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FIGURE 3-13. Forward trajectory from San Jose on 5 August 1990 at 0700 PST.
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FIGURE 3-14. Backward trajectories from various locations and start times on
10 July 1990. Exceedance ozone concentrations (pphm) are shown on the map.
These trajectories resemble northwesterly flow with convergence.
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FIGURE 3-15. Forward trajectories from Moss Landing and San Jose on 10 July 1990
beginning at 0500 PST.
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FIGURE 3-16. Backward trajectories from various locations and start times on
7 August 1990. Exceedance ozone concentrations (pphm) are shown on the map.
These trajectories resemble southerly flow.

94022 3-90



£ jo | abeg

~Inoy auo sjuasaudas moue Yooy “moyy A[I9)SEIYLIOU JjquIasau SaLI0)ofeN) ISIY L, (6861 “'1® 19 sgj3noqq)
Saw SNOLEA 18 0861 IGO0 [ Pue Jaquidydos (¢ uo sirels zoutnhre) o) vl pareniul sauo)alen premiod °L1-€ HANOI

4Sd 0021 Asqueydus Of  (q)

(rx)
% O of Oor o o
HINOS
ore 08¢ 0 06|
o .-..-.-.1--.--..--.--.-..rac
31 ] o
L
.
ss—.]
-y -
L~ 332 o
.
= -
.
- N
anze ------.---.-.---»-4.‘-
(4] 3 [ [T 2had

HLHON

oade

ISd 0090 zoqueydas of  (e)

TITlJltlfIfrririrrrrerrrfrriaftrTyryrrryjqrevrromrvd

()
6 O O o O+ O
| e e N |
HINOS
14
mﬂd--- _--Otﬁmd--------ﬁﬂﬂ---------9‘F

rEEFEET RN I T S0 NN U U0U T T B N D UUE U VO S G S B

e
-
-
.

TV W U S U U U U W U B U N T R U0 VY T ST A B U W AU WY H N S O 1

L34

oty

e [, ] oS o

HLHNON

3-91

94022



4230
(1} ]

T

NORTH

S0
TYyvryrryrrrvrvjivrvryrvyreorrrrry

. S Ey H T B N BN BN SN N S E S R SR BN B B B YN S S N M St NN S0 SNLBNY AN BN N SNL BELANL L ENL AN

L0 b 0 ¢t doaa b p s aa a2 boaon N2 o2y n sl

SOUTH

S40

90

0

L
3
-
o
[
[
[
[
1 g 1 JJAIIIllLl'l!Ll!lAll']ll[llllllJlL
] H g ]
- L J -
153m
15v3
8 g ) 8
-~ ~ - -
- - - -
T

4000

[ 1]

frllllrlx(lrilli[lr;lrlril||v|1|lv||11

390

498

94022

NORTH
200
N Jun S Jim A Au BN Baa b SR B S A M un AR SNR MM AN BN AN AN AR AN JNR ML MM AR AN |

ljllilllrlllJlllllllll!lllllllllllll
[ 8 ]
~ - -
. - -
1S3m

3-92

PSR VI T I I T W Y U 00 NN ST ST N N W U S50 TN YU U U UNY W SN U B Y )
SOUTH

hatie )

w 10 30 & 0
(kM)

0

W 2 M w0 %0
{xM)

{d) 1 Octcber 0000 PST

30 September 1800 PST

(c)

FIGURE 3-17. Continued.
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FIGURE 3-17. Concluded.

Page 3 of 3



6 a.m.

[

O 12 noon
E 6 p.m.
)

12 midnight

FIGURE 3-18. Backward trajectories from Gilroy, Santa Cruz, Carmel Valley, and
locations 10 km to the east, west, north, and south of these locations beginning
on 12 July 1950 at 1300 PST.

3-94
94022



6am.

U
O 12 noon
B
SEN

6 p.m.

-.. midni ght

FIGURE 3-19. Backward trajectories from Pinnacles, Livermore, the Sacramento
Valley, and locations 10 km to the east, west, north, and south of these locations
beginning on 12 July 1990 at 1300 PST.
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FIGURE 3-20. Backward trajectories from Livermore and locations 10 km to the east,
west, north, and south of Livermore beginning on 10 July 1990 at 1500 PST.
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FIGURE 3-21. Backward trajectories from Crows Landing and locations 10 km to the
east, west, north, and south of Crows Landing beginning on 7 August 1990 at 1500 PST.
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FIGURE 3-22. Backward trajectories from Pinnacles and locations 10 km to the east,
west, north, and south of Pinnacles beginning on 7 August 1990 at 1300 PST.
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FIGURE 3-23. Backward trajectories from several locations on 6 August 1990
beginning at 0500 PST.
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FIGURE 3-24. Backward trajectories from several locations on 6 August 1990
beginning at 0700 PST.
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FIGURE 3-25a. Wind flow diagram based on supplementary data for 20-21 June 1989
(Northeasterly): 1600 PST, 20 June 1989.
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FIGURE 3-25b. Wind flow diagram based on supplementary data for 20-21 June 1989
(Northeasterly): 0400 PST, 21 June 1989.
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FIGURE 3-25c. Wind flow diagram based on supplementary data for 20-21 June 1989
(Northeasterly): 1000 PST, 21 June 1989.
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FIGURE 3-26a. Wind flow diagram based on supplementary data for 17-18 October
1989 (Northeasterly): 1600 PST, 17 October 1989.
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FIGURE 3-26b. Wind flow diagram based on supplementary data for 17-18 October
1989 (Northeasterly): 0400 PST, 18 October 1989.

94022 3-105



FIGURE 3-26c. Wind flow diagram based on supplementary data for 17-18 October
1989 (Northeasterly): 1000 PST, 18 October 1989.
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FIGURE 3-27a. Wind flow diagram based on supplementary data for 1-2 July 1991
(Bay Outflow): 1600 PST, 1 July 1991.
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FIGURE 3-27b. Wind flow diagram based on supplementary data for 1-2 July 1991
(Bay Outflow): 0400 PST, 2 July 1991.
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FIGURE 3-27c. Wind flow diagram based on supplementary data for 1-2 July 1991
(Bay Outflow): 1000 PST, 2 July 1991.
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FIGURE 3-28a. Wind flow diagram based on supplementary data for 1-2 September
1991 (Northeasterly): 1600 PST, 1 September 1991,
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FIGURE 3-28b. Wind flow diagram based on supplementary data for 1-2 September
1991 (Northeasterly): 0400 PST, 2 September 1991.

3-111



FIGURE 3-28c. Wind flow diagram based on supplementary data for 1-2 September
1991 (Northeasterly): 1000 PST, 2 September 1991.
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FIGURE 3-29a. Wind flow diagram based on supplementary data for 16-17 September
1991 (Bay Outflow): 1600 PST, 16 September 1991.
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FIGURE 3-29b. Wind flow diagram based on supplementary data for 16-17 September
1991 (Bay Outflow): 0400 PST, 17 September 1991.
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FIGURE 3-29¢. Wind flow diagram based on supplementary data for 16-17 September
1991 (Bay Outflow): 1000 PST, 17 September 1991,
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FIGURE 3-30a. Wind flow diagram based on supplementary data for 23-24 September
1991 (Bay Outflow): 1600 PST, 23 September 1991.
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FIGURE 3-30b. Wind flow diagram based on supplementary data for 23-24 September
1991 (Bay Outflow): 0400 PST, 24 September 1991.

3-117



FIGURE 3-30c. Wind flow diagram based on supplementary data for 23-24 September 1991
(Bay Outflow): 1000 PST, 24 September 1991.
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FIGURE 3-31a. Wind flow diagram based on supplementary data for 9-10 October 1991
(Northwest-South): 1600 PST, 9 October 1991,
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FIGURE 3-31b. Wind flow diagram based on supplementary data for 9-10 October 1991
(Northwest-South): 0400 PST, 10 October 1991.
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FIGURE 3-31c. Wind flow diagram based on supplementary data for 9-10 October 1991
(Northwest-South): 1000 PST, 10 October 1991.
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FIGURE 3-32a. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST, Oakland 850 mb temperature (°C).
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FIGURE 3-32b. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST, Oakland inversion top-base temperature
difference (°C).
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Side by side box plots
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FIGURE 3-32c. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST, Oakland inversion base height (m).
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FIGURE 3-32d. Boxplots of key meteorological variables for days assigned to

each flow pattern: 1600 PST, Oakland inversion base height (m).
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FIGURE 3-32¢. Boxplots of key meteorological variables for days assigned to
each flow pattern: Sacramento maximum temperature (°F).
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FIGURE 3-32f. Boxplots of key meteorological variables for days assigned to
cach flow pattern: Fresno maximum temperature (°F).
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Side by side box plots
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FIGURRE 3-32g. Boxplots of key meteorological variables for days assigned to
each flow pattern: SFO-Reno pressure gradient (mb).
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Side by side box plots

URIVARIATE PROCEDURE
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FIGURE 3-32h. Boxplots of key meteorological variables for days assigned to
each flow pattern: SFO-Redding pressure gradient (mb).
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FIGURE 3-32i. Boxplots of key meteorological variables for days assigned to
each flow pattern: SFO-Fresno pressure gradient (mb).
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$ide by side box plots
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FIGURE 3-32j. Boxplots of key meteorological variables for days assigned to
each flow pattern: San Francisco-Sacramento maximum temperature difference

(°F).
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FIGURE 3-32k. Boxplots of key meteorological variables for days assigned to
each flow pattern: San Francisco-Sacramento 1600 PST temperature difference

(°P).
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$ide by side box plots
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FIGURE 3-321. Boxplots of key meteorological variables for days assigned to
each flow pattern: TMMXSFSC-TM4PSFSC .
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Side by side box plots
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FIGURE 3-32m. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST 500 mb height gradient, Oakland-Winnemucca.
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$ide by side box plots
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FIGURE 3-32n. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST 500 mb height gradient, Oakland-Medford.
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FIGURE 3-320. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST 500 mb height gradient, Oakland-LMU.
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FIGURE 3-32p. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST 700 mb height gradient, Oakland-Winnemucca.
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FIGURE 3-32q. Boxplots of key meteorological variables for days assigned to
each flow pattern: 0400 PST 700 mb height gradient, QOakland-Medford.
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Side by side box plots
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FIGURE 3-33a. Boxplo{s of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST, Oakland 850 mb
temperature (°C).
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Side by side box plots
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FIGURE 3-33b. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST, Oakland inversion

top-base temperature difference (°C).
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Side by side box plots
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FIGURE 3-33c. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST, Oakland inversion

base height (m).
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FIGURE 3-33d. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 1600 PST, Oakland inversion

base height (m).
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Side by side box plots
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FIGURE 3-33¢. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: Sacramento maximum

temperature (°F).
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Side by side box plots
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FIGURE 3-33f. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: Fresno maximum temperature

(°B).
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FIGURE 3-33g. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: SFO-Reno pressure gradient

(mb).

3-145



94022

Side by side box plots
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FIGURE 3-33h. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: SFO-Redding pressure

gradient (mb).
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FIGURE 3-33i. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: SFO-Fresno pressure gradient
{mb).
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FIGURE 3-33j. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: San Francisco-Sacramento
maximum temperature difference (°F).
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FIGURE 3-33k. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: San Francisco-Sacramento
1600 PST temperature difference (°F).
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FIGURE 3-331. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: TMMXSFSC-TM4PSFSC.
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FIGURE 3-33m. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST 500 mb height
gradient, Oakland-Winnemucca.
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FIGURE 3-33n. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST 500 mb height
gradient, Oakland-Medford.
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FIGURE 3-330. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST 500 mb height
gradient, Oakland-LMU.
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FIGURE 3-33p. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST 700 mb height
gradient, Oakland-Winnemucca.
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FIGURE 3-33q. Boxplots of key meteorological variables for days assigned to
each cluster by the iterative clustering algorithm: 0400 PST 700 mb height
gradient, Qakland-Medford.
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4 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

SUMMARY OF ANALYSIS PROCEDURES

We conducted a detailed analysis of wind flow patterns and associated meteorological
conditions during ozone episodes in the San Francisco Bay Area and surrounding air
basins. As in previous studies of this region, we found that five of the seven principal
flow patterns identified by Hayes et al. (1984) are associated with high ozone
concentrations!. Although the flow patterns evolve during the course of the day, our
analysis and that of Douglas et al. (1989) indicate that mid-morning conditions, when
precursor concentrations increase and rapid ozone formation begins, are closely related
both to the magnitude and spatial distribution of afternoon maximum ozone concentrations
in the study area and to meteorological conditions in the area. Thus, the 10:00 a.m. flow
patterns provide a good indication of the most likely source-receptor scenario for the day.

The number of episodes on Northwest, Northeast, and Calm days is roughly in
proportion to the overall frequency of occurrence of these flow types. The Bay Outflow
pattern leads to a disproportionate number of episodes, with relatively frequent
exceedances of the state ozone standard at Livermore. This pattern also favors high
concentrations in the South Bay and in the Central Valley. Episodes are
disproportionately infrequent on Southerly flow days, with only two episodes observed
during the three-year study period; in both cases the only exceedances were values of 13
pphm in the Broader Sacramento Valley. Both the Northeast and Calm flow patterns are
relatively rare, and only a few episodes of each type were observed. These conditions
favor high concentrations within the Bay Area, especially at sites where such
concentrations are not normally observed (e.g., around the Inner Bay).

Based on the analysis of onshore and nearshore flow patterns and the distributions of
ozone concentrations associated with these patterns, a set of candidate source-receptor
scenarios was defined. Each episode day during the study period for which wind fields
were available was assigned to one of the scenarios. This tentative grouping of episodes
was used to explore the principal features of each scenario through a series of analyses:

. A set of forward and backward surface air parcel trajectories were calculated on
selected days representing each scenario. The trajectories provide an indication of
the source regions impacting each downwind receptor area and the principal
transport routes.

! The five flow patterns are Northwest, Northeast, Bay Outflow, Southerly, and Calm.
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J Meteorological conditions associated with each candidate source-history scenario
were analyzed to determine the principal features of each scenario. Box plots
were used to compare the distributions of key meteorological variables between
source-receptor scenarios on episode days and between episode and non-episode
days.

. Exploratory cluster and discriminant analyses provided quantitative measures of
the principal meteorological features of each source-receptor scenario and
identified days that did not seem to fit well into their assigned scenario.
Meteorological conditions on these days were examined, and days that appeared to
be a better match with a different scenario were reassigned.

. Revised scenario assignments for episode days were used to develop a final set of
linear discriminant functions. These functions form the basis of an objective
source-receptor scenario classification procedure. A screening procedure was also
developed to help identify days that meet the basic requirements for the formation
of high ozone concentrations. The objective classification procedure is most
appropriate for days that meet these requirements; other days may not match the
general features of the source-receptor scenarios assigned by the procedure.

Results obtained from these analyses and from the application of the objective
classification procedure are summarized below.

RESULTS

Trajectory analyses performed on days representing each candidate scenario confirm the
principal relationships between source and receptor regions as suggested by the idealized
flow diagrams in Figure 3-8. One exception is that the flow under the Northeast pattern
on episode days is similar to the Bay Outflow pattern but with northeasterly winds in the
Broader Sacramento Valley and Delta (i.e., offshore winds are not observed along the
coast). Thus, the Northeast source-receptor scenario is not consistent with transport from
the San Francisco Bay Area to the Broader Sacramento Valley. Trajectory analyses on
Northwest days performed for this study indicate that the transport of material from the
Bay Area through the Delta primarily moves material to the south of Sacramento and into
the northern San Joaquin Valley due to the presence of a northerly wind component
within the Central Valley. More significant transport to Sacramento may occur under a
weak Northwest pattern, when northerly component winds are not present as far south as
Sacramento, or a Bay Outflow pattern if southwest Delta winds build rapidly enough
during the day.

Transport from the Bay Area into the North Central Coast is possible under all but the
Northwest-South scenario. However, routinely available data do not allow for
distinguishing between those scenarios in which a convergence zone is or is not present in
the vicinity of Gilroy. When present, this convergence zone effectively blocks surface
transport between the South Bay and receptors to the south in the North Central Coast air
basin, although transport aloft may still occur.
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The analysis of meteorological conditions reveals that ozone episodes in the San
Francisco Bay Area and surrounding air basins generally occur under a variety of
conditions; however, low, strong subsidence inversions—as evidenced by high 850 mb
temperatures, low inversion base heights, high temperatures at inland locations, and
higher sea-level pressures at Reno than at San Francisco—are a common denominator. In
most cases, temperatures along the coast remain cool, indicating at least localized onshore
flow that can transport material inland. All episode days examined have some or all of
these characteristics. However, grouping episodes by source-history category reveals
several unique features of each pattern:

. Northwest days are the most numerous and the most diverse group, representing a
mix of conditions typical of episode days in general. Of all the episode days, this
group has, on average, the least negative San Francisco-to-Reno surface pressure
gradient (recall that the gradient is near zero or negative on nearly all episode
days), suggesting a relatively vigorous sea breeze and a deeper marine layer that
maintains low ozone concentrations along the coast and around the Bay but allows
transport of precursor material inland where high concentrations can form.

o Northeast days are quite distinct with significantly higher pressure to the north and
east of San Francisco (large negative San Francisco-to-Redding and San Francisco-
to-Reno pressure gradients) resulting in a north to northeasterly flow in the
southern Sacramento Valley and Delta region which can, but does not always,
extend into the inland valleys of the Bay Area (e.g., Livermore). However,
strong offshore winds are not present over the Bay Area under this scenario since
the presence of such winds generally eliminates any high ozone concentrations.2
This pattern is also identifiable by relatively warm temperatures along the coast.

. Bay Outflow days are similar in many respects to Northwest days, but with higher
temperatures aloft and inland and weaker 700 mb and 500 mb height gradients.
This indicates the presence of a broad, flat high pressure system with strong
subsidence inversion and a weaker, primarily thermally driven surface circulation
pattern that sets up in the absence of any synoptic-scale forcing.

o Calm days were only observed twice in conjunction with ozone episodes, making
it difficult to generalize about their principal meteorological characteristics.
However, both days were characterized by generally weak surface and aloft
pressure gradients, as one would expect.

. Southerly days are not normally associated with ozone episodes. Two episodes
with very different meteorological conditions were classified as having southerly
flow. In both cases, the only ozone exceedances were 13 pphm concentrations in
Sacramento.

2 We note, however, that Douglas et al. (1989) studied a northeast flow event during 1980
during which the northeasterly winds penetrated into the Bay Area and produced exceedances in
the South Bay. An event of this type was not observed during the 1989-19%1 study period.
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. Northwest-South days exhibited a variety of conditions similar to those associated
with both Northwest and Bay Outflow patterns. Exceedances occurred at several
monitors throughout the Bay Area on one of these days, but only at Livermore on
another and only at Pinnacles on the remaining two. These results suggest that the
characteristics of this flow pattern are quite diverse.

Taken together, the above results suggest that some of the candidate source-history
scenarios, such as the Northeast scenario, are reasonably well defined while others, such
as the Southerly and Northwest-South categories, require further refinement.

Attempts to develop a screening procedure to identify ozone episode days on the basis of
meteorological conditions using discriminant analysis and classification trees (CART)
were largely unsuccessful in that these procedures put many actual episode days in the
pon-episode category. Therefore, a simple conservative screening procedure was
developed that categorizes days as "potential ozone days” or non-ozone days depending
on the value of four key temperature and pressure gradient variables. The key feature of
this procedure is that it successfully identifies nearly all (86 percent) of the actual episode
days while at the same time eliminating most (85 percent) of the non-episode days. The
objective source-receptor scenario classification procedure was then applied to the
potential ozone days to determine the most appropriate scenario for each day. Daily
maximum ozone concentrations for days assigned to each scenario were examined to
evaluate differences in the spatial distribution of ozone concentrations between scenarios.
In addition, diumal profiles of average hourly ozone concentrations on episode days were
computed for key monitoring sites to evaluate the potential for transport under each
scenario. The principal features of spatial ozone distributions associated with each
scenario, as revealed by these analyses, are these:

. Concentrations in the immediate vicinity of San Francisco Bay are generally
highest under the Northeast and Bay Outflow scenarios, when the sea breeze is
weakest. Similarly, concentrations in San Jose are highest under Northeast and
Calm scenarios.

. Peak concentrations at Livermore are highest under Northwest and Bay Qutflow
scenarios, and exceedances of 9 pphm are most frequent under Bay Outflow
conditions. Diurnal profiles show little difference between scenarios in the timing
of the afternoon peak ozone concentration.

] Concentrations in the Sacramento area are lowest under the Northeast scenario,
when transport from the Bay Area is cut off by northerly winds in the Central
Valley and local emissions are transported away from the area. Much higher
concentrations are observed under the Bay Qutflow and Northwest scenarios and
exceedances of 9 pphm are most common under Bay Outflow conditions, most
likely as a result of increased stagnation, high temperatures, and reduced vertical
mixing in both the Bay Area and Sacramento. Our trajectory analyses on
Northwest episode days showed no evidence of transport from the Bay Area due
to northerly component flow in the Broader Sacramento Valley. However, such
transport may occur on some days included in the Northwest category when
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conditions allow southwest Delta winds to extend into the Sacramento metropolitan
area. Data on Bay Outflow days are insufficient for calculating reliable
trajectories due to the light and variable winds characteristic of this scenario.
Streamline analyses prepared for a few Bay Outflow days indicate northerly winds
in the Sacramento area (which would prevent transport from the Bay Area) at least
during the morning hours. Diurnal profiles show little difference between
scenarios in the timing of the late afternoon ozone maximum in Sacramento.

. Highest ozone concentrations in the Northern and Central San Joaquin Valley
regions are associated with the Bay Outflow scenario as in the Sacramento area. "
Diumnal profiles at Stockton and Modesto reveal higher late afternoon
concentrations under this scenario, indicating possible transport from the Bay Area
and, in some cases, Sacramento. This feature is not evident at Fresno.

RECOMMENDATIONS

Results presented in this report provide a good basic description of the major categories
of meteorological conditions, including wind flow patterns most commonly associated
with high ozone concentrations in the San Francisco Bay Area and surrounding air basins,
and the resulting spatial and temporal distribution of ozone concentrations. Additional
refinement of the unique meteorological and air quality features of each source-receptor
scenario we have identified would enhance the usefulness of our results in air quality
management tasks including transport assessment, trends analysis, and episode selection
for modelling. Further study of transport between air basins under each scenario is
especially needed. Currently available data are only sufficient to suggest the possibility
of transport in some cases but not to confirm the occurrence or quantify the magnitude of
transport. In particular, data needed to identify the existence or nonexistence of a
convergence zone between Hollister and Gilroy (and therefore transport from the South
Bay to the North Central Coast) under each scenario were not available. Some wind
profiler data have been collected at key locations to help address this need; however,
these data were not available in time for use in our study. Application of a more
sophisticated, three-dimensional wind field model would also help identify transport
patierns. However, such a model would have to be sufficiently efficient in its
computations to be suitable for application to at least several days representative of each
scenario and the data necessary to run the model on these days would have to be
available.

Crossvalidation results of the objective source-receptor scenario classification procedure
developed in this study indicate that improvements may be needed in the identification of
Bay Outflow days. In addition, more examples of Northeast, Calm, and Northwest-South
scenarios are needed to confirm the proper identification of these scenarios. Air quality
and meteorological conditions on Northwest-South days in particular require further
study. An independent data set could be developed for testing the classification scheme
proposed here as an alternative to the use of crossvalidation. All of these activities
require assembling additional air quality and meteorological data for analysis. Extending
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the analysis to include at least an additional three years of data (say, 1992, 1993, and,
when available, 1994) is recommended.

The objective classification procedure presented in this report is based on a set of 13
meteorological variables. Preliminary stepwise discriminant analyses indicate that a
procedure based on just four of these variables would perform almost as well. Reducing
the number of variables would simplify the procedure and reduce problems encountered
when one or more of the variables are missing. This possibility should be explored in
more detail.
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Appendix A
BOX PLOTS OF DAILY MAXIMUM OZONE CONCENTRATIONS (PPHM)
BY SOURCE-RECEPTOR SCENARIOS (BO = BAY OUTFLOW, C = CALM,
NE = NORTHEAST, NW = NORTHWEST, NWS = NORTHWEST-SOUTH,
= SOUTH)

A key to the box plot sympols is presented in Figure 3-3.
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Appendix B
AVERAGE DIURNAL PROFILES OF HOURLY OZONE CONCENTRATIONS AT

SELECTED MONITORING SITES FOR EACH SOURCE-RECEPTOR SCENARIO
(BO = BAY OUTFLOW, NE = NORTHEAST, NW = NORTHWEST)
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