tennekes and Lumley,
1972; Townsend, 1976; Batchelor, 1953 defines F, (w) as the non-symmetric Fourier transform of
R (r) with the 1/2x factor in the transform partner of the pair

Fy (w) = 2—11;_- / Ry (7) exp (—iwr) dr (A8.1—1)
which for symmetric R, (7), i.e. stationary o’ (as it was assumed) becomes
F, (w)= %/ R (7) coswrdr (A8.1 — 1a)
0

- 421 -



PART IB APPENDIX AS6.1

This allows use of the spectrum E, (w) = 2F, (w), defined for 0 < w < co instead of —c0 < w < o0,
and thus

oo o0
By (r) = / Fo (w) exp (iwr) dw = f E, (w) coswrdw (A6.1-2)
—o 0
This notation comes in contrast with the common convention of (electrical mainly) engineering litera-
ture where the 1/2x factor is included in the inverse transform partner of the pair. However notational

confusion does not stop at this point. Some works which are standard references in atmospheric tur-

bulence and atmospheric diffusion theory do not follow the majority of turbulence literature but adopt

different definitions:

Pasquill and Smith (1983: third edition of the classic monograph of Pasquill) adopt the definition
(also used by Hinze, 1975)

FLSLPS) (w) = 2/ R, (1) exp (—iwr) dr = 4/ R, (r) coswrdr
0

—00

and therefore

Ry (r) = 4—1“_-/ FP%) (w) exp (fwr) dw = 2—11;/(; F{PS) (w) coswrdw

whereas Panofsky and Dutton (1984) set

F(PD) () = %/ R, (7) exp (iwr) dr = ;/ R, (7) coswrdr
)

and
1 00
Rq (1) = —/ FC(,PD) (w) exp (—twr) dw
2/
In other words

F.:(:PD) (“’) =Eq4 (“-’)

It is therefore imperative that great care is taken when, e.g., an empirical spectral function is used

in calculations, to be sure to what definition it corresponds.

Here we adopt the “mainstream” definition as in Monin and Yaglom (1975), using both F, (w) and

E, (w). We also introduce the absolute spectral density in terms of “arithmetic frequency” n = w /2%

Sa (n) = 2xE, (27n) (46.1 —3)

which gives
oo o0
/ Sa (n) dn = [ Ea(w)dw =03 (46.1— 4)
0 [V]
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With this definition our spectral density S, (n) is identical to both the function S (n) defined in Pasquill
and Smith (1983, p. 23) and to the function S(f) defined in Panofsky and Dutton (1984, p. 85). A
useful thing to note here is the identity

/omsa (n)dn=fo°°ns,, (n) dInn

Thus the area under the curve nS, (n) plotted against In n represents variance. Thus nS, (n) represents

the variance per unit logarithm frequency interval.

Let further §, (n), Ba (r), be the normalized spectral density and the temporal autocorrelation

coefficient respectively

Sem=2t R = El0

Then it is easy to show that

_ 202

o3 (o0, To] = 7= /0 - (1 - TL,.) R () dr (46.1—6)

(see, e.g., Tennekes and Lumley, 1972, p. 212; see also Chapter 5).
In terms of the spectral density one has (see, e.g., Pasquill and Smith, 1983, p. 26)

oo .2
02 (00, T,] = 02 / S (n) ?m;nfl,}'dn (48.1-17)
0 (7nT,)

Thus, as T, is increased, more of the spectrum is cut off and 02 [0o0, T,] is reduced.

The complementary effect of sampling over finite time 7T, can also be derived (Pasquill and Smith,
1985, p. 26):

03 [00,0] = 6% [Ty, 0] + 02 [T}, 0] (A6.1—8)

where the subscript co implies averaging of the variances estimated from consecutive periods T, over

infinite time. Substituting from (A6.1-7) one has

o2 [T,,0], =o? /0 "8 (n) (1 —%) dn (48.1—9)

For very large T, the weighting function cuts off all but the very low frequencies, for which
Se (1) — 4T* with T* = J5" Ra () dr, effectively independent of n. Then, in (A8.1-7) 8, (n) can be

taken outside the integral sign and therefore
AAim 02 [00, Ty To = 202T* (A8.1 - 10)
(A8.1-10) is also the limiting form of Taylor’s relations
d Te
T {02 [0, Tu] To} = 203‘/ R, (r)dr (A6.1 - 11a)
a 0
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t Ta
o2 [oo0, t]¢? = 202 / / Ra (r) drdT, (46.1 — 115)
0 0

which are applicable to any stationary random function of time.

When available data correspond to both finite sampling and averaging time the effect of the two
in combination depends on the order in which the averaging and sampling operation are carried out.
The two alternative procedures are described by Pasquill and Smith (1983, p. 28):

(I) for samples of length T, averages are taken over subintervals 7, which do not overlap (T, /T, must
be an integer), }

(I) averages are taken over intervals of length T, and from the smoothed time series constructed in
this way samples of length T, are formed. In this case averages may be taken in an overlapping
manner.

The combined effects of finite sampling and averaging times are given by the following relations

(Pasquill and Smith, 1988) for procedures (I) and (II) respectively:

. in? 7nT, gin? #nT,
2 (T, Taliy = 2/ 34 IT T _ : A6.1—12
Ua[ ](I) Oa o ("’) ( (rnTa)z (WnT‘)z ( G)

(A6.1 — 12b)

. in? wnT, sin? 7nT,
2T, T, _ 3/ 3. sm”wnls a
oal ](n) 4 A (n) (7rnTa)2 (1rnT.)2

Thus, in case (I) the resultant effect is equivalent to substracting the separate weighting functions for

averaging over T, and T,, while in case (I} it is equivalent to applying the product of the separate

weighting functions.
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CHAPTER 7

Chapter 7 contains

* a discussion of the initial phases of plume dispersion, and the scales and proper-
ties that are relevant to each phase,

e a brief overview of methods employed to model plume rise,

* a presentation of the models of Briggs and Schatzmann that are suggested as the

“simple” and “comprehensive” alternatives, respectively, for use with the TRPM.
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CHAPTER 7

NEAR FIELD
PLUME DYNAMICS

L a
[]

b 7.1 INTRODUCTION

In the development of the Turbulent Reacting Plume Model (TRPM) it was
assumed that the processes of plume mixing that interact with chemistry are solely
due to the action of the ambient, atmospheric, turbulence. Thus, as was mentioned
in Chapters 2 and 3, the details of the early stages of plume dispersion, where the exit
flow of gases from a stack (or any other “point” source) “merges” with the ambient
cross-flow, are neglected (*). This was done on the basis of the argument that this
process of flow merging is very fast compared to the time scales of both molecular
diffusion processes and of nonlinear chemical interactions between plume and ambient
species, of the type this work mainly focused on.

Nevertheless, source conditions play a significant role, not only by determining
the rate and quality of early plume mixing but, more importantly, by affecting the
dispersion and mixing parameters far beyond the stage where the plume exists as a
separate fluid mechanical entity, distinct from the ambient flow. More specifically,

initial conditions, in combination with the state of ambient stability, determine the

(*) It must be noted that the description of mixing and dispersion in the present basic
operational version of the TRPM does not involve any geometric, kinematic or thermal
parameters of the source, such as stack diameter, efluent exit temperature or velocity,
etc.; actually the species emission rate is the only input associated with the source that
is required directly by the master module of the TRPM.
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evolution of the ascending path of the mean plume centerline and its final total
rise, i.e. the height where atmospheric dispersion of the emissions essentially starts.
Knowledge of the position of the mean centerline is essential not only for “placing” the
results of local reaction-dispersion calculations at the actual mean spatial coordinates
to which they are relevant (and therefore for integrating the results of the TRPM
with calculations from larger scale models), but also because the dispersion rate of
the plume may depend on its actual rise. A most extreme example of this dependence
is associated with the existence of elevated temperature inversions. In such a case
the buoyancy of the emissions may be able to cause (at least partial) penetration
of this inversion layer. This will result in a significant reduction of near ground-
level concentrations as well as of plume dispersion rates just above the inversion. A
more general quantitative measure of the effects of near-field plume rise on plume
dispersion can be obtained by examining the maximum ground level concentration
which is roughly proportional to the inverse square of the effective source height.
Experience suggests that this effective height is typically 2 to 10 times the actual
stack height (Hanna et al., 1982); plume rise can therefore reduce (even without
causing penetration of an inversion) ground level concentration by a factor of as
much as 100. One must therefore conclude that a reliable scheme for the estimation
of plume rise is a required component of any “realistic” reacting plume model.

It is nevertheless clear that the problem of near field plume (or jet) dynamics
can often be of overwhelming complexity as it involves the simultaneous transfer of
mass, momentum and heat, coupled with boundary conditions that can be highly
complicated. Thus, intricate flow patterns and mixing mechanics are to be expected,
except in the most trivial of cases (see also Figure 7-1). Analytical (exact or ap-
proximate) results are available for point sources of momentum and/or heat in a
calm environment, resulting in laminar jets and plumes (see, e.g., Seinfeld, 1975; Yih,
1977). Extensive information is also available regarding the internal flow structure of
turbulent jets and plumes in calm backgrounds (see, e.g., Hinze, 1975). In the case of

discharges in turbulent cross flows the physics of the problem become very difficult to
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handle and available experimental data and numerical computations reveal complex
schemes of mixing and flow development (see, e.g., Moussa et al., 1977; Crabb et al.,
1981). It is beyond the scope of the present work to discuss the vast range of research,
both theoretical and experimental, that is relevant to turbulent jets and plumes; a
relatively recent review of the current state of the field can be found in List (1982) —

see also Fischer et al. (1979), Chen and Rodi (1980), Rodi (1982).

In the case of atmospheric plumes in particular, buoyancy is typically much
more important than initial momentum (see next section) and hence it is mainly
the former that determines plume evolution in the near field. This leads to the
“line thermal analogy” for plume rise, according to which the internal motion of a
point source plume resembles the convective motion induced by an instantaneous
line source of heat corresponding to the projection of the mean plume centerline on
the horizontal plane at source height.. Csanady (1973; Chapter 6) and Scorer (1978;
Chapter 10) contain informative introductions to the fundamental theory of buoyancy
dominated plumes; for further analysis of the fundamentals of buoyancy effects in
fluids one should consult the relevant monograph of Turner (1973); finally, useful
introductions to the techniques of plume modeling can be found in Seinfeld (1975),
Eskinazi (1975), Fischer et al. (1979) and Gebhard et al. (1984). Proceeding from
the fundamental concepts, that are exposed in the above references, to computational
models that realistically predict plume rise under atmospheric conditions (for given
ambient stability) is far from being a trivial or even straightforward step. Indeed,
although many models start from a common fundamental (and simplified) “picture” of
the plume (see Section 7.3) they produce different working formulas (and results that
vary significantly for the same inputs) as they adopt different assumptions regarding

the action of atmospheric and plume turbulence.

The field of atmospheric plume rise modeling has been reviewed extensively and

periodically by Briggs (see, e.g. Briggs 1969, 1975, 1984) who compared and classified
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a variety of modeling approaches(*) as well as available data to finally reach a set of
formulas (also periodically updated) that today are the most widely used means of
calculating the rise of atmospheric plumes (see Section 7.4). Another extensive review,
focusing on models for the prediction of cooling tower plume rise from natural-draft
cooling towers, was presented by Carhart et al. (1982) who evaluated the theory
and performance of 16 such models. Finally, a concise but general overview and
discussion of the subject of plume rise modeling can be found in Schatzmann and
Policastro (1984) who classify and analyze a wide range of assumptions commonly
involved in this modeling.

In the present chapter, after a discussion of the main qualitative features of
near field plume dynamics, and a general classification of the approaches that have
employed to model these dynamics (a classification that contains some information
more recent than what can be found in the latest works of Briggs), we present the
two alternative options suggested for use with the TRPM. These are the widely
used semiempirical algebraic equations of Briggs, and a more general scheme (a self
similarity model of plume rise) resulting in a set of ordinary differential equations
that require numerical solution, based on the work of Schatzmann and his coworkers;

the latter is presented in relative detail in Appendix A7.2.

(*) In his 1975 review Briggs lists and discusses the basic features of about 50 models of
atmospheric plume rise.
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7.2 QUALITATIVE CONSIDERATIONS

7.2.1 Phases of Plume Dispersion

In order to provide perspective on the qualitative dynamics of atmospheric
plumes we consider the following typical case of a plume “bent over” by the wind
(Slawson and Csanady, 1967, 1971; Csanady, 1973): Effluent gases leave an indus-
trial stack with temperature differences from the ambient environment of the order of
100-300 °C and vertical velocities wg of the order of 10 m s~1, entering a cross wind
of speed ue that is of similar order of magnitude. Thus, the effluent gases from the
stack “carry” both momentum and buoyancy “of their own” and therefore constitute
a buoyant jet (or a forced plume) entering a turbulent atmosperic crossflow. Rapid
mixing with the ambient air takes place and the plume axis bends over into the wind
as the effluent gases acquire the horizontal momentum of the ambient air. Observa-
tions show that the transfer of horizontal momentum is usually essentially complete
within a few stack diameters from the exit (Csanady, 1973). Thus very quickly por-
tions of the plume start to travel horizontally at the mean speed of the ambient wind.
Nevertheless, their vertical velocity relative the the ambient fluid however does not

disappear so quickly, because of the continued action of the buoyancy forces.

Csanady (1973) reports that from several observations of the near-source size
of chimney plumes chimney it may be inferred that the effective mass of effluent
gases increases through vigorous mixing with ambient air by something like a factor
of 30 within a distance of 3 to 5 source diameters. By this time the deficiency of
horizontal momentum compared to ambient air is therefore a negligible 3%. The
vertical velocity was due to initial velocity is also about 3% of the original wo, that
is for wg ~ 10 m s~ wys is of the order of 30 cm s~ 1. However, if the chimney
diameter is not much less than say 3 m, the buoyancy force has had several seconds

to act in the time the gases have moved 3 to 5 diameters (that is 9 to 15 m). A
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typical order of magnitude for the initial buoyant acceleration of industrial stacks is
10 m s~2, and although this also reduces through mixing in the same proportion as
initial momentum, it generates an appreciable vertical velocity within the first few
seconds. Indeed if the average acceleration between leaving the chimney top and a
30-fold increase in mass is only 1 m s~2, and if this initial adjustment phase lasts at
least 1 s, the buoyant contribution to vertical velocity becomes 1 m s~!, or 3 about
times larger than that due to the initial momentum. Csanady (1973) notes that such
a conclusion holds only for chimneys discharging substantial quantities of heat. An
initial buoyancy caused acceleration of the order of 10 m s~2 implies an initial excess
temperature of the effluent gases of the order of 300 ®C. For a 3 m diameter chimney
and an exit velocity wo= 10 m s~! this corresponds to a considerable rate of heat
release (order of 6000 kcal s).

These conclusions will not apply to much smaller chimneys (of order 1 m in
diameter or less) nor to those which discharge their gases with a small buoyant accel-
eration. In such non-buoyant cases plume rise is due basically to initial momentum
and is usually essentially complete within 10 chimney diameters or so. However, the
vast majority of large industrial point sources produce buoyancy rather than momen-
tum dominated plumes, as in the situation described here, and most effort in the field
of atmospheric modeling has focused on these cases.

From the above example it becomes obvious that in buoyancy dominated plumes
neither the radius of the stack, nor the initial vertical exit velocity are dominant in
determining the path of the plume beyond the earliest mixing phase (often referred
to as the “jet” or “momentum phase”) that lasts for a distance of the order of a
few stack diameters. The factor that quickly becomes of dominant importance is the
total excess heat. However, beyond the jet phase of the plume this excess heat is
small enough, even in plumes generated by large heat sources, and the Boussinesq
approximation seems to be a valid assumption in most of the cases. These facts
suggest that it is useful to identify succesive stages in the evolution of a typical plume,

where different sets of parameters are important and appropriate simplifications can
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be made in the analytical description of the plume. The brief discussion that follows is
based on the analysis of Slawson and Csanady (1967, 1971) who identified four phases
(and classified them as the zeroth, first, second and third phase of plume evolution).
An actual atmospheric plume is expected to conform better to this rather idealized
qualitative model of behavior in near neutral atmospheres.

The Momentum (or Jet) Phase

This initial phase of plume evolution extends a few (say 3 to 5) stack diameters
downwind and its dynamics are determined by source properties (stack radius, exit
speed, density of efluent) and the ambient density and mean wind speed at source
height. The inherent turbulence of the exit flow is much stronger than the ambient
turbulence and dominates transport processes and the internal plume flow structure.

The Thermal Phase

In this phase the effect of source diameter and exit velocity become unimpor-
tant. Mean plume dynamics are determined by the flux of buoyancy of the plume
and the ambient mean wind speed and stratification (i.e. the atmospheric potential
temperature gradient). Inherent plume turbulence (generated by buoyant convective
motion) still dominates the ambient and determines local turbulent properties and
mixing. The total downwind extent of this phase is expected to be of the order of
about a hundred stack diameters.

In a neutral atmosphere, or for suitably small vertical plume displacements, the
flux of buoyancy may be regarded as approximately constant in this phase. However,
in a stable atmosphere the potential temperature of the environment increases as the
plume rises so that the plume’s excess temperature (and hence its total buoyancy
decreases). The converse is the case in an unstable atmosphere. (In highly unstable
atmospheric conditions the vigorous convective motions of the ambient will most
probably dominate very early the inherent motions of the plume and will play a more
important role in determining its rise).

The term thermal phase is usually attributed to a rather smooth phase of buoyant

plume dispersion, and is commonly associated with near-neutral conditions. In these
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conditions most buoyancy dominated plumes retain smooth outlines and a moderate
slope (about 0.2 or even less) against the horizontal for some distance during this
phase, unless special ambient flow properties and source configuration cause charac-
teristic irregularity phenomena known under the names of thermalling, downwashing
(or flagging), downdraught, puffing and bifurcation (see Scorer, 1978; see also Ap-
pendix A7.1 for a brief glossary of terms describing plume behavior). It turns out to
be reasonable in this phase to regard segments of the plume as if they were segments
of a line thermal moving upward through quiescent surroundings (see, e.g., Turner,
1973).

The total plume rise in atmospheric crossflows during this phase is in principle
predictable and the great majority of models used for this objective are relevant to
the dynamics of this stage.

The Breakup Phase

Observation of buoyant plumes reveals that the relatively regular thermal phase
of plume rise comes to a rather distinct end at some approximately predictable dis-
tance from the source as more vigorous mixing with the ambient air sets in and the
plume often breaks up into several distinct parcels. In general, a stage, lasting for dis-
tances of the order of 100 m, where there is a distinct increase in mean plume width
and mixing with the surrounding occurs mainly at large scales, is observed. This
“breakup” phase of the plume is more pronounced in strong atmospheric turbulence
and also occurs closer to the source when the ambient turbulence is more intense.

Obviously the large eddies which lead to the breakup are those naturally present
in the wind (they are too large to be produced by the plume’s own internal motion).
Also their mixing action is dominant over the effects of the self-generated turbulence.
When “breakup” is pronounced, it leads to an almost stepwise increase in plume
diameter.

The dynamics of these phase are influenced by the scales and intensity of atmo-

spheric turbulene (in addition to the mean wind speed and plume buoyancy flux).
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The Atmospheric Diffusion Phase

A little further downwind the distinct parcels merge again into a larger, more
diffuse plume, the subsequent growth of which is relatively slow. At this stage the
various atmospheric diffusion theories become valid and this final phase of plume
dispersion (which extends indefinitely downwind) is typically called the “atmospheric
diffusion phase.” Now the plume exists only in terms of the species emitted from
the source; their fluctuating concentrations define the plume. Thus there is no sep-
arate flow structure associated with the plume phenomenon and we deal only with
atmospheric fluid mechanics.

The actual height of plume rise above the actual source is affected by the ran-
domness of the physical factors involved. The expected rise, is in general a function
of the downwind distance from the source and a number of other physical param-
eters, different for each phase, as they were identified in the previous paragraphs.
Recall that in the preceding discussion it was assumed that during the initial phases
of plume dispersion no special aerodynamic phenomena such as downwash take place.
It is further assumed that the source is sufficiently far above the ground so that the
flow pattern within the plume is not disturbed by surface effects. Otherwise the effec-
tive height (that is the sum of plume rise plus the real source height) may influence
further plume rise (see, e.g., Csanady, 1973, 6.15).

Figure 1-3 in Chapter 1 depicts schematically the downwind range relevant to the
various phases that were discussed here together with the most important physical-

chemical in-plume processes occurring at a given range.
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Results regarding the expected plume dynamics during the “distinct” initial
phases of dispersion can be obtained by simple dimensional analysis if the physi-
cal parameters recognized as important during each phase are taken into account.
These simple results are summarized, together with some empirical information in
List (1982). (In relation with the formulas listed there we must note that the effect of
a solid boundary on the buoyant movements in a large plume has been ignored; also
the atmospheric potential temperature distribution is represented through its gradi-
ents, but this in turn may be a function of height.) Finally it must be noted that the
line-thermal analogy applies only to the second of the four phases of initial plume
dispersion. This is the only phase for which we have a relatively adequate theory for

the internal motion and concentration patterns of a buoyant plume. Appendix A7.3

summarizes the suggestions of Briggs (1975) for these internal patterns.
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7.3 MODELING PLUME RISE:
THE BASIC APPROACHES

Research in the field of plume rise over the past 30 years has led to a confusing
proliferation of prediction schemes, that offer a variety of different answers for a spe-
cific problem, ranging from simple empirical or semiempirical formulas to complex
numerical formulations. It is obvious from the discussion of Section 7.1 that compi-
lation and discussion of a list of specific models representative of the entire spectrum
of existing approaches would be a most ambitious task that certainly is beyond the
scope of the present work. The reader who is seeking information of this kind is
urged to consult List (1982), Briggs (1975, 1984) and Carhart et al. (1982). What
is attempted here is a general classification of the various approaches on the basis of

the first principles involved.

The two extreme forms of plume rise models, and in general of models of plume
(or jet) dynamics, are:
(I) Simple algebraic relations giving the expansion, the trajectory (or final rise) ete.,
of plumes in either calm or turbulent environments, that are derived from dimensional
analysis and empirical information. Typically, the construction of such relations starts
with the identification of the important physical parameters involved in the problem
(which may be different in the various phases of plume evolution, as discussed in
Section 7.2), and, possibly, with assumptions regarding the behavior of some of these
parameters. Self similarity is most commonly assumed for velocity, concentration and
temperature profiles and simple self similarity laws are invoked. General correlations
are then derived on dimensional grounds; qualitative consideration of the governing
transport equations with an order of magnitude analysis of their terms, as well as
of constraints imposed by conservation requirements, may facilitate or “enhance”
this step. The correlations thus derived contain numerical parameters which must

be determined on the basis of empirical information. Tutorial expositions of this
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approach can be found for example in Seinfeld (1975; Appendix B), Csanady (1973;
sections 6.12 and 6.13) and Fisher et al. (1979; Chapter 9).

(II) Numerical schemes that solve the sets of the coupled (partial differential) equa-
tions governing the fields of mean velocity, concentration, temperature and, possibly,
fields of higher order moments or correlations of these variables. The most impor-
tant step in the formulation of models following this approach is the construction
of appropriate closure approximations for the turbulent correlation terms; both first
and higher order closure assumptions have appeared in the relevant literature. Some
formulations in this area limit attention to uniform environments; others attempt to
take into account the effects of ambient turbulence, crossflow and stratification which
complicate the problem significantly. For examples of this approach see, e.g., Mellor
and Yamada (1977), Teske et al. (1978), Yamada (1979), Chen and Nikitopoulos
(1979); see also List (1982) and Liu et al. (1982; Section 4) for discussions of relevant
models.

The “gap” between the approaches described above is occupied by the class of
the so-called “integral type” models, widely ranging in variety and complexity, that in
general attempt a description of the problem based on more “physical” grounds than
models of class (I) but lead to the formulation of schemes that are more tractable
than the ones contained in class (II). The key element in the various integral type
models is the reduction of the set of governing partial differential equations into a set
or ordinary differential equations (essentially through self similarity assumptions and
appropriate closure schemes). One can discern two major lines in the development of
integral approximations:

(IIIa) The governing ordinary differential equations are formulated directly by con-
sidering an appropriate control volume of the evolving plume and constructing bal-
ances of momentum, mass, energy and species concentration. This “shell balance”
approach (see, e.g., Bird et al., 1960) has been adopted by the majority of inves-
tigators starting from the works of Taylor (1945), Priestley (1953), Priestley and
Ball (1955) and Morton et al. (1956). Typically “top-hat” profiles of concentration,
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temperature, etc., are assumed inside the control volume (but more complicated self
similarity is also possible). Quoting Csanady (1973), “the main idealization involved
[in this approach]| is that although in reality the flow and temperature patterns are
continuous, an artificial distinction is introduced between an “identifiable plume” and
the ambient fluid. The identifiable plume is assumed to grow by “entrainment” of the
ambient fluid, the rate of entrainment being governed by an entrainment velocity at
the perimeter of the plume.” This constitutes the essence of what is generally referred
to as the “Morton-Taylor approach” or “Taylor’s entrainment hypothesis.” This hy-
pothesis replaces the “straightforward” turbulent transfer closure assumptions that
are required to provide a closed set of governing equations.

The most simple models in this approach just reproduce the results of dimen-
sional reasoning discussed earlier; more complicated models attempt detailed descrip-
tions of plume evolution basically using more elaborate entrainment hypotheses. (For
a critical discussion of the physical situation behind simple entrainment hypotheses
see Netterville, 1985). A review and comparison of several models of this type can
be found in Briggs (1975); Briggs’ own suggestions (1969, 1975, 1984), which are
summarized in Section 7.4 of this chapter, are typical simple applications of this in-
tegral approach. For an introduction to the essentials of this type of modeling one
may consult the same basic references mentioned in (I). Typically, the Boussinesq
approximation is invoked in application (see, e.g., Fan (1967); Abraham (1971) etc.).
(IT1Ib) Altvernatively, the original coupled partial differential equations that govern
the transport processes in the plume-ambient system are reduced into ordinary dif-
ferential equations via Prandtl’s integral approzimation method and appropriate self
similarity assumptions. Examples of this approach are presented by Hirst (1972) and
Schatzmann (1976) and in general provide a more powerful method for describing
plume dynamics, starting from a more detailed consideration of the problem and
introducing simplifications not a priori but gradually, based on an explicit analysis
that requires rational justification of the assumptions involved. This approach (in

particular Schatzmann’s schemes) is discussed in detail in the following (Section 7.5
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and Appendix A7.2). Again turbulent transport closure is conveniently provided by
“entrainment hypotheses.” For a recent analysis and review of relevant entrainment
assumptions see Chiang and Sill (1985).

Finally we close this section by pointing attention to the main subjects that
seem to receive currently the major interest in the area of near-field plume dynamics
modeling: these are, besides the evaluation and refinement of entrainment hypotheses
(also related to their justification on physical grounds), (a) modeling of cooling tower
plumes, (b) modeling of the effects related to elevated inversion penetration (see, e.g.,
Mannins, 1979) and (c) modeling of plume rise in the convective planetary boundary

layer (see, e.g., Lamb (1982) and Willis and Deardorff (1984)).
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7.4 THE MODELS OF BRIGGS
(Briggs, 1969, 1975, 1984)

The following equations for the various phenomena of plume rise (associated with
the momentum and thermal phases of plume dispersion) appear in the most recent
reviews of Briggs (see, e.g., Briggs, 1984) and currently they seem to be the most
widely accepted working formulas relevant to these phenomena. The brief exposition
presented here follows mainly the conventions and the pattern of classification adopted
in the Handbook of Atmospheric Diffusion of the Department of Energy (Hanna et al.,
1982), with some changes in the notation; it should be viewed only as a collection of
common definitions and practical formulas for direct application and is included in this
work for ready reference. For detailed derivations of Briggs’ formulas, extensions to
other cases, discussion of the assumptions involved and of the associated uncertainties,
as well as for information relevant to their relation to other approaches and their

evolution to the currently accepted forms one should consult Briggs (1969, 1975,
1984).

Definstions
The basic geometric (shape) parameters involved in Briggs’ formulas are shown
schematically in Figure 7-3; a typical “vertical” and a “bent over” plume are shown.
In practice a plume will be assumed vertical or bent over when the angle of its
centerline with the horizontal is respectively larger or smaller than 459; according to
Hanna et al. (1982) a plume is “more or less vertical” if wind speed is less than about

Im/s. A “plume volume flux” is defined by Briggs as
V =wR? (vertical) (7.4-1)
V =usR? (bent over) (7.4 —2)

where w is the vertical speed of the plume (assumed uniform in a cross-section and

therefore representing an average value), us is the mean ambient wind speed and R
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Basic Parameters of “Vertical” and “Bent Over” Plumes
Appearing in the Models of Briggs (1975, 1984)
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is an effective plume radius in a horizontal or vertical plane for vertical and bent over
plumes respectively. (Note that in the formulation presented here the factor = does
not appear explicitly anywhere; thus it is incorporated implicitly in the definition of
the effective radius R) Initial fluxes of volume, Vo, buoyancy By and momentum Mo

are defined as

vo = woﬁ’,g (7.4 — 3)
Bo = Ti (To - Tooo) ‘-’0 (74 - 4)
0
Mo = iq—‘wcﬂ}o (7.4 - 5)
Peog

where subscript 0 indicates stack exit values and oo indicates ambient properties.
Thus Tp and pp are the plume temperature and density at the stack and Teog, Pooo
are the corresponding ambient properties at stack height. (Implicit in (7.4-4) is that
the mean molecular weight of the plume gases does not differ appreciably from that
of ambient air; otherwise all temperatures in (this equation must be divided by the
mean plume molecular weight). At an arbitrary height buoyancy and momentum flux

are defined as

B=Z(T-Tx)V (7.4 —6)

M@

M=wV (74-1)

The environmental stability (or stratification) parameter ¢ is expressed in terms of

the ambient potential temperature ( &’,’)) gradient as

R (aT

T 8, = To a; +0.001°C/m) (7.4 —8)
(the last factor is approximately the adiabatic lapse rate; one should note that ¢ is also
the square of the Brunt-Vaisala frequency). In many cases the appropriate field data
for direct determination of ¢ are not available; for these situations the approximate
values of temperature gradients given in Table 7-1 can be used in (7.4-8).

Another concept that appears in Brigg’s formulas is the ratio of the effective

area influenced by the plume momentum to the cross-sectional area of the so-called
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Table 7-1
Typical Temperature Stratification

Corresponding to the Pasquill-Gifford Stability Classes

AMBIENT POTENTIAL
STABILITY TEMPERATURE TEMPERATURE*
CLASS GRADIENT GRADIENT

aT/dz (°C/100m) d6/8z (°C/100m)

A (extremely unstable) <-1.9 <-0.9
B (moderately unstable) -1.9 to -1.7 -0.9 to -0.7
C (slightly unstable) -1.7 to -1.5 <0.7 to -0.5
D (neutral) -1.5 to -0.5 -0.5 to 0.5
E (slightly stable) -0.5 to 1.5 0.5to0 2.5
F (moderately stable) >1.5 >2.5

" Calculated by assuming df/dz ~ dT/dz+ T, where T is the adiabatic lapse rate (0.986 °C/100m).
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thermal plume (Briggs, 1975), S, which is approximately equal to 2.3 for bent-over

plumes.

Finally, the entrainment velocity v, that appears in the closure scheme (Taylor’s

entrainment hypothesis)

dv N
E}; = 2R'U¢

is related to plume vertical speed through
ve = aw (vertical plumes)

ve = fw (bent-over plumes)

where £ is larger than a.
Governing Equations:

Vertical Plumes

(i) Conservation of buoyancy

dB .
Ez— =—V (74 - 9)
(ii) Conservation of momentum
iM B
— == (7.4 — 10)
(iii) Entrainment hypothesis
v ; L
i 2aRw = 2aM3 (7.4 —11)

where a = 0.08

Governing Equations:
Bent-Over Plumes

(i) Conservation of buoyancy

dB ¢
14 (7.4 —12)

with S = 2.3
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(ii) Conservation of momentum

dM B
—_ = — 74— 13
dz w ( )
(iii) Entrainment hypothesis
av R
— =28R 74—14
dz PRuc ( )
or, if uy, is constant
R=g2 (7.4 — 15)

where 8 = 0.6 for a buoyant plume and 8 = 0.4 + 1.2(u /wo) for a jet.

7.4.1 Near Source Rise
(Not Affected by Ambient Stability)

Typically ambient stability has little effect for dispersion times less than ¢1/2
(between 10 and 100s) and ambient turbulence is not important for distances less
than about ten stack heights (Hanna et al., 1982). For these short times the following
results hold:

Vertical Plumes

. 1/2
R=06z, w=625M" <M, (7.4 — 16)
Bo
.\ L :
R=0152, w=23 (1—39) (t > .K) (7.4 —17)
z Bo

M/ By is typically less than 10 s.

Bent-Over Plumes
The plume trajectory is given by

(3 M 3 By ,\° )
Az—(ﬂz.lumzz—l—zﬂ%umaz) (t <) (7.4 - 18)

where f; = 0.6 and 8, = 0.4 + 1.2(uoo /wp) and

Az = 1.650 z3 (t>1¢%) (7.4 —19)
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with t* = M / Bg which is typically of the order of 5s. The coefficient 1.6 is expected
to be accurate within +£40% (Hanna et al., 1982).

7.4.2 Rise Limited by Ambient Stability
(Stably Stratified Atmosphere)
Vertical Plumes
In a stably stratified atmosphere vertical plumes achieve an “equilibrium rise”

Azeq that is equal to

A%¢=ZM(%) (7.4 — 20)
if it is dominated by buoyancy, and
BY/*
Ach = 5.35—_3/8— - 6R0 (7.4 — 21)

Bent-Over Plumes

The final rise of a buoyant plume is

1

Ah = 2.6(ﬁ) ) (7.4 —22)

Ul

The wind speed oo in this formula is an average value between the heights h,

and h, + Ah.

7.4.3 Penetration of an Elevated Inversion
An elevated inversion, approximated a jump AT(P) in a constant potential tem-
perature at a height Az,; above the stack will be penetrated if the following conditions

are met:

Vertical Buoyant Plume

(7.4 - 23)

gAT(P) %
T(p) )

Azy < 4.9B2° (
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Vertical Momentum Plume

By/M/?
. 74—-24
Aze < 6.2 (g/T(P)) AT(p) ( )
Buoyant Bent-Over Plume
By :
Az, 2.5 74—-25
Zel < [uw (¢/T®) ATG) ( )

(Bent-over jets have little ability to penetrate inversions.)

If the final plume rise (Ah is within a factor of 2 of the inversion height above the
stack (Aze), only a fraction (P) of the plume will penetrate the inversion whereas
a fraction 1 — P is reflected off the inversion and diffuses downward. Briggs (1975)

suggested the formula P = 1.5 — Az, /Ap,.

7.4.4 Rise Determined by Ambient Turbulence
(Neutral and Unstable Atmospheres)

In this case plume rise comes to an end when the thermal phase of dispersion
terminates in the breakup phase where ambient turbulence overcomes the internal
turbulence of the plume. In Brigg’s “breakup model” this occurs when the internal
plume eddy dissipation, approximated by 1.5w3 /z équa.ls the ambient eddy dissipation
rate . The following simplified formulas for final plume rise are proposed:

Nearly Neutral Conditions

Buoyancy dominated plume

a
Bo ¢ 1
Ah =154 | ki (7.4 — 26)
Uoo 2
where u, is the friction velocity.
Momentum dominated plume
Ah = 3D (3"— - 1) (7.4 — 27)
Uoo
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where D is the stack diameter
Convective Conditions

A tentative formula is \

Ahzs(fﬁ) X%
Uco

where X is the surface buoyancy flux defined as

X =

(see, e.g., Hanna et al., 1982 — Section 1-4.4 ).

CHAPTER 7

(7.4 — 28)

The formulas of Briggs are very similar to available results from dimensional anal-

ysis; as mentioned earlier, a summary of such results, together with of the empirical

constants involved (according to various investigators) is given in List (1982).
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7.5 THE PLUME RISE MODEL OF SCHATZMANN
(Schatzmann 1976, 1978, 1979ab; Schatzmann and Flick, 1977)

The approach of Schatzmann offers a formulation that is more comprehensive
than those described in the previous section, as it takes into account the physics of
the thermal phase of plume rise in much more detail. The resulting model, consists
of a set of ordinary differential equations for mean centerline plume properties and
other plume parameters, and has to be solved numericaly. In its most general form it
holds for arbitrary ambient stratifications of temperature as well as for large density
differences between the emissions and the environment (*).

Thus, temperature inversions of any slope are taken naturally into account in the
model calculations. A restriction is that the ambient wind velocity field is “locally”
shear free; step changes are however allowed.

A rather general situation, involving an elevated temperature inversion layer,
typical of the conditions that can be directly addressed by Schatzmann’s basic model
is depicted schematically in Figure 7-3.

Starting point of Schatzmann’s models are the fundamental Eulerian transport
equations for mass, momentum and conserved scalars (inert species concentrations
and temperature) formulated in an orthogonal curvilinear coordinate system that is
always tangential to the mean plume centerline, as it was first introduced by Hirst
(1972). Reduction of this coupled set of partial differential equations (initially corre-
sponding to random instantaneous quantities), and of the associated boundary condi-
tions, to an initial value problem involving a set of ordinary differential equations for

mean properties and parameters, proceeds through an elaborate sequence of mathe-

(*) The governing equations developed in this approach are reduced to a closed, solvable form
without the introduction of the Boussinesq approximation. However, the currently avail-
able values of the empirical parameters appearing in the entrainment function have been
determined, in both the cases of “dry” plumes (Schatzmann, 1979a) and “wet”’plumes
(Schatzmann and Policastro, 1984) only for conditions that are relevant to the Boussinesq
approximation.
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Figure 7-3

Schematic Representation of Plume Rise
in a Stratified Atmosphere,
Typical of the Conditions Addressed by Schatzmann’s Model
(adapted from Schatzmann, 1977)
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matical manipulations as well as of simplifying assumptions. Among these assump-
tions a most important one is that of self-similarity of the profiles of certain “mean
excess” plume properties that finally allows integration of the governing equations
into a simpler system. A complete exposition of the fundamental theory and the
various assumptions involved in the aforementioned sequence can only be found scat-
tered in a series of publications; the same holds for the determination of the empirical
entrainment functions that provide closure to the turbulent transport equations and
for applications and comparisons of the operational models with other approaches.
For this reason, and to facilitate use of the existing models resulting from this ap-
proach (as well as in order to provide a basis for further work based on it) we present
in Appendix A7.2 a concise but systematic derivation of the self-similarity ordinary
differential equation system of Schatzmann (for both the two- and three-dimensional
flow cases), listing in detail all the approximations involved. In the same appendix, as
an additional step for providing a readily usable means for calculations, the “Schatz-
mann set” of equations is further reduced (from the coupled form in which it appears
in the literature) into a scheme that is directly amenable to numerical treatment. All
the necessary conditions and parameters for numerical application of a basic form of

the model as well as a discussion relating this approach to other integral techniques

can also be found there.
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7.6 CONCLUSIONS

The subject of near-field plume dynamics (where plume momentum and buoyancy
are significant) is a major area of atmospheric and in general fluid mechanical research
and is covered by specialized monographs and an extensive literature (see, e.g., List,
1982; Briggs, 1984 for reviews). The present chapter (complemented by Appendices
AT7.1 to A7.4) attempted
(i) a concise overview of the physical problems and the modeling approaches in this
area, and
(ii) an exposition of two alternatives (at different levels of complexity) that are ap-

propriate for use with the TRPM model.
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APPENDIX A7.1

A Brief Glossary of Terms

Describing Plume Behavior

(For further information see Scorer, 1968, 1978)

Aerodynamic Downwash or Flagging: A situation in which stack efluents are brought to ground
level very close to the source and in undesirably high concentrations by being entrained into the eddies
in the lee of the chimney.
It occurs in the cases of strong winds or low source exit velocities as well as for very irregular
airflows where eddies in the wake of the stack entrain some of the efluent. Rapid vertical move-
ment occurs in the separated flow region behind the source and this usually communicates with
larger similar regions behind industrial buildings which are close to the source. This results to
downwash. Its avoidance is achieved through proper aerodynamic design and is usually carried

out the with aid of wind tunnel model studies of actual plants.

Bifurcation: The phenomenon of a plume dividing into two distinct “branches” showing an overall

cross section thar resembles a strong cylindrical thermal.

Bifurcation occurs in cases of strongly buoyant bent-over plumes due to the pattern of intense
entrainment of clear air up the middle of their boundary. Coning plumes are the ones more likely

to be bifurcated.

Coning: The situation in which the plume has a steadily widening boundary in its atmospheric
diffusion phase and does not exhibit significant sinuosities. It is characteristic of neutral atmospheric

conditions.

In the case of coning plumes dispersion is due mainly to eddies of size smaller than the local

instantaneous plume width. Thus relative diffusion dominates meandering.

Downdraught: A situation similar to Aerodynamic Downwash: Effluent is entrained from time to

time in the lee of the building associated with the chimney;common in dwelling houses.

Downwash: see Aerodynamic Downwash.

Fanning: A situation of limited dispersion taking place mainly in the horizontal direction. It is typical
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of stable atmospheres.

A fanning plume achieves final rise (equilibrium level) very soon after emission. Significant con-

centration values are confined at this height.
Flagging: see Aerodynamic Downwash.

Fumigation: A situation where the plume is dispersing downwards but not upwards. It occurs when

the emission takes place below an inversion that is not penetrated.

Lofting: The inverse of Fumigation: The plume disperses only upwards. It occurs when the atmo-

sphere is stable below the plume and neutral aloft.
Lofting occurs when either the actual height of the stack is sufficient to place the efluent above the
inversion (or the plume buoyancy strong enough to allow penetration of the inversion). Dominant

mixing mechanism in the case of lofting plumes is the relative dispersion.

Looping: The case where the plume exhibits large sinuosities compared to its instantaneous witdh.
It occurs in unstable atmospheres.
In the case of looping plumes the effec of meandering is most important. The averaged observed

dispersion is predominantly caused by eddies with size large compared to that of the instantaneous

plume,

Thermalling: A phenomenon that takes place when thermal convection of the ambient is very strong
(highly unstable atmospheres). The plume breaks up into distinct masses by the action of individual
thermals of the atmosphere whose buoyancy dominates that of the plume. Another possibility is that

masses from the chimney are directly entrained into natural thermals of the environment.

References

for Appendix A7.1

Scorer, R.S. (1968) Air Pollution, Pergamon Press, London, 151 pp.

Scorer, R.S. (1978) Environmental Aerodynamics, Ellis Horwood Ltd./Halsted Press, Chichester,
488 pp.
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Self Similarity Modeling

for the Thermal Phase of Plume Dispersion

The evolution of a buoyant plume is governed by:

(i) the continuity equation of (total) mass

dp
_r V- =0
5 TV (en)

(ii) the continuity equation of momentum
du 1
p [ﬁ+§Vuu—ux (qu)] =(p— pc) 8 — Vg

(iii) the continuity equation for a passive scalar

8 (pe)
ot

+u-V(pc)+peV-u=0

and (iv) the continuity equation of heat

a—(‘%—T—)+u-V(pT)+pTV-u=O

APPENDIX A7.2

(A7.2-1)
(47.2-2)
(A7.2 - 3)
(A7.2—3)

To describe plume rise the (s, r, ¢) system of orthogonal curvilinear coordinates is employed (Fig-

ure A7.2-1). The base vectors (is,ir,is) of this system are expressed in terms of the base vectors

(i,d,X) of the locally fixed Cartesian (z,y,z) system, with z in the direction of the mean ambient

flow(*) and z opposite to the direction of the gravity force, as follows:

i, =icosf; cosf; + jsinf; cosfg + ksinf,

iy =i(—sin0, cos ¢ — cos Oy sinf, sin ¢)
+j (cos 83 cos ¢ — sin by sinf; sin ¢)

+kcosf;sing

(*) Note that in Schatzmann’s (1978, 1979ab) notation y is set parallel to the ambient flow; however

here we follow the common convention that sets z parallel to the mean ambient flow.
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iy =i (sinfy sin ¢ — cos @, sin f5 cos é)
+j (— o303 sin ¢ — sin 65 sin 85 cos ¢)

+kcosfz cos ¢

The following analysis is restricted to the two-dimensional case (61, 62) = (0, 6). Letting

do

K = rsin ¢Z
the Lamé coefficients (scale factors) become
h,=1—l¢, h,-=1, h¢=r

and the vector operations involved in the continuity equations are

1 da,  Jda,  1da,
Va= -——1 — mal. + Elr'i‘ ;%l¢

1-k08 'r r tdp 1-rr 1-rkrd¢
1 /9(ra da, \ .
V’“‘:F( (ar¢)_a¢)"
(b o 1oe_ 1 2u),
ro¢ 1—xrd¢ 1—xds )™
+<;3i_8a.+ s f>i¢
1—x 0s r l1—=kr

In the above @ is any scalar and a = a,i, + a,i, + ayiy is any vector.

V-a:-l_.aa'+18(ral‘) lgja_i_ ar K ay 139«

and

Substituting in the continuity equations for steady state conditions one has:

(i) total mass continuity equation

1 3u+13(rv)+13_ v & w 13k
’ 1-xds ror rd¢ 1-kp 1—-xrd¢
u dp dp wfg_

%3 T T T s

0 (A7.2 — 4)

(iia) momentum equation in the s-direction

du du 1 du ; ok
p{ua+vg(1—n)+; [w%(l—n)—uwb——uvn]}—

=(1—n)(pm—p)gsin0—%— (A7.2 - 5)
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~

Figure A7.2-1
Cooordinate System Employed in the Plume Rise Model
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(iib) momentum equation in the y-direction

du du 1| du
p{u—a: + vo (L—x)+ - [wEE (1—x)- uwgg - u.wc] } cosf

du Jw Jw
p{u5—81n¢+v-— (1—fc)s1n¢+uas cos¢+v—a—(1—n)cos¢

+;[w%(l—n)sm¢ w? (1 — k) sin g + u? nsm¢+w (l—n)cosqS
+uw (L — &) cos ¢ + u? 33 cos¢]}sin0

= ‘;’:" 0+ (1—x.)sm¢sm8+——(l—K)C°5¢C°39

(iic) momentum equation in the z-direction

{ 3u+v‘; (1 —n)+1[ g:(l—n)—uwZ:—uvn]}sinO

dv dv . dw Jw
p{uasm¢+vb—r-(1—n)s1n¢+u37cos¢+vg(1—1c)cos¢
1 v N 2 . 2 .

+; w%(l—-m)smgb—w (1 - x)sing + u?ksing

+wg—: (1—K)cosg +vw(1- n)cos¢+uzg§cos¢]}coso

=(po—p)g(1—x)— == 3}74 (l—lc)sm¢c030
——:—%(l—n)cosmosa

(ili) continuity equation for concentration

uac +vac (
ds ar

w de
- 2 1-x1=0
1=+ 22 0-n)
(iv) continuity equation for temperature

LA )+ﬂ_31(1-n)_o

(A7.2 - 5)
(A7.2 - 6)
(A7.2-17)
(A7.2—8)

Implicit in the derivation of the above steady state equations was the assumption of a divergence

free flow (i.e. V-u=0).
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Equations for Averages

It is assumed that

(1) Reynolds averaging (i.e. decomposition in an ensemble mean and a fluctuating part) is applicable

for u, p, p4, ¢ and T, and that time averages approximate ensemble means:

u=(u)+uv' =u+u, etc

and,

(2) the structure of turbulence is not influenced by the effects of compressibility (valid for flows with
small Mach numbers) and therefore the terms containing density fluctuations p' are omitted.

Then, the mean quantities are decomposed into their background and excess components(*) (Fig-
ure A7.2-2):

where
Uy = Uy, cosf
Vg = —Uy Sindsin ¢
Uy = %o 5inf cos @

and the subscript oo denotes properties of the ambient flow field.

Introducing these assumptions in the governing equations one has:

(*) The excess components can be either positive or negative.
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Figure A7.2-2
Definition of Background and Excess Quantities
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(i) continuity of total mass

o+ 2Lt St 1y L2000 () 1 20— w0 25

g +u) ST ) Pt ) B - =0 (ar2-9

(iia) momentum equation in the s-direction

(o + 20 { (3 + 00208 4 0, 409 22 (1)

[ ) G 1= ) (o s+ ) 5 — g+ )+ )]

w3 1 d (ru'v’ ou'w — -'—an
t5t 3 (1-r)+-= [8¢ (1——n)—2muv—2uw’%

a(Poo t Pd) ——3dpg an
37\ T 78] L w2 (1— —x) =
+u e +u By (1 )+ u.’ '——(1—x)

= —pag (1 — £)sin8 — %L: (A7.2 - 10)
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(1ib) momentum equation in the y-direction

a(“a + uq)
ds

(ro + 5] (39 + 00 +(og+9) 22 (1- )

1 4 ) 58 (1 ) = 0+ 0+ 0 25— 4 ) + w0
Bﬁla(ru’v’ 1[dv'w — —— 0K
3s rd(1- k) F[ 9 (LK)~ s Tw'es
7 :_p)[;'—za(p%jpd)ﬁ-waa%(l k) + o ’i pd (l—n)]}cosa
oo d
8(v, + )
—(Poo +p4){(ug+ud)ﬁtrvdl+(v,+vd)ﬁ(1—m)

+% [(w, + wd)Mé{;_vd) (1—x)— (w, + wd)2 (1 — k) + (ug + ud)zn]

== 40 (rv?
du'v' 1 ( ) v 3 7 T3 ——9n
e S R LU R E R e PO T
1[——08(poo +pa) =3 dpa o L 9pa N
+;[uv’ 3 +v i )+ ——(1 k)| ¢singsind

~(pn + ) { (0 + 0 L0E 0D o o) e

+% [(w, + wq) =" 8(w, + wa) (1= &) + (v + va) (wy + wa) (1 — &) + (ug + ua)® ¢]

= "Z"‘”dcosa_1_ dpq (1_n)sm¢5m9+—%;-cos¢sm0 (A7.2 - 11)
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(iic) momentum equation in the z-direction

a(u, + ug)

(oo + pd){(ug +ug) + (4002 (1- x)

1 [(wg + wd) (1 — &) — (g + ug)(wy; + wd)g—: — (ug + ug)(vg + vd)n.]

6?13(1’1&'1}' dulw’ (1-
3s ra(1—x) r| 8¢

1 [u?a(pm + pa)
(Poo + pa) ds

£) — 2u'v'K — 2ulw g:]

+ T ”“(1 K) + T %‘:;(1 n)]}sinﬂ

a(v, + vd)
8

~(pen + p){(1+ 02 + (o0 + 00) 225 (1 - )

(vg + va)

1
+; (wg + wq) 5%

(1= &) = (g + wa)? (1 — 1) + (g + )]

— 3 (rv? v 3
+a;’ +% (r_)(l k) + r[ ;:f(l—n) w’z(l—n)+(u'z—v'z)n—v’w'a:]

a(pco 'l'Pd) 73 3Pd —1 apd } .
) ! = —— —_—
+r|:’ 3 + v (1 )+vw’_‘9 (1 —x)| ¢ sin g cosd

B(w, + wd)

~(pn + ) { (e + v + (v + ) 228 (1 )

+% [(wg + wd)_a_(_"ig:_wd) (1 — &) + (vy + va)(wg + wa) (1 — &) + (u, + ud)zg_:]

dulw' 13(rv’w‘, 1[w? _ —7_ 53\ 9% ,—,—]
+—, (1-x)+ ;[—3¢—(1—n)+v’w’(1 lc)+(u w ’W vuw's

(o {i-ﬂ )[Wa(h:?:pd) s
oo d

’ (1— )+w'2lapd (l—n)]}cos¢cosa=

(1 —x)singcosf + ;%—cos $cosb (A7.2 —12)

dp4 s a
=—pag(1—x) - L sinf + 4 5%

Ba ar

(iv) continuity equation for a scalar (¢ or T)

dcco + c4)
ds

e | 19 (rvic’) duw'c!
+ Js +; ar (1-/6)+ [a¢ (1

(g + a) + (v + 02) 52 (1= ) + (s + ) 2 008

5 (1=4)

3¢]

K) —v'c'e — w'c!

- —d
1 [u'c,a(Poo + #4) + v,c,TP:_(

——138pa
- =P (1 k)| = AT2-13
e 5 73) 5 1 lc)+wc’ra(}S (1 fc)] 0 ( )
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Simplifications
(a) The Pressure Gradients
The difficulty of estimating the complex gradients of pg is circumvented through the following

method (Fan, 1967; Schatzmann, 1978): One arbitrarily sets

and assigns the effects of these gradients to an empirical “drag function” for the pressure forces per
plume segment ds after integration over the angular and radial directions

Fp(s) = cD%pm(s)(um sin8)22R(s) (AT.2 - 14)

where c¢p is an empirical coefficient.

(b) Shear Free Assumption

The ambient mean velocity is assumed uniform in the region of interest:

Oueo _ OUoo _ Oty _
3z = 9y ~ 5 =0 (A7.2 —15)

Note however that the derivatives of the background velocity components ug, vy and w, with respect
to ¢ and ¢ do not vanish.
(¢) Azisymetry Assumption
The plume flow is assumed to be axisymetric during the phase under consideration with respect

to the mean excess quantities and the turbulent correlations:

wd=0

du? v ow?  duv _ duw v
¢ 94 09 94 99 04
dule! _ dv'e! _ dw'e _awT _ 0T ow'T
¢ ~ 94 a4 9 o8¢ o4
Opa _ Ocq _ 3Ty
a¢ 94 94

=0 (A7.2 — 186)

0
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The assumption of axisymmetry is expected to be valid for vertical plumes in calm environ-
ments. Deviations are expected for bent-over plumes in cross-flows, mainly due to the suppression of

the counter rotating vortex pair; appropriate formulations for the entrainment function are used to

compensate for this effect.

(d) Similarity Assumption ‘

This is the most essential part of the general method described here. It allows separation of
variables and subsequent integration in the radial direction t.hat simplify the partial differential equa-
tions to ordinary differential equations. Self similarity of the profiles of mean quantities is in general
expected to be valid after short distances (a/D = 6) from the source (zone of flow establishment).
Turbulent quantities in general assume fully developed profiles at larger distances, e.g. for s/D > 50

(Schatzmann, 1978). The following Gaussian forms are assigned to the mean excess quantities:

ua(s,r) = u*(s) exp [— (b_('a)z] (A7.2 — 17a)

Ta(s,r) = T"(s) exp [— (/\b,('a)) ] (A7.2 - 170)

ca(a,r) = c*(s) exp [- ( ,\br(,) ) 2] (AT.2 — 17¢)

pa(s,r) = p*(s) exp [— (7\5—23) ] (A7.2—17d)

where the superscript * is used to denote centerline values and the “spreading ratio” A (proportional
to the turbulent Schmidt number) is introduced to account for the different rates of dispersion of

momentum and of scalar quantities.
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Radial Integration of the Continuity Equations
To integrate the continuity equations use is made of
(i) Prandtl’s boundary layer approximation, according to which the gradients in the direction of the
flow are negligible compared to gradients perpendicular to this direction, and of
(ii) The boundary conditions

ud=Pd=cd=Td=0

v = v =T =0 (A7.2 - 18)

where the boundary is taken at R = /2b, or to R — co if the value of the quantity under consideration

becomes zero at the nominal edge of the plume.

General Integral Forms
of the Continuity Equations
Applying the Leibniz rule

Ale) s r 8(s)
/.,(.) a[fé; Ny — ;; /a © fla,r)dr = g;[ﬂ(a)] f(s,8) + %[a(,)] f(s, @)

and combining the y and z momentum equations to describe the variability of # with & one obtains:

(i) continuity equation for total mass

11—/0‘,( + pa)u rdr'+i u /°° rdr +-1—R2u Ao _ E (A7.2 — 19)
ds 5 Poo 7 Pd)Ud ds | %o A Pd 2 9 de Poo .
(ii) momentum equation in the s direction
d [= -] -]
o (Poo + pa)ua(ug + ug)rdr = —/ pagrdrsin f (A7.2 — 20)
0 0

(iii) #—equation

d8 _ = [y pagrcosf — Lugpoo Esing — (V2/27) cppoobul, sin? 8
ds f0°° (Poo + pa)ua(ug + ug)rdr — poob2v'2,

(A7.2 - 21)

-474 - ~




~

>

>

PART IB APPENDIX A7.2

(iv) continuity equation for a scalar (¢ or T)

d [*” deeo [F
;i—;,/ (Poo + pa)ca(ug + ug)rdr = e (Poo + pa)(ug + ug)rdr (A7.2 —22)
0 0

In the above equations E represents the volume of ambient air entrained into the plume due to

turbulence and is defined by

E(s) =~ /c va(R)dC = —vg (R) R (A7.2 — 23)

Integral Forma for Gaussian Profiles
Introducing the Gaussian self similarity profiles (A7.2 — 17a, b, ¢, d) the integration with respect
to r can be performed, resulting in a set of five ordinary differential equations for seven unknowns
b(s), 8(s), u*(s), p*(s), T*(s), c*(s) and E(s):
(i) continuity equation of total mass

22

YTid (p' ") =20 E (A2.7 - 24)

— (pmu"bz) + 2b%uq, cosﬂdd + 1\23 (uoo cos op‘bz) + =

(ii) momentum equation in the s-direction

d »12 L 1 A2 - Az L] 212 = :
% u'b? |u §p°°+-2_,\T+—Ip + Uy cosf poo+’\2—+—1p = —A%b%p*gsing (A7.2 - 25)

(iii) f-equation

g _ A2b2p* g 080 + oo poo E'sin 8 + (1/x) V2ep poobul, sin? § (A7.2 - 26)
ds 21 A2 2 A2 — ’
b2y4* (Epoo + mpt) + b02u* ug, cosf | poo + mp* —2b2p, 012
(iv) continuity equation for an inert scalar (concentration)
4 A2b? | uog cO8Opooe® + 1u cos@p*c” + —— 1 U P + —— 1 u*'p'c* | =
ds *® *® 2 A2+l A2 42
= (%) (g 8o + A2 0" A AT.2—27
=-{—7 Uoo €08 0poo + Alug, cosbp® + u*py + et ’ (A7.2 —27)

(v) heat transport equation

d 2:2 » 1 »e 1 - 1 * ki —
o [A b (uoo coslpo, T +§u°° cos8p°T A2+1“ *pocT™ + A2_*_214 ;T =

2
= - (dg;w) b2 <2u.°° 08 00 + A2ug 080" + u*poo + th\_i__l"'ﬂ') (47.2 - 28)
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To obtain closure one must further provide:
e an equation of state p = f;(c, T),
e an entrainment hypothesis £ = f; (b,6, u*, p*,c*, T*), and
ee information concerning the variability of ambient properties T, coo and E with the streamwise
coordinate s.
Finally the initial conditions (corresponding to the end of the zone of flow establishment s = s0)
b(s0), 6(s0), u*(s0), T*(s0) and c*(s0) must be specified for the numerical solution of the system
(AT.2 —28) to (A7.2 - 27). These subjects will be discussed in following sections. An extension of the

basc system of equations to three dimensions is presented next.

Generalization to Three Dimensions
The general integral form of the continuity equations for total mass, conserved scalars (c and T),
and momentum in the s-direction remain unchanged in the three-dimensional case, with u, now given
by

Ug = Upo sin 01 cos 02

The dependence of 6, and 6, on s is given by (Schatzmann, 1979b):

83 _ = fo pagrcosbs — Lucepoo Esin by sin 0z — (v2/27) ep poobul, sin? 6, sin? 6,
de fooo (poo + Pd)ud(ug + ud)rdr — pwbzv’go

(A7.2 - 21')

and
401 _ 1poo Euco cosby + (v2/27) cp poo ful, cos? 6,

ds I3 (Poo + pa)ua(uy + ug)rdr — poob2er3,

(A7.2-21")

Introducing the Gaussian self similarity profiles (A7.2 — 17a, b, ¢, d) the integration with respect
to r gives a set of six ordinary differential equations for eight unknowns b(s), 81(s), 82(s), u*(s), p*(s)
T*(s), c*(s) and E(s):

(i) continuity equation of total mass

3

d .2 2 . dpoo éd s 2
d—a(pwu b )+2b Uoo sm61c0302d—a+k 5(11.90311101 coslzp"b )

A2 d

— {(p*u*b2) — T - U
.+——/\2+1da(pub) 2000 E (A2.7 - 24')

— 476 —



riny

)

PART IB APPENDIX A7.2

(ii) momentum equation in the s-direction

d 12 » 1 ’\2 »
a{“ b [" (5”°°+—2Az+1”

2
4o 8in 8y cos (pf,o + %_—Ip')] } = —A2b2p%gsinb, (AT7.2 —25%)

(iii’) f2-equation

df; A2b25% g cos 82 + oo Poo E 8in B cos 03 + (\/f/w) €D Poobu?, sin? 8, sin? §,
ds 1 Az, ) 2, ——
b2y*2 (Epoo + mp ) +b2u*3u, sin 8, cos O (poo + mp ) — 2b2p oo v'2
(A7.2 - 26')

(iii") 8;-equation

doy Yoo Poo B €080y + (V/2/7) cp poobul, cos? 6,

ds 1 22 A2 —
2,3 [ — . 2,,*3 s *) _ o2 ’2
b%u (2poo o1’ ) + 524" “ug, sin by cos b (Poo t 7P ) 2b2pe vy,

(A7.2 - 26")

(iv) continuity equation for an inert scalar (concentration)

d

da [Azbz (uoo sinf; cosbzpocc® + %um 8in 0y cos fzp"c" + 2 i_lu Poot” + ,\22_2 p‘c‘)] =

2

dcoo . . - -
= - (——) b2 (Zuw sin #; o862 p00 + A2uy, sin b; cos fap® + u* poo + Y

= u*p ) (A7.2 - 27")

(v) heat transport equation

d . " 1 . » 1 . L 1 L Xy all

o [A2b2 (um 8in 0y cos 8z p00 T* + §u°° sin f; cos 02p* T + mu PooT” + PR 2u‘p T )] =

— b? | 2uq, sin 6y €0802 00 + A2uoo sin By cos Bp" + u*poo + -—2—u‘p' (A7.2 — 28")
da 00 oo -] 1 2 oo A2 1 .
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Closure Assumptions

Ambient Properties
A typical case of an atmosphere with three distinct layers (the middle one corresponding to an
elevated inversion) is depicted schematically in Figure 7-3. Left subscripts (01), (02), and (03) refer
to properties at the bases of these three layers; thus (01)Tpoo and (01)Ppeo are respectively the ground
values of potential ambient temperature and density (all potential properties being denoted with the
use of subscript p). Mean ambient velocities and turbulent intensities are typically assumed uniform
inside each layer; the distributions of ambient temperature and concentration are assumed known. In

the following discussion focuses on the two dimensional case (fy,82) = (0, 6).

Equations of State
The (potential) local density defect at the plume axis is given by
Py = —Ppoo _Toeo (A7.2 —29)
Tpoo + T;

and its along axis variation will be

d . __ pP°°+p; d . dTPOO 3
da’? = [Tpm+Tp”5T’+ 2z o

Ppoo dTpoo
+Tp°° dz

The ambient potential density at height z from the ground is given by

sin 8 (A7.2 — 30)

_ (Ol)Tpoo _
Ppoo (2) = (01)Ppoo Toos () (A7.2 - 31)

and will vary along the plume centerline according to

4 oo = — Lo oo 0 g (A7.2 - 32)

dsfPe = Tpoo dz
The potential temperature gradient is related to the actual atmospheric temperature gradient
through

dTpeo _ Tpoo (2) [dTe + 9
iz~ Tu(2) \dz | Cp

and the quotient of the potential and actual temperature is

1’_;1:: ((:)) - (PZ’Z))%
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Entrainment Hypothesis
(Turbulent Transport Closure)
Schatzmann (1979a) developed an entrainment function approximation starting from the integral

equation for the mean kinetic energy of the plume

d | 2,2( « 3 _
L3

6 3, A\%sind 1 [ r\2,
=—-’\2+1u b 72 — 24u 35,/(; u'v’ exp (—z) redr
where 7 is the local densimetric Froude number, defined by
utﬂ
=
Poo

The cross correlation u'v’ was expressed in terms of empirical function of y = r/b and the Boussi-

nesq approximation was invoked to obtain £ = E/(u*b) as

5 by (—QZ:; —125;) X240 1 [(1 — 121,) sin 0840 + 3 L] S
B 1+ 120 + (14 2413) %2 cos

(A7.2 — 33)

where the I;’s are dimensionless integration constants. Schatzmann (1979a) considered limiting cases
of the above expression, introduced an additional entrainment term to compensate for the suppression
of the action of the vortex pair by the assumption of axisymmetry, and used available experimental
data bases and numerical experiments to fit parameters and to simplify equations. Thus he finally
obtained the semi-empirical expression

A + A;y I \/v3

E= 72 (14 422 sing) + Ag=2 Vo (A7.2 - 34)
1+ 0.5A31:-;3 cosf ( u® ) b w*

The factor containing the A4 parameter is the term accounting for the additional entrainment men-
tioned above; the last term represents the interaction of the energy-containing eddies of atmospheric
turbulence with the large scale structure of the plume turbulence (Lo stands for the value of an ap-
propriate macroscale of these energy containing eddies) and will be significant only in some relatively
far-field phase of dispersion. For the near field a reasonable approximation is Ag = 0. The empirical

constants A, to A4 suggested by Schatzmann (1979a) are

Al = 0.057
A2 =0.87
A3 =10.0
A4 =20
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Preparation of the Continuity Equations
for Numerical Solution
Equations (A7.2-23) to (A7.2-29), (A7.2-31) and (A7.2-34) provide a closed system for the evalua-
tion of the eight unknowns b(s), 6(s), u*(s), T*(s), c*(s), #*(5), P (8) and £(s). To solve this system

numerically it is transformed in the final form

dqg .
s = (8;91:92,--~,9n); 1=12,...,n
which (after non-dimensionalization) is ready for numerical solution.
First the above equations are transformed into explicit equations with respect to the unknown
variables and their gradients. It can be shown that the variation of u*, b and p* with s does not depend

on the gradients of T and neither on ¢* or its gradients. Thus, finally, one has to solve simultaneously

the system
dq
—_— = f
A ds
and the equation
dT* 1 (dp* —a
ds - ag1 ds 43
where
_ (dw db dp\T
= ds ds ds
f=(fi f2 fs)*
and
211 a1z a3
A=|a3n azz azs
a3y agz ass
with

a5y = -é; (1+)\2-p—)
u Poo

22 p' P. oo
=214+ ——— + A2~ Zcosd
a2 ( + 3 +1pn + v u cos

A% [ug, 1
a1y = —— (FCOSH'*' AT-]-—I)

Poo

b oo 222 p* A2 o uy
= — —_— 0 —_ —_— 0

agy > <1+ - cos +2/\2+1pw+/\2+1po° o cos

2)32 p' 222 pt
LA L cost
e Fipm T Mrisg

Q22 = 1+22—°3c050+
u'
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b A3 A ug
“2’“p_°.f(2A2+1A2+1u_-°°39)
. _ I 1 + 1 p
T e \Ar 1 A24+2p
a32=—T. [ (’\22_1+ = cosB)+(,\212+u°_° c050> d ]
agg = — " 2 +u°° cosf
B T e \ M 12wt
1 Yoo 1 2 Uoo .
,\2+1+ T € 0+2(A3+2+ _cosﬂ)poo
Poo T "
1+ £
To (Tm+T-)( +pm)
_ 2F Uoo b dpoo ™ dé
h= oD (1+2—u—.c050) PTo Is + A o smeE’-
* 1. 1 u dp A2 "\ u dé
=232 b~ ging— = (14222 cogg) 2 LP= ® b gin 052
f2 pmgbu_zsmﬂ 2( + e cos )pm % +( M iise) w .
Teo 1 Uoo d poo Yoo . 1p*\do
= ,— — —_ - T = 611 _ )
Is = (’\2_*_1 + " cosﬂ) I T e S + 390 ) s

z\2+1+ u*

Poo (T Lad
2= (o) (14 2)

1 oo 1 2 Yoo /"
““°°“”+z(_—,\z+2+u_'°°s”) Peo [ b ( p‘)dTm ina+_”."”°°]

_ b "\ dTo, . b dpo
aq2 = [W (1+——-)—;—sm0+—

Finally, ¢* is calculated from

de* 1 deos du* db do dp* dpoo
ds  aa1 (“5’ ds o83y Tamag tassyy tase T Fasr—p
where
1 Uoo 1 2 Uoo p*
= 4 I S = 2= o
81 A2+1+ u* c056+2 (/\2+2+ u* cos )pm

[ Yoo 1 Yoo Pt
052——[F(1+2FCOSG)+<W+76080);;
a __c‘ ! + 1
B e \ 1 WY 20e

_ ¢ 1 Uoo u
agy = b [2(A2+1+?C080)+(m+—';.—0080) ;;—]
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2o
c* 2 Ugo
= - cos @
as6 1o (A2+2+u‘ 8 )

c* 1 Yoo
agy = —-— | ——— + ——cosf
87 Poo (A2 +1  wu* )
(Note: in the above equations temperatures and densities represent potential quantities; the

subscript p has been neglected for simplicity.)

Position
of the Mean Plume Centerline

Finally, the position (z, 2) of the plume centerline in fixed Cartesian coordinates, for a given s, is

determined through the parametric equations

z(8) = /‘.cose(a) ds

z(s) =[.sm0(s) ds

which must be integrated numerically.
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Initial Conditions

Schatzmann (1976) and Schatzmann and Flick (1977) suggested the following relationships (initial
conditions) between centerline quantities at the end of the zone of flow establishment (subscript 0)

and their corresponding values at the source (subscript j):

ug = uj (A7.2 — 35)
Uoo 0 Yoo
0y = 6,' 1- 1.22——.— for 0,‘ = 90%, — < 0.7 (A7.2 - 360,)
Bo = 0.1676; for 6; = 90°, 22 > 0.7 (A7.2 — 36b)
uj
1 (u; + Uy COS 00)
bo=D, |= (A7.2 - 37)
2 (u; + 21, cos 00)
where D, is the source diameter,
M1 ul+2ugcosby
I3 =T EJ AT.2 - 38
® 7720wl + (W3 + 1) ueo cosy ( )
A2 +1  ul+2ugcosby
o _ e AT.2 -39
0= ¢ 222 uj + (A% + 1) ugo cos by ( )
and
50=0 if 22503 A7.2 — 406
.
3
s0 =D, (6.2 - 201‘5) fueu] <08 (A7.2 — 40b)
3
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Introduction of the Boussinesq approximation in the continuity equations (A7.2-24) to (A7.2-28)

gives the following reduced forms
(1) continuity equation of total mass

4 (w8?) =2E

ds

(ii) momentum equation in the s-direction
4 [4°b? (u° (+2u00 cos B)]] = —z\zbz-p—.-g sin 8
ds = Po

(iii) f-equation

ds

do 9 [a\zb"“l‘;—:-gcosﬂ+umEsin0+(\/fl/r) cpbu?, sinzﬂ

b2u* (u* + 2uy, cosf) — 4b2E

(iv) continuity equation for an inert scalar (concentration)

2
% {6%c* [u* (A% + 1) ugo cos 0]} =~ (AT:-1> d—;:’-'l [62 (u* + 200 cos 9)]

(v) heat transport equation

2
:—8 {o?T" [u‘ (2 + 1) ue, cos 0]} = - (.'\/\_':1) %:2 [62 (u* + 2uco cosﬂ)]
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Comments

Using the Boussinesq approximation, and assuming the ambient fluid to be free of turbulence and
of density stratification, the equations of Schatzmann can be compared directly with those published
by Abraham (1971), Chan and Kennedy (1972), Fan (1967), Hoult, Fay and Forney (1969), Keffer and
Baines (1963), Hirst (1972) and others, who also applied the integral method. Comparison, however,
shows that the equations of these authors are not in general identical with the formulas presented
here. According to Schatzmann (1978, 1979a) the differences are due to the following:

(i) Hirst, in deriving his mathematical model, applied the Leibniz rule (for the differentiation of an
integral with variable limits) in an erroneous way.

(ii) All other above-mentioned investigators, who basically followed the classical vertical plume analysis
of Morton, Taylor and Turner (1956) for plumes in a cross-flow, balanced the fluxes through the control

surface incompletely.

Both errors lead to the same results. For example, the integral form of the continuity equation of

mass becomes

d [® 1d g,
A (ug + ua)rdr= T [6% (4" + 2uoo cosf)] = E (A7.2 - 41)
instead of the correct relation
A 1d ;.
Ea-_/o udrdr-—ia(b “ )—E (A7.2—41a)

Figure A7.2-8 shows the difference between (A7.2-41) and (A7.41a) for a plume in a co-flowing
stream. The flux of ambient fluid £ = —v4 (R) R = —vg (R,) R, which flows into the control volume
due to turbulent fluctuations inside the plume, only increases the excess velocity section, marked by A.
What equation (A7.2-41) suggests is that Section B of the velocity profile would also be enlarged by
the entrainment process, which is obviously not correct. The same error occurs by using a cone-shaped
control volume, if the coaxial mass flux through the circumferential area is not taken into account.
Uniquely in the special case ., = 0 both equations are identical.

The momentum equations developed by Schatzmann also differ from those developed previously
for similar reasons: When Hirst’s or Fan’s momentum equations are applied to a momentum plume
in a co-flowing stream they fail to conserve the excess momentum flux. Nevertheless, Hirst, Fan
etc. obtained reasonable agreement between theory and development. This is explained according
to Schatzmann (1978, 1979a) by the empirical nature of the entrainment hypothesis. This empirical
input to the mathematical model, together with skillful data fitting in order to fix the constants, may

explain why models with internal inconsistencies managed to achieve the aforementioned agreement.
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Figure AT.2-3
The Concept of Entrainment
for a Plume in a Co-Flowing Stream

(Source: Schatzmann, 1979a)
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The scheme that was summarized in this appendix was tested by Schatzmann and his co-workers
against approximately eighty different sets of data, from both laboratory and field measurements, with
very satisfactory results; some representative comparisons are reproduced here, in Figures A7.2-4 and
A7.2-5 (see Schatzmann, 1979a, for details). An extension of this scheme to “moist” plumes has also

been developed (Schatzmann and Policastro, 1984).
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Figure A7.2-4

Buoyant Plumes Discharged at Various Angles into a Stably Stratified Ambient.

Calculations from the Model of Schatzmann
Compared with Laboratory Data of Fan (1967)

(D: plume diameter; z: height from source; y: downstream distance)

(Source: Schatzmann, 1979a)
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Figure A7.2-5
Trajectories of Buoyant Plumes Discharged into Stratified Ambient Cross-Winds
with and without Temperature Inversion.
Calculations from the Model of Schatzmann
Compared with Field Data of Slawson and Csanady(1971)
(D: plume diameter; z: height from source; y: downstream distance)

(Source: Schatsmann, 1979a)
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APPENDIX A%7.3

The Internal Structure
of Buoyant Plumes in the Near Field
(Briggs, 1975)

The properties of the internal structure of a rising plume can be of great interest since they
determine mixing in the early stages of plume evolution. Some of the details of structure within a
rising plume have been studied through laboratory experiments on horizontal thermals, which closely
resemble bent-over plumes in cross-section. Based on available data from the streamline measurements
of Richards (1963), the vorticity measurements of Tsang (1971), and the concentration measurements
in a bent-over laboratory plume of Fan (1967) Briggs (1975) summarized the following conclusions
about bent over plume structure (see Figure A7.3-1):

First, the measurements show that almost all of the entrainment occurs across the top part of the
plume. Part of the rise is due to mean vertical motion, but basically it is due to turbulent entrainment
(almost by a factor of 75%). A secondary zone of entrainment exists under the middle of the plume,
where induced velocities are very much higher than anywhere else around the boundary. This may be
due to the low hydrostatic pressure underneath the buoyant fluid, and might not be so pronounced in a
bent-over jet. Turbulence is generated here due to a strong shear of the vertical motion, evidenced by
closeness of the streamlines near the center and by the flanking areas of high vorticity. This turbulence
is advected upward through the middle of the plume, where it bisects the concentration maximum. The
intensity it develops as it spreads across the top of the plume is partly due to horizontal divergence,
which stretches vortex filaments in a direction almost tangent to the upper surface, thereby intensifying
turbulent velocities perpendicular to the surface. In a buoyant plume, turbulence is also generated due
to unstable internal density stratification above the concentration maxima, which are density minima.
The marked decrease in turbulent entrainment around the lower flanks of the plume is probably due to
the small amount of shear with the ambient at these points (it appears that the plume almost “rolls”
up an imaginary inclined plane tangent to these points), and also is due to the proximity of the larger
regions of high mean vorticity.

For a plume entering a a fluid having ambient turbulence, Briggs (1975) suggests that it is likely
that the ambient turbulence must first mix its way into the plume by means of a “frontside attack.”

Also, there is a strong convergence of ambient streamlines under the plume, which tends to relax
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Figure A7.3-1

Structure of a Bent Over Buoyant Plume
(adapted from Briggs, 1975)
Dashed and solid lines show the shape of a plume cross section at two successive times. Arrows
show streamlines of mean motion. Horizontal hatching shows high vorticity regions. Dotted areas

correspond to concentration maxima.
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turbulence velocities that are perpendicular to the surface.

If this analysis is true, and ambient turbulence must first break into the plume in the frontal
region, then its effectiveness will be delayed due to the relatively high plume turbulence in this same
region. In effect, the plume will at first advance into the ambient faster than the ambient can advance
into the plume. Once the balance is reversed, as the plume motions weaken, it is quite easy to conceive
that the ambient turbulence may move downward and destroy the stable double vortex structure from
within, making the plume vulnerable from all sides. In other words, plume “breakup” may occur
relatively quickly, as has been suggested by Csanady (1973) and others and this must be taken into

account for the correct formulation of entrainment hypotheses.
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