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CHAPTER 8
MATHEMATICAL MODELING OF THE FORMATION OF
NITROGEN-CONTAINING POLLUTANTS—II.

EVALUATION OF THE EFFECT OF EMISSION CONTROLS
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ABSTRACT

A grid-based Eulerian airshed model is used to study the effect of
specific emission control measures on ambient NO,, total inorganic
nitrate (TN), HNOj, aerosol nitrate, PAN, NH; and ozone concentra-
tions in the Los Angeles area. NO, and reactive hydrocarbon (RHC)
emission reductions of up to 61% and 37%, respectively, are exam-
ined. NO, and TN concentration reductions in excess of 50% aver-
aged over 20 monitoring sites are achieved at the highest level of
emission control studied. The distribution of TN air quality improve-
ments between HNOj3 and aerosol nitrate is affected by the NH; emis-
sion rate of the NO, control technologies employed. Peak 1-hr O,
concentrations at many sites in the eastern portion of the air basin
studied decline by more than 25% at the highest NO, and RHC control
levels studied, with the final increment of NO, control alone capable
of producing O; concentration improvements at locations with the
highest O3 concentrations.
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1. Introduction

In Part I of this series, the performance of a grid-based photochemical airshed
model for ozone, NO,, total inorganic nitrate (TN), PAN, HNO;, NH; and aerosol
nitrate (AN) formation and transport was evaluated (1). Model predictions were
compared against experimental observations made for this purpose in the Los
Angeles area over the period August 30-31, 1982 (2). It was found that O; and PAN
concentration predictions were in excellent agreement with observations, and that
NO, predictions were in closer agreement with observed values than in many previ-
ous studies. On average, TN, NH; and HNO; concentration predictions differed from
observations by very small absolute amounts: 2.7 ugm=3 (1.1 ppb), 0.7 ppb; and 4.2
ugm=3 (1.65 ppb), respectively. In the present paper, that model will be used to
explore the predicted effect of specific emission control measures on ambient air

quality.

2. Emission Control Opportunities

Emission control measures gvaluated as part of this study are itemized in
Table 1. That table has been di\}ided into 5 groups. Group 1 controls reflect a sub-
set of the reduction possibilities that have been documented as part of the 1982 Air
Quality Management Plan (AQMP) for the South Coast Air Basin that surrounds Los
Angeles (3). This group of controls approximates the effect of many of the emission
reductions that can be expected to be imblemented in the Los Angeles area in the
years following the 1982 base year, but without extension of vehicular catalyst utili-
zation or ammonia injection technology beyond that used in 1982. Group 2 and
Group 3 controls simulate the effect of fleet-wide improvements in emissions from
motor vehicles, at target levels that have been discussed by state and federal regu-
latory agencies (7,9). Group 4 and Group 5 controls would further reduce NO, emis-
sions from stationary sources through the use of non-catalytic ammonia injection or

selective catalytic reduction (SCR) technology.
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The 1982 emission inventory employed during the model verification effort of
Part I of this study (1, 15) will be referred to as the Base Case. The 1982 Base Case
emissions from each source class that will be considered for control are given in
Table 1, along with the percentage reduction in those emis>sions that would result if
the control measures had been in effect during 1982 (i.e. 84% reduction implies that
(1-84/100) = 0.16 times the Base Case emissions from a stated source class would
remain if the stated control measure had been implemented). Although several of
the control measures cited are cross-referenced to the AQMP planning document,
the base year emission inventory of the present study (1982) differs from the 1979,
forecast 1987 and forecast year 2000 inventories used in the AQMP. The objective
of the present study is to provide information on the air quality effects that w;)uld
be observed if the controls listed in Table 1 had been applied during the 1982 Base
Case model verification days in the amounts specified. No attempt will be made to

simulate the effect of emission controls during some hypothetical future year.

The largest number of control measures in Group 1 of Table 1 (those desig-
nated B-1 through B-8) are aimed at reducin;c; solvent vapor emissions from painting
and surface coating operations, usually through reformulation of the coating
material or through reduced overspray during application. Reduction in fugitive
hydrocarbon emissions from landfill gas leaks and oil and gas field fixture leaks is
anticipated. The remaining hydrocarbon controls would suppress solvent losses
from cleaning operations and pesticide application, or capture certain industrial
process emissions using incineration, activated carbon adsorption or other vapor

recovery methods.

Stationary source oxides of nitrogen controls included in Group 1 involve rela-
tively straightforward modification of combustion system design, but without the
use of ammonia injection or selective catalytic reduction technology. The effect of a

mandatory vehicle inspection and maintenance program involving a no-load idle
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Table 1. Specific Emission Control Measures and Their Effect if Applied to 1982
Emissions in the South Coast Air Basin.

Effect of Controls

1982 THC™@ 1982 NO, 1982 NH, THC 0, NH, Notes
Emleel Change Change Change and
(ton/day) (ton/day) (ton/day) Control Measure (%)m (%)™ (%)™ References
Group (1)
1 Wood furniture finishing 16.6 - - Use of water-based coatings ~54.1 3
and reduced overspray. (B-5)
2  Auto refinishing 6.7 - - Use of low solvent or -21.0 3
water-based coatings. (B-8)
3 Wood flatstock coating 1.5 —_ - Afterburners on drying -75.0 3
and curing ovens: (B-1)
4 Industrial maintenance coatings 6.3 - - Use of low solvent or -39.3 3
water-based coatings. (B-2)
5 Marine coatings 24 - - Use of low solvent or -82.8 3
more durable coatings. (B-3)
6 Motor vehicle mfg. (painting) 82 - - Electrostatic coating and -41.2 3
high solids paint. (8-4)
7 Metal parts mfg. (coatings) 25.8 - - Substitute coatings. (B-6) ~28.6 3
8  Aerospace coatings 4.6 - —  Use of low solvent coatings. (B-7) -40.5 3
9 Oil and gas well leak reduction 273 - - Semi-annual inspection -50.0 3
and maintenance. (A-3)
10 Pesticide application 129 —_ - Changes in formulation =273 3
and application methods. (C-3)
11 Metal and non-metai parts cleaning 40.6 - - Covers on circuit board -12.8 3
degi . fewer p {C-
12 Paper and fabric coating 106 - - Afterburners or activated -50.0 3
carbon adsorption on
curing ovens. (D-2)
13 Dry cleaning 179 - - Reduced transfer emissions -35.8 3
{wash & dry in a single unit). (G-3)
14 Landfill gas recovery 778.0@ - —  Methane recovery. (F-1) —46.110 3
15 Rubber products mfg. 3.6 = - Incineration or carbon adsorption -103 3
on fugitive organics emissions. (D-3)
16  Synthetic chemical mfg. 2.1 - - Chemical absorbers, carbon -90.9 3
adsorption, and process changes. (G-1)
17 Marine fuei transfer 0.4 — - Vapor recovery systems. (A-7) -90.9 3
18 Graphic arts industry 119 - - High solids or waterborne —-85.0 3
ink; incineration or adsorption. (G-2)
19 Refinery bollers and heaters - 40.3 - Combustion modification. -8.0 4
20 Residential water heaters - 103 - Intermittent ignition devices (-25.0) 3
and stack vent vaives. (N-18)
21 Non-refinery industrial boilers - 35.0 - Combustion modification. (G-11) -25.0 3
22 Cement kilns - 9.7 - Combustion modification. (G-7) —40.0 3
23 Glass furnaces - 3.2 - Process modification. -45.3 S
24  Light-duty highway vehicle exhaust 439.0 427.0 - Inspection and maintenance ~11.3 -9.4 6
(no-load idle test & repair).
Group (2) Additional Mobile Source Control
25 Light-duty highway
vehicle exhaust 439.0 427.0 28 Entire fleet meets 0.7 g/mi NO, -84.8 ~733 +222 (b)
and 0.41 g/mi THC objective; 78
NHjy emissions reach 0.035 g/km;
inspection and maintenance
program continued.
26 Heavy-duty dlesel highway
vehicie exhaust 25.8 157.0 0.02  Entire fleet meets objective of -30.0 -25.9 - 6]
10.7 g NO,/BHP-hr and 9
2.65 g/mi THC.
27 Heavy-duty gasoline highway .
vehicle exhaust 18.6 35.7 (0.1)  Entire fleet meets objective of -49.2 -34.8 0 (d)
10.7 g NO,/BHP-hr and 9
2.65 g/mi THC.
28 Medium-duty highway vehicle
exhaust (gasoline and diesel) 326 387 ©3) Entire fleet meets 1.5 g/mi NO, ~82.0 ~62.1 (+83) (e)
and 0.6 g/mi THC objective (NH; 89

emissions reach 0.035 g/km).
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Table 1. Continued

Effect of Controls

)
1?82 T‘HC‘ 3982 NO, r191.12 .NH’ cLHC c:ao' NH, Notes
nge nge Change and
(ton/day)  (ton/day)  (ton/day) Control Measure xy= ()= (%)= References
Group (3) Stringent Mobile Source Control
29 Light-duty highway vehicle
exhaust 439.0 4270 28 Entire fleet meets objective of -84.8 -84.8 +222 (3]
0.40 g/mi NO,, and 78
0.41 g/mi THC (NH; emissions held
at 0.035 g/km).
30 Heavy-duty diesel highway . 65 0 ®
25.8 157.0 002 Entire fleet meets objective of -300 =
vehicle exhaust 5.1 g NO./BHP-hr and . 9
2.65 g/mi THC.
31 Heavy-duty gasoline highway i 69 0 ()]
18.6 - 357 (0.1)  Entire fleet meets objective of -49.2 -
vehicle exhaust 5.1 g NO,/BHP-hr and 9
2.65 g/mi THC.
Group (4) Stationary Source NO, Control~
Non-Catalytic NH, Injection
32 Refinery boilers and heaters - 403 0.5) Direct NH; injection. -50 +869 ®) 4
33 Utility boilers - 57.6 (1.6)  Direct NH, injection. —40 +344 (h).10
34 Non-refinery industrial boilers - 35.0 (0.65) Direct NH; injection + -55 +392 (i)
combustion modification. 10
35 Cement kilns - 97 - Direct NH; injection. -50 + 11
36 Glass melting furnaces — 3.2 - Direct NH; injection. —50 + s
Group (S5) Stationary Source NO, Controi-
Selective Catalytic Reduction
37 Refinery boilers and heaters — 40.3 (0.5)  Selective catalytic reduction. —44 + small @12
38 Utility boilers — . 57.6 (1.6) Selective catalytic reduction. -390 + small (k)13
39 Non-refinery industrial boilers _ 35.0 (0.65) SCR plus combustion modification. -92 + smakll 13
40 Cement kilns - 9.7 — Selective catalytic reduction. -90 + small 11
41 Stationary industrial IC engines - 74.2 - Use of cataytic converters. —66.7 + small 14
42 Glass melting furnaces - 32 - Selective catalytic reduction. -90.0 + small S
Notes
(a) THC equals Total Hydrocarbon emissions; in all cases except landfill gas leak (g) NH; breakthrough is assumed to be 50 ppm NH; for reduction of 75 ppm NO,
reduction and oil and gas weli leak reduction, THC = RHC (Reactive Hydrocar- (50%). Final NH; emission is 5.04 metric tons/day.
bon emissions). Landfill emissions are mostly methane, with only 1.4% non- (h) NH; breakthrough is 50 ppm NH; giving total NH; emissions of 7.1 metric
methane hydrocarbons. Only the non-metfiane hydrocarbon (NMHC) data are tons/day.
h " .
?::?e:rolf fh:‘;'::‘:sli?;;lorﬂ;}' and the % control shown applies to the NMHC (i) Estimated based on utility boiler pe.rforma.ncc, see note (h) and ref:r:nce 0.
(b) Computed by multiplying vehicle miles traveled (VMT) per day times 0.7 g/mi @) SCR achlcvgs 90% NO,‘ control but is applied only to the largest units, yielding
NO, and 0.41 g/mi THC. NH, emissions become 9.14 metric tons/day. 44% reduction relative to the entire source class.
(c) Computed by taking emissi from a new (undeteriorated) 1984 heavy diesel (k) Ammonia bleed-through is 12 ppm.
truck as representing 6.5 g/BHP-hr NO, and also as equaling 10.31 g/mi NO,. () 25% control by combustion modification plus 90% control via SCR. see note (k)
Ratio glves scale factor of 1.59 g mi~'/(g/BHP-hr) NO,. If entire fleet achieves and also controi measure 21 in Table 1 above. Rule-making process would
10.7 g/BHP-hr NO, (representing a fleet average of 1984 trucks with deteriora- probably choose to exclude smaller boliers, but no indication is yet given of
tion) then emissions factor for entire fleet would be 17.0 g/mi. Emissions com- where the line would be drawn. NH; break-through assumed to be 12 ppm.
puted by n.'nuluplylng VMT for heayy qlesel vehicles times 17.0 g/mi. Hydrocar- (m) Percent change in emissions is defined as follows: —84% implies that {1 -
bon emissions obtained by muitiplying 2.65 g/ml times heavy diesel vehicle

84/100) = 0.16 times original 1982 emission rate remains after control; +222%
VMT. Implies that (I + 222/100) = 3.22 times originai 1982 emission rate remans
A new 1984 heavy gasoline truck emits 4.25 g/mile NO, corresponding ta 6.94 after control.

&/BHP-hr. Calculation proceeds as in note (c) above.

() Computed by multiplying medium truck VMT per day times 1.5 g/mi NO, and
0.6 g/mi THC. NH, emissions become 0.55 metric tons/day.

() Emmission reductions computed by procedure anaiogous to that for Group (2)
Mohbiie Source Controls (see notes (b), (c). ot (d)).

[C)

TOTAL HYDROCARBONS NITROGEN OXIDES
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test, followed by repairs to the vehicle designed to correct defects observed also is

included among the relatively simple control measures in Group 1.

Two further levels of mobile source NO, control were considered. At the
Group 2 level in Table 1, the entire light duty vehicle fleet was assumed to have
achieved a NO, emission rate of 0.7 g mi~!, while the NO, emissions from medium
duty trucks were assumed to be reduced to 1.5 g mi~!, and the NO, emissions from
heavy duty trucks were assumed to be reduced to 10.7 g/BHP-hr. There are two
ways that one could view this case with 0.7 g mi~! NO, emitted from the light duty
vehicle fleet. Since new cars sold in California must presently meet a 0.7 g mi~! NO,
standard, this level of control could be used to approximate a successful comple-
tion of conversion of the entire vehicle fleet to meet current regulatory objectives
for new cars, in combination with a high level of catalyst system durability and
maintenance. In the absence of high durability and maintenance, catalyst system
deterioration can be expected to increase actual on-road emissions to levels above
legal objectives. The 0.7 g/mile NO, fleet-wide emission rate empl,oyed here closely
approxima‘ltes the introduction of a fleet of cars initially set to achieve 0.4 g/mi NO,
when new, followed by a typical degree of control system deterioration in the
- hands of the final consumer. The 10.7 g/BHP-hr NO, objective for heavy duty trucks
reflects an intermediate level of control proposed by the U.S. Environmental Protec-

tion Agency (9).

Mobile source controls shown in Group 3 reflect the emissions pattern that
would result if the 0.4 g/mi NO, and 0.41 g/mi total hydrocarbon (THC) emission
rate for light duty vehicles called for under the Clean Air Act in fact were achieved
and maintained by the vehicle fleet. Increased control system durability or mainte-
nance would be needed for this event to occur. Further NO, reductions from heavy
duty vehicles have been added to Group 3, at the most stringent level discussed by

the federal government (9).
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NO, emission reductions from stationary combustion sources can be achieved
by non-catalytic ammonia injection into the stack exhaust within a narrow exhaust
temperature range. This direct NH; injection technology has been demonstrated on
a utility boiler in the Los Ahgeles area (10). NO, emission reductions in the vicinity
of 50% are observed, accompanied by significant bleed-through of NH; into the
atmosphere. Group 4 controls in Table 1 simulate the installation of such controls
on all of the largest stationary combustion sourcés in the South Coast Air Basin. A
major objective of our analysis of this group of controls is to determine if aerosol
nitrate formation would be suppressed or enhanced by this NO, emission reduction

combined with NH; emission increase.

Selective catalytic reduction (SCR) technology involves NO, abatement by
injection of NH; into stationary source exhaust in the presence of a catalyst. Con-
trol efficiencies are generally higher than in the case of the direct non-catalytic NH;
injection systems cited in control Group 4, and NH; bleed-through into the atmo-
sphere is reduced. The effect of SCR technology appliea to a variety of stationary

sources in the Los Angeles area is indicated in Group 5 of Table 1.

By applying the controls in Table 1 in various combinations, a matrix of contrdl
opportunities can be constructed that represents the trade-off between increasingly
stringent stationary source control vs. increasingly stringent mobile source control,
as shown in Table 2. Ten cases will be defined. Beginning near the upper left
corner of Table 2, the Base Case 1982 emission inventory first will be perturbed by
applying the Group 1 controls from Table 1 to the emission sources. Moving from
left to right across the top of the table, increasingly stringent mobile source con-
trols are added to the Group 1 stationary source controls. Moving from top to bot-
tom along the left edge of the table, increasingly demanding stationary source NO,
controls are added to a minimal motor vehicle control program. At the lower right

corner of that table, the intersection of all of the most stringent mobile and station-
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ary source controls is applied. The headings aligned with the columns and rows of
Table 2 are suggestive of the maximum cumulative degree of NO, control achieved

in each case; the hydrocarbon controls shown in Table 1 also are included.

The tenth perturbed case examined here explores the effect of NH; emission
reduction alone. The Base Case 1982 emission inventory for NO, and hydrocarbons
remains untouched, but all of the NH; emissions from livestock waste decomposi-
tion and farming activities in the air basin are removed. This perturbation com-
pletely eliminates the large spike in the NH; inventory centered over the Chino
dairy area in western Riverside and San Bernardino Counties (see Figure 2 of refer-
ence 1). That emission reduction may occur in the near future without the action of
governmental air pollution control agencies. Rapid urban development in that area

of both counties could displace the dairy industry within a few years.

3. The Effect of Emission Controls

The grid-based air quality model evaluated in Part [ of this study (1) was used
to determine the effects on air quality that could be expected if each of the combi-
nations of emission control measures defined in Table 2 were applied in the South
Coast Air Basin (SoCAB). For each set of control measures considered, the Base
Case 1982 emission inventory for the SoCAB discussed in references (1) and (15)
was modified to reflect the addition of that particular group of control measures.
Then the air quality modeling calculations were executed over two days of simula-
tion using the modified emission inventory along with the meteorological condi-

tions observed during the Base Case model verification days (August 30-31, 1982).

The initial conditions and boundary conditions supplied to the air quality
model in each case were identical to those observed during August 30-31., 1982, as
described in reference (1). The purpose of the first day of each two-day simulation
was to establish initial conditions for the second day of calculations that reflect the

altered emissions into the air basin. The effect of emission controls on air quality
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then was determined by comparison between Base Case and post-coﬁt_rol air quality
predictions for the second day of each two-day simulation. As changes in emission
controls might affect the boundary conditions supplied to the model, a perturbation
analysis of the effect of altered boundary conditions was conducted. Reducing the
inflow O3 boundary conditions from those observed on August 30-31, 1982, to 0.04
ppm all around the border of the modeling region reduced Base Case peak O; con-
centrations by only 0.01 ppm. Inflow NO, boundary conditions on August 30-31,
1982, were examined and found to be very low except along a small stretch of the
southeast corner of the grid system. In summary, predicted changes in air quality
on the second day of simulation are determined predominantly by changes in emis-

sions into the model and not by altered initial or boundary conditions.

The results of this comparison of alterative emission control strategies are
presented in several formats. First, an account of the changes in basin-wide peak
1-hr average pollutant concentrations is given in Table 3. Base Case peak pollutant
levels as they were caiculated for August 31, 1982 in the absence of further emis-
sion controls are stated in the upper left hand corner of that table. Then for each
combination of emission controls as defined in Table 2, the predicted basin-wide
peak values are given, both in absolute concentration units and as a percent devia-
tion from the pre-control Base Case. Since the effect of some control measures is to
change the location or timing of the basin-wide peaks, the values shown in Table 3
may not be typical of the effects seen at most air monitoring sites. Therefore in
Table 4, the average change in the peak 1-hr pollutant concentrations at the 20 sites
shown in Figure 1 is given, along with the range of the changes observed between

the least affected and most affected air monitoring stations.

As seen in the upper left corner of the matrix of control opportunities in Table
2, completion of the stationary source evaporative hydrocarbon controls that are a

part of the 1982 AQMP for the Los Angeles area, plus stationary source combustion
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modifications and a vehicle maintenance program woﬁld result in a 5.4% reduction
in basin-wide NO, emissions and a 9.3% reduction in reactive hydrocarbon (RHC)
emissions. Comparison to Table 4 shows that the 1-hr peak levels of NO, and TN
typically drop by an amount that is roughly proportional to the change in NO, emis-
sions. The greatest percentage decreases in total inorganic nitrate (TN) levels occur
in the eastern portion of the air basin (from Pomona: TN = -5.5% to Rubidoux: TN =
-7.4%), while TN levels decline by only 3% to 5% in the western part of the air basin.
The effect on HNO3; and AN levels likewise is highest in the eastern portion of the
air basin. O3 and PAN levels in this case decline by only 1.6% and 2.2% at the loca-
tion of the basin-wide 1-hr peak, a reduction that is less than proportional to the

degree of emission control achieved for either RHC or NO,.

The effect of progressively more stringent NO, controls on stationary sources
alone is observed by moving down the left edge of Tables 2, 3 and 4. Addition of
non-catalytic ammonia injection technology at major stationary NO, sources com-
bined with AQMP hydrocarbon controls produces a net 10%ﬂreduction in basin-wide
NO‘X emissions along with a +8.7% increase in basin-wide NH; emissions, as seen in
Table 2. Most of these emissions changes occur in the heavily industrialized
western portion of the air basin, which has very low ambient NH; levels at present
(see Figures 2, 3 and 5 of reference 1). As a result of the NH; emissions from the
ammonia injection systems, peak 1-hr average ambient NH; levels near industrial
areas at the coast (Long Beach and Lennox) rise by nearly 60%, while ambient NH;
levels at central Los Angeles, La Habra, Anaheim and Pico Rivera rise by 25% or
more. HNOj; levels drop by as much as 25% at Lennox, and by more than 13% at
central Los Angeles, Anaheim, La Habra and Pico Rivera, but this is largely due to
the formation of additional aerosol nitrates by reaction of HNO; with the increased
NH;. Peak l-hr average aerosol nitrate levels rise by 14% to 21% at central Los

Angeles, Long Beach and Lennox in the presence of this NH; emission increase.
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Farther downwind, in the vicinity of the Chino dairy area where the air is already
loaded with very high NH; levels even in the Base Case (e.g., 0.67 ppm 1-hr peak at
Chino, see Table 4), the reduction in NO, emissions achieved through this combina-
tion of controls that includes non-cat.alytic NH; injection at upwind sources does
act to reduce TN and aerosol nitrate levels by 7% to 8%. In summary, use of non-
catalytic ammonia injection technology for NO, emission reduction has the‘ poten-
tial to degrade NH; and aerosol nitrate air quality in the industrialized western por-
tion of the South Coast Air Basin, accompanied by aerosol nitrate concentration

reductions in already NH;z-enriched agricultural areas downwind.

Through addition of selective catalytic reduction (SCR) technology on station-
ary sources, combined with AQMP hydrocarbon controls, an 18% reduction in
basin-wide NO, emissions is achieved relative to Base Case 1982 emissions accom-
panied by only a 0.7% increase in NH; emissions (lower left corner, Tables 2, 3 and
4). These stationary source NO, reductions are concentrated at a few major point
source locations (e.g. poWer plants and petroleum refineries). As a result, the effect
of these controls varies greatly between monitoring sites. When SCR is added to
major point sources, NO, concentration reductions of 12% to 15% occur at Burbank,
Long Beach, Azusa and Anaheim. Typically, NO, levels in that case decline by 8.5%
averaged over the 20 locations cited in Figure 1 and Tabie 4. At the location of the
basin-wide NO, concentration peak, and at Upland and Fontana, NO- concentration
reductions are small (2.6% or less). Total inorganic nitrate concentration improve-
ments show less variability between monitoring sites: TN levels decline by 11% to
14% in the eastern portion of the air basin (from Pomona to Rubidoux), and by 5%
to 10% in the western area of the basin. Reductions in basin-wide 1-hr peak HNO;
and AN levels of 13% and 14% respectively also are achieved. The basin-wide peak
O3 and PAN concentrations decline slightly as stationary source NO,controls are

applied. At 5 of the sites shown in Figure 1 in the area from central Los Angeles



129

‘det 21y JO 131U3d

Y Ul 3ul} prios Aaeay 3yl AQ papunoq uoldal ay) unpm pauntojiad
ate suone[no[ed guljapow Ayjjenb a1y palenjeas o [[Im S[O.NUOD UOIS
-SIWR JO 139J49 aY) YdIym 1k Sa1ls (g Suimoys ‘uiseg 1y 1Seo0) yinog ay [ aandi|

x:%_oiam_

<x<*20u

YH3AIE
®001d

®
_SF130NY 507

A
~ puoysy 7
A_ N $0/0IN UDS
puoys/ / . N puoysy
ouypjoy "~ VT 010q108
owos o oivos
O - Qb wsm §3N
— e — - mn SHN
ot o2 ol 0
ueadQ
aljoed
)
MIFHYNY BNOT
. CwevH v
5 . ¥ILLLIHM puoysy
. odoiovly

ol <

puoysy
2n1) DJUDS

M ZSss 7
A VO

P2 0000008

o
v




130

and Pasadena to La Habra, addition of SCR on stationary sources alone causes peak
1-hr Oz levels to increase relative to the Base Case, but that increase is +3% or less.
PAN air quality changes by amounts that are less than proportional to the NO,
reduction achieved, with 7 of the 20 sites studied experiencing a PAN increase. In |
short, with addition of SCR technology on stationary sources alone, improvements
in many NO,-related species concentrations are achieved. Those improvements are
less than proportional to the NO, emissions change, and are accompanied by slight

increases in O; and PAN at a few locations.

The effect of progressively more stringent mobile source controls alone can be
examined by moving from left to right across the upper row of Tables 2, 3 and 4.
As seen in Table 2, complete conversion of the vehicle fleet to an intermediate level
of mobile source control (light-duty fleet meets 0.41 g/mi THC; 0.7 g/mi NO, along
with additional heavy-duty vehicle controls plus AQMP stationary source controls)
would result in a 37% reduction in basin-wide NO, emissions and a 37% reduction
in RHC emissions relative t.o the Base Case. Tables 3 and 4 show that major
improvements in TN, HNO; and AN levels would result, with improvements almost
directly proportional to the NO, emission reduction achieved. Basin-wide peak O,

and PAN concentrations both decline by 11% and 14% respectively.

Further reduction in NO, emissions from motor vehicles alone is examined in
the upper right hand corner of Tables 2, 3 and 4. If a 0.4 g¢/mi NO, emission rate
from the light-duty fleet had been achieved in 1982 along with strict heavy truck
NO, controls, NO, emissions would have been reduced by 48% relative to the base
case, with similar major improvements in ambient NO,, TN, HNO; and AN concentra-
tions. O; and PAN concentrations both decline as additional NO, controls are added
to the vehicle fleet without further hydrocarbon controls beyond the 0.41 g/mi THC

light-duty vehicle standard examined in the preceding square on the top row of

Table 2.
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As seen in the lower right hand corner of Table 2, the simultaneous use of all
mobile and stationary source control measures considered here would reduce NO,
emissions relative to the base case by 61% in the presence of a 37% decline in RHC
emissions. This combination of controls is more effective than cdntrols on either
the mobile or stationary sources alone. Basin-wide peak total inorganic nitrate,
HNO; and aerosol nitrate concentrations are reduced by nearly 60%. Basin-wide
peak NO, concentrations are reduced by 53%. A 17% reduction in the basin-wide
peak O; concentration is achieved. The 1-hr O; concentration peak is reduced rela-

tive to the Base Case at every site shown in Figure 1.

As is quickly seen from Tables 3 and 4, the simultaneous use of all of the
mobile and stationary source control measures considered produces major
improvements in many air quality parameters at the time of the daily pollutant con-
centration peaks. The performance of that combination of control measures is
explored in detail in Figures 2-7. Figure 2 gives the spatial distribution of poliutant
concentrations i'n the presence of the maximum degree of NO, control studied. By
subtracting these poliutant levels from the spatial distribution of concentrations
predicted by the Base Case simulation (see Figure 3 of reference 1) it is possible to
define the spatial distribution of pollutant concentration changes experienced due
to the emission controls, as seen in Figure 3. Figures 4, 5 and 6 permit rapid visual-
ization of changes in the diurnal pattern of pollutant levels at key monitoring sites
characteristic of the western and eastern portions of the air basin. In Figure 7, the
effect of this set of emissions controls on 24-hour average pollutant levels is

explored.

One effect of the maximum degree of mobile and stationary source control
considered in this study (case in lower right corner of Table 2) is to preferentially
reduce the NO, concentrations during the early morning peak hours of the day at

sites in the western portion of the air basin, like Los Angeles, and Anaheim, as seen
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in Figures 3 and 4. NO, concentrations which exceeded 0.15 ppm during early
morning hours under Base Case conditions have been reduced by more than 0.06
ppm at 0800 hours PST throughou_t much of the western area of the basin, and by as
much as 0.10 ppm in portioﬁs of coastal Orange County, as seen in Figure 3. At
sites in the eastern area of the basin, at Upland, Rubidoux and San Bernardino, NO,
levels are reduced by large percentage amounts throughout the entire 24-hour
period studied (Figure 4). As a result, 24-hour average NO, levels decline by
between 40% and 60% throughout nearly the entire on-land portion of the air basin

as seen in Figure 7.

The effect of NO, emission controls on total inorganic nitrate levels is felt to
the greatest extent in the central and eastern portions of the air basin. As seen in
Figure 3, TN concentration reductions in excess of 16 ppb occur in the inland areas
throughout the morning hours in response to the maximum degree of NO, control

studied here.

The partition of this inorganic nitrate air quality improvement between reduc-
tions in gas phase HNO; versus reductions in aerosol nitrate is determined by co-
occurring NH; concentrations. In the western portion of the air basin, HNO; reduc-
tions, especially in the morning hours, are proportionally greater than aerosol
nitrate reductions, as shown at Los Angeles in Figure 5. The use of selective cata-
lytic reduction technology plus more effective reducing catalysts on mobile sources
leads to a small increase in NH; emissions. While that NH; increase is very minor
compared to basin-wide NH; emissions, the NH; emissions increase by a significant
percentage in the NH;-starved western urban area of the air basin (see the spatial
distribution of Base Case NH; emissions ih Figure 2 of reference (1)). NH; concen-
trations at sites like downtown Los Angeles that are located in the immediate vicin-
ity of stationary combustion sources and heavy traffic density experience a rough

doubling of base case NHj levels during the morning traffic peak hours. The pro-
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duct of the NH3; and HNQO; concentrations is limited by the equilibrium dissociationv
constant for the NH,NO;—NH;—-HNO; system (16). The NH; concentration increase
shifts the equilibrium HNQO; concentration downward, while favoring aerosol nitrate
formation. Howéver, the same efnission controls that produce the NH; emission
increase also reduce NO, and TN concentrations by enough that a net increase in
aerosol nitrate concentrations is not observed. Instead, both HNO; and AN decline
in the western part of the air basin, but the HNO; reduction is more pronounced
and begins in the morning as NH; levels rise, while the aerosol nitrate reduction
relative to the base case occurs later in the day. In the central portion of the air
basin, the combination of a major decrease in TN formation along with a small
increase in NH; emissions is manifested by greater than a 10 ppb reduction in HNO;

concentrations in the late morning and early afternoon (Figure 3).

In the eastern area of the air basin, Base Case NH; concentrations due to dairy
farming and other agricultural sources are so high that a small change in upwind
NH; emissions does not affect ambient NH; levels by more than a few percent.
Again, the amount of gas phase HNOj is limited by the co-occurring ammonia levels.
In this case the post-control NH; levels are nearly unchanged as a percentage of the
pre-control NH; levels and as a result, HNO; concentrations do not change greatly.
The large drop in TN levels at Rubidoux and San Bernardino that occurs when all
available RHC and NO, emission controls are applied thus is reflected in a major
reduction in aerosol nitrate levels, and to a lesser degree by reduced HNO; concen-
trations as seen in Figure 5. At eastern basin sites, aerosol nitrate levels are

reduced throughout the day, not just during peak hours.

The effect of RHC and NO, controls on O air quality has been a matter of con-
siderable debate (15-22). Most recent studies (15, 22) agree that large NO, reduc-
tions (above 19%) in the Los Angeles area combined with moderate RHC controls

will produce lower O3 levels in the downwind and eastern areas of the SoCAB near
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Rubidoux and San Bernardino where the highest O; levels often are observed. Con-
cern has been voiced, however, that if NO, emissions are controlled to the max-

imum extent possible, then O; levels will rise in the western portion of the air basin

(22).

The results of the present study indicate that the maximum degree of NO, and
RHC control studied here produces significant O; reductions in the eastern area of
the South Coast Air Basin. The peak measured and predicted O; levels on August
31, 1982 that occurred at Rubidoux and at San Bernardino would be reduced sub-
stantially as seen in Figure 6. Peak 1-hour average O3 levels in this case decline
relative to the Base Case by 25% or more at Pomona, Chino, Norco, Upland, Fontana
and Rubidoux, and by 21% at Azusa. The additional NO, emission reductions
achieved when moving from the group of control measures specified in the center
column of Table 2 to the right hand column of Table 2 leads to reduced O; levels in
the high-O; concentration zone at the eastern end of the air basin without addition

of further hydrocarbon emission controls.

At all western urban sites, O; concentrations respond to this package of emis-
sion controls in a manner like that shown for central Los Angeles and Anaheim in
Figure 6. In the presence of stringent NO, controls, O; levels begin to rise at a
slightly earlier hour in the morning due to less effective scavenging of O; by fresh
NO emissions during the early morning traffic peak. Peak O; levels are decreased
at all sites at midday, as mentioned previously. Then O; levels at western basin .
sites exceed 1982 Base Case concentrations for a short period in the afternoon in
the presence of stringent NO, controls, again due to less effective O3 scavenging
processes in the presence of the NO, controls. If viewed on a 24-hour average
basis, O3 concentrations do rise slightly in the western area of the air basin in
response to this control program, as seen in Figure 7. But since O; concentration

standards are written to control peak 1-hour averages and since peak O; values
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decline at all stations, it is unclear that this change in 24-hour average O; coﬁcentra-
tions is of any regulatory consequence. In summary, the change in total O; dose
received by western basin residents due to the NO, control program studied is very
émall: the areas under the pre-control and post-control O; concentration time series
graphs are practically the same. The high O; dose received by residents in the
Azusa, Pomona, Riverside and San Bernardino areas, however, is significantly
reduced by the combination of emission controls given in the lower right corner of

Table 2.

The final alteration in emissions studied involves removal of all agriculture-
related NH; emissions from the Base Case 1982 emission inventory given in refer-
ence (15). NH; emissions from livestock waste decomposition in the Chino dairy
area and elsewhere are suppressed, as are NH; emissions from chemical fertilizer
application at farms. This type of change in emissions could occur as increasing
urbanization displaces agricultural activities in the air basin. This alteration in NH;
levels alone does not affect atmospheric NO,, O; and PAN concentrations. Ammonia
concentrations decline by 87% to 91% at Chino and Upland in the immediate vicin-
ity of the dairy farms, and by about 70% at Rubidoux and San Bernardino
downwind. Aerosol nitrate concentrations at San Bernardino, Fontana, Upland and
Pomona decline by more than 50% as the agricultural NH; emissions are
suppressed. In response, HNO; levels increase at eastern basin locations by 43% to
45% at San Bernardino and Upland, and by 89% to 100% at Fontana and Rubidoux.
Suppression of aerosol nitrate formation without a corresponding decrease in NO,
emissions acts to shift inorganic nitrate from the aerosol phase to gas phase HNO;.
Total inorganic nitrate levels decline at Upland, Fontana and Rubidoux by 7% to 13%
as this shift from AN to HNO; formation occurs, probably because the deposition

velocity fof HNOj; is higher than for fine aerosols.
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4. Summary and Conclusions

Emission control measures that would reduce reactive hydrocarbon and NO,,
emissions in the Los Angeles area by up to 37% and 61%, respectively, have been
examined for their effects on air quality. In most cases studied, NO, and total inor-
ganic nitrate concentrations decline by amounts only slightly less than proportional
to the degree of precursor NO, emission reduction. Peak 1-hr average NO, and TN
levels averaged over 20 monitoring sites would decline by more than 50% relative
‘to 1982 Base Case conditions if the light-duty vehicle fleet in practice met the origi-
nally proposed federal exhapst emission standards (0.4 g/mi NO, and 0.41 g/mi
THC) in conjunction with heavy-duty vehicle control, evaporative hydrocarbon con-
trols, plus installation of selective catalytic NO, reduction systems on major station-
ary sources. This reduction in inorganic nitrate levels would be reflected in major

improvements in HNO; and aerosol nitrate air quality.

The partition of inorganic nitrate air-quality improvements between aerosol
nitrate and HNO; can be affected by the choice of NO, emission controls. In partic-
ular, widespread use of non-catalytic NH; injection technology for NO, emission
control at stationary sources alone has the potential to increase aerosol nitrate for-
mation in near-source areas if significant co-ocurring bleed-through of NH; to the
atmosphere occurs. Selective catalytic reduction technology at stationary sources
and advanced catalyst systems on vehicles also have the potential to increase NH,
emissions, but in those cases the NHj3 increase is so slight that the NO, emission
decrease achieved through use of these devices will drive aerosol nitrate levels

downward in spite of the added NH; emissions.

Installation of the most stringent set of NO, and RHC emission controls
studied here causes peak 1-hr average O; concentrations to decline by 25% or more
in the high O3 concentration areas of eastern Los Angeles, Riverside and San Bernar-

dino counties. The final increment of NO, control alone produces O; concentration
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improvements at the margin in the eastern portion of the air basin. In the western
area of the air basin, near downtown Los Angeles, the most stringent package of
NO, and RHC controls studied leaves Base Case 1982 peak 1-hr average O3 concen-

trations practically unchanged.
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TABLE A.6

Emissions from Industrial Process Sources

NH, Emissions
(metTic tons/day)

Ammonia Storage 0.06 (a)
Refinery FCC Units 0.67 (a)
Refinery Waste VWater Treatment 0.35 (a)
Steel Industry 0.23 (a)
Chemical Plants 0.76 (a)
Refrigerant Loss 0.38 (b)

NOTES :

(a)
(b)

From survey of Cass et al. (1982).
See Table A.28.
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TABLE A.11

Nitrogen in Dry and Liquid Fertilizers for Farm Plus
Non-Farm Use (3rd quarter 1982 from California Department
of Food and Agriculture, 1982)

FERTILIZER PARTITION
COUNTY TOTAL.NITROGEN (a) (2)

(metric toms/day) DRY LIQUID
Los Angeles 18 0.8 0.2
Orange 6.1 0.85 0.15
Riverside Lg.6 0.21 0.79
San Bernardino 1.7 0.92 0.08
Santa Barbara 36.8 0.35 0.65
Ventura 17.3 0.bL71 0.53

(a) Fraction of total N applied in liquid and dry form
estimated by summing N content of those liquid and dry
fertilizers for which nitrogen content data were given.
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TABLE A.12

Percentage of N Applied, Apportioned Between Farm and
Non-Farm Use (California Department of Agriculture, 1982)

FARM NON-FARM

COUNTY DRY LIQUID DRY LIQUID
Los Angeles L3 11 37 9
Orange Lo 9 36 6
Riverside 20.7 7.7 0.3 1.3
San Bernardino 37 3 55 | p
Santa Barbara 34,7 6L.5 0.3 0.5
Ventura » L5 50.5 2 2.5

(a) Example: Fraction (farm N/total N) x fraction dry from Table A.11.
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TABLE A.13

Fertilizer Nitrogen Applied
(Tons N/day)

DRY LIQUID
COUNTY FARM NON-FARM FARM NON-FARM
Los Angeles T.7 6.7 2 1.6
Orange 3 2.2 0.5 0.4
Riverside 10.3 0.15 38.5 0.65
San Bernardino 0.63 0.94 0.05 0.09
Santa Barbara 12.8 0.11 23.7 0.18
Ventura 7.8 0.35 8.7 0.43

Estimated by combining data of Tables A.11 and A.12
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TABLE A.1lk

Percentage of Farm Fertilizer Applied on Crops

(From U.S. Bureau of the Census, 1977)(a)

% of Farm Fertilizer Applied

COUNTY on Crops(a)
% DRY % LIQUID

Los Angeles 63 80
Orange 57 3k
Riverside 63 84
San Bernardino 31 L2
Santa Barbara 19 95
Ventura 60 39

(a) Data taken from U.S. Bureau of the Census (1977) as
shown in Table A.11 of Cass et al. (1982). 1982 Census
of Agriculture does not contain this information.
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TABLE A. 15

Nitrogen Applied on Crops, Orchards, and Non-Farm Areas
(County Totals in Metric Tons/day)

DRY LIQUID
COUNTY CROP(a) ORCHARDS NON-FARM CROP(&) ORCHARDS NON-FARM
AND AND
ORNAMENTALS ORNAMENTALS

Los Angeles 4.85 2.85 6.7 1.6 0.4 1.6
Orange 1.7 1.3 2.2 0.17 0.33 0.4
Riverside 6.5 3.8 0.15 32.3 6.2 0.65
San Bernardino 0.2 0.43 0.94 0.02 0.03 0.09
Santa Barbara 10 2.7 0.11 22.5 1.2 0.18
Ventura b 3.1 0.35 3.4 5.3 0.43

(a) Farm use split between crops vs. orchards and ornamentals using crop

percentages of Table A.lhk applied to total farm use given in Table A.13.
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TABLE A.16

Percentage of Land Use in Each County Located within the Gridded
Inventory Map Area and within the South Coast Air Basin

Non-Farm

County i Cropland L OrCh??ds Fertilized Land(a)
Los Angeles 3k 8L 99

Orange 100 100 100
Riverside 53 43 7

San Bernardino 69 100 82

Santa Barbara T 100 78

Ventura 95 100 100

(a)

Estimated from percentage of county population living within the
air basin in 1980.
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TABLE A.17

Fertilizer Nitrogen Applied Inside the South Coast Air Basin
' (a)
)

(metric tons/day

DRY LIQUID

ORCHARDS AND NON ORCHARDS AND NON
COUNTY CRCP  ORNAMENTALS FARM CROP.  ORNAMENTALS FARM
Los Angeles 1.65 2.4 6.6 0.5k 0.3k 1.58

Orange 1.7 1.3 2.2 0.17 0.33 0.4

Riverside 3.45 1.6 0.12 17.1 2.67 0.5
San Bernardino 0.1k 0.43 0.77 0.01 0.03 0.07
Santa Barbara 0.7 2.7 0.09 1.58 1.2 0.1h4
Ventura 4.5 3 0.35 3.23 5.3 0.43
TOTAL 12.1h 11.h 10.1 22.63 9.87 3.12

(a) Data of Tables A.1l5 and A.16 combined.
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TABLE A.20

Summary of NH3 Emissions from Fertilizer Application and Handling

LOSE TROM FARM
APPLICATION OF

LOSS FROM

FERTILIZER(metric NON-FARM LOSS DUE TO  TOTAL NH

tons/day) APPLICATION HANDLING Loss -

COURTY croes  orcmmos (TSRS RS feeray)
Los Angeles 0.21 0.3 2.97 0.03 3.51
Orange 0.21 0.17 - 0.9L - 1.32
Riverside 0.83 0.26 0.23 0.38 1.7
San Bernardino 0.02 0.05 0.31 - 0.38
Santa Barbara 0.12 0.36 0.08 0.01 0.57
Ventura 0.62 0.49 0.28 - 1.39
TOTAL 8.87
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TABLE A.21

Sumsary of Animal Waste Data

ANTMAL MANURE TOTAL NITROGEN

ANDAL SOURCE WEIGHT (TOTAL WASTE) EXCRETED
(kg) kg/haad-day kg/head-day
Dairy Cattle Dale (1971) 680 &9
Pogg (1971) 600 45 0.17
Luebs et al. (1973b) 0.18
Adrizno et al. (1974) 0.19
Valus Used 640 &7 0.18
Baef Cattle Fogg (1971) 400 34 0.24
Peters & Blackwood (1977) 500 27
Taiganides & Hazen (1966) 450 29 0.17
Scholz (1971) 500 45
Value Used 450 32 0.21
HBorses Yogg (1971) 450 25 0.22
Hogs Fogg (1971) 70 3.9 0.03
Muehling (1971) 70 5.5 0.038
Scholz (1971) 70 3.6
Taiganides & Hazen (1966) 45 3.2 0.023
Value Used 70 3.9 0.03
Sheep Fogg (1971) 45 1.8 0.018
Chickens Fogg (1971) 2 0.11 0.0014
Scholz (1971) 0.185
Taiganides & Hazen (1966) 2 0.11 0.0019
Value Used 2 0.14 0.0016
Turkey taken in proportion to

hickens on body weight
ghigken T WESE 5.5 0.39 0.0044
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Sumuary of Ammonia Pmissions by SBource Category

TABLE A.29 A5G

in the Bouth Coast iir Basin

1982
SOURCE CATEGORY TOTAL EMISSIORS
(kg/day)
Stationary Fuel Combustion
Blectric Utility
Natural Cas 1180.0
Residual 0il 380.0
Digester Gas 0.9
Refinery Fuel Burning
Natural Gas 118.0
Residual 0il 15.0
Refinery Gas 390.0
Industrial Fuel Burning
Natursl Gas 470.0
Liquified Petroleum ges (LPG) 8.0
Residual 0il 22.0
Distillate 0il 123.0
Digester Gas 26.0
Coke Oven Gas 15.0
Residential/Commercial Fuel Burning
Natural Cas 207.0
Liquid Propane Gas (LPG) 4.0
Residual 0il 85.0
Distillate 0il 79.0
Coal 2.0
***Subtotals®*d 3145.9 (1.912)
Mobile Source Fuel Combustion
Automobiles
Catalyst Autos and Light Trucks 2350.0
Non-catalyst Autos and Light Trucks 485.0
Diesel Autos and Light Trucks 3.5
Catalyst Medium Vehicles 230.0
Non-catalyst Medium and Heavy Trucks 140.0
Diesel Trucks 23.0
LPG for Carburetion 7.1
Civilian Aircraft
Jet 6.9
Piston 2.1
Shipping
Residusl 0il Boilers 68.0
Diesel Ships 1.6
Rsilroad—Diesel 0il 3.5
Military
Gasoline 4.9
Diesel 2.3
Jet Fuel 2.3
Residual 0il 0.8
Off-Highway Vehicles 6.5
***Subtoral s*e® 3337.5 (2.031)
Industrial Point Sources 2450.0 (1.492)
Sewage Treatment Plants 14,614.0 (8.881)
So0il Surface 23,790.0 (14.51)
Fertilizer
Farz Crop 2010.0
Orchards 1630.0
Handling 420.0
Mon-farm 4810.0
swsSubtotale ™ 8870.0 (5.392)
Livestock
Cattle
Dairy 29,840.0
Feedlot 7210.0
Range 13,590.0
Horses 16,220.0
Sheep 860.0
Hogs 260.0
Chickens 16,450.0
Turkeys 490.0
eewfubtotalsvee 84,920.0 (51.6X)
Domestic
Dogs 11,590.0
Cate 3530.0
Human Respiration 46.0
Human Perspiration 7650.0
Household Ammonia Use 570.0
sa*Subtotals®ee 23,386.0 (14.2%)
e Toral wew 164.512.4 (100.0%)
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On Some Aspects of Nighttime Atmospheric Chemistry

Armistead G. Russell," Glen R. Cass, and John H. Seinfeld*

Environmental Quality Laboratory, California Institute of Technology, Pasadena, California 91125

W Nighttime atmospheric chemistry is simulated in two
different situations: an offshore oceanic environment, the
Santa Barbara Channel region of the south central coast
of California, and a dry environment, the Mojave Desert
of California. In the marine case, conversion of NO, to
peroxyacetyl nitrate (PAN) and HNO; is rapid; HNO; is
formed by homogeneous hydrolysis of N,O; and by nitrate
radical reactions with organic gases, and the rate of HNO,
production is limited by the abundance of O;. Even in the
desert case, predictions indicate that homogeneous hy-
drolysis of N;Os dominates HNO, formation at night. The
implications of recent studies concerning the unimolecular
decomposition of NO; are discussed.

Introduction

The central species in nighttime atmospheric chemistry
is the nitrate free radical NO;. With utilization of its
absorption spectrum, there have been a number of recent
ambient measurements of NO; (I-6), as well as attempts
to understand observed NO; behavior on a theoretical basis
(7-11). Questions of continuing interest are (1) can the
ambient nighttime measurements of NO, be explained on
the basis of our current understanding of its chemistry and
(2) how does nighttime chemistry vary in different envi-
ronments? This paper addresses each of these questions
by simulating nighttime chemistry in two distinctly dif-
ferent environments: an offshore regime, based on ambient
hydrocarbon and NO, data from the Santa Barbara
Channel, in the Pacific Ocean off the coast of California,
and a dry environment, the Mojave Desert of California.
In the latter case, NO; measurements are available against
which to evaluate the simulations.

Nighttime NO, Chemistry

The nitrate radical, NOj, is generated in the troposphere
largely through the reaction of O; and NO,:

NO, + 0y — NO, + 0,

This is the principal reaction driving the nighttime chem-
istry of the N,O, system. During the daytime hours, NO,
concentrations are maintained at very low levels by pho-
tolysis (12). At night, however, NO; may accumulate due
to reaction 1. NOj, reacts with NO, to form N,O;, which
itself may decompose to return NO, and NO,:

NO, + NO, — N;0;

N;O; —~ NO, + NO,
A second route exists for the NO;—NO, reaction:
NO, + NO, — NO + NO, + 0,
Also, NO, reacts with NO to form NO,:
NO; + NO —= 2NO,

The bimolecular reaction 2NO; — 2NO, + O, also occurs
but can be neglected under atmospheric conditions. NO,

! Present address: Department of Mechanical Engineering, Car-
negie-Mellon University, Pittsburgh, PA 15213.

0013-936X/86/0920-1167$01.50/0 © 19868 American Chemical Society

reacts with a number of organic species. The aldehyde~
NO; reaction proceeds according to

NO, + HCHO —Z~ HNO, + HO, + CO

NO, + RCHO —~ HNO; + RCO;

where RCO; denotes an acylperoxy radical. The reaction
of NO; with alkanes can be represented in general by the
H-atom abstraction step:

NO, + ALK — HNO, + RO,
2

The olefin—NO; reaction is generally thought to proceed
by addition, where, for propylene, for example

N03 + C3H6 - CHaCHCHzONOz
— CH,CH(ONO,)CH,

At low olefin concentrations, it is sufficient to represent
the olefin-NO; reaction as

NO, + OLE — RPN

where RPN denotes a nitrogen-containing product whose
further participation in the chemistry can be neglected.

Finally, the N,O; formed in reaction 2 may react with
water vapor to form nitric acid:

N;O; + H,0 — 2HNO,

And the acetylperoxy radical from reaction 7 can react with
NO, to form peroxyacetyl nitrate (PAN):

RCO, + NO, == RCO,NO, (PAN)
Table I summarizes reactions 1-12 with their rate con-
stants.
At night, due to the absence of NO, photolysis, the
NO-Oj; reaction

N0+O3—'N02+02

proceeds unimpeded to convert NO to NO, as long as both
NO and O; are available. Generally, one expects, as a
result, that nighttime NO levels will be very low if a rea-
sonable quantity of Oy is present from daytime photo-
chemistry. Nighttime NO levels might be expected to
increase once the O, has been consumed if there are con-
tinued fresh emissions of NO from sources.

At the concentration levels to be considered in this
study, reactions 8 and 9 will not be important NO, con-
sumption reactions. The NO;—dimethyl sulfide reaction
8

NO, + (CH,),S = products
might be an appreciable sink for NO; in the absence of
other competing species.
Winer et al. (8) also studied the reaction of mono-
terpenes with NO,:
NO; + monoterpene - products

Environ. Sci. Technol., Vol. 20, No. 11, 1986 1167
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Table I. Chemical Reactions of Nighttime Atmosphere®

rate constant, rate constant, 298 K,
reaction cm® molecule™ s! ppm~* min! ref

(1) NO; + O3 —~ NO; + O, 1.2 X 10713g-2480/T 0.05 21
(2) NO; + NO, — N,04 1.7 X 10712 2.51 x 10° 19
(3) N;Oz ¥ NO; + NO, 6.0 X 1014¢11000/T 2.9 21
(4) NO; + NO, = NO + NO, + O, 2.5 X 10714 120/T 0.59 22
(5) NO; + NO — 2NO, 2 x 101 2.956 X 104 21
(6) NO, + HCHO & HNO; + HO, + CO 5.8 X 10716 0.86 10
(7) NOy + RCHO & HNO; + RCO; 2.4 x 1078 3.6 (R = CH,) 10
(8) NO; + ALK % HNO; + RO, 3.6 x 1077 0.05 (R = C,Hy) 24
(9) NO, + OLE %2 RPN 7.6 X 10718 124 23
(10) N,O5 + H,0 — 2HNO, <1.3 x 10721® <19 x 10°® 11, 22
(11) RCO; + NO, — RCO;NO, (PAN) 4.7 x 1012 6.9 x 10° (R = CHj) 22
(12) PAN — RCO; + NO, 1.9 X 1018¢19843/T 0.022 22
(13) NOg + (CHj),S — products 9.7 x 10713 1.4 x 103 8
(14) NOy + monoterpene — products 3.0 X 1072 4.4 % 10% 8
(16) NOy + M — NO + Oy kys[M] = 0.13 min™? 16

aThe reactions above are the major nighttime reactions of the N,0, species. Forty-four other reactions in McRae et al. (25) are included
in the mechanism for completeness. *The rate constant given for this reaction is an upper bound. The text discusses the ramifications of
decreasing this value. For a comprehensive evaluation of this reaction, see Atkinson et al. (11 ) and Russell et al. (9). <The NO; decompo-

sition reaction was not included except as noted in the text.

And they indicated that this reaction could be of possible
importance in clean environments.

At sufficiently high NO levels, like those found in urban
areas, the RCO,; may react with NO to generate NO,.
However, in the presence of greatly reduced nighttime NO
concentrations, most of the RCO; produced instead will
react with NO, to form PAN. For the same reason, the
PAN produced by photochemical reactions the previous
day will not decay substantially by the reverse reaction 12.
Note, however, that for each PAN molecule formed by
reaction 11 one HNO; molecule is formed from the pre-
ceding reaction 7 and two net NO, molecules are con-
sumed, forming products PAN and HNO,. Likewise, re-
action 10 converts two reactive oxidized nitrogen species
to two molecules of a stable product (HNO;). However,
the reaction between NO; and HCHO consumes only a
single odd nitrogen molecule before reaching the final
products (presumably the HO, produced will oxidize the
NO or react to form H,0,).

While the rate equations for the system of nighttime
reactions involving NO, (Table I) plus those other reactions
involving organic and inorganic species that might be im-
portant (see footnote to Table I) can be integrated nu-
merically in order to compute atmospheric NO; and N,O5
levels, it is useful to investigate the formation of those
species with steady-state analysis of the major nighttime
reactions alone. On the basis of the first 12 reactions in
Table I, the rate of change of the NO, concentration is
given by

d[NOy]

= k,[NO,][0s] - k5[NO;][NO] -

(kg + k)[NOGJ[NO,] + k3[N2Os] - koy[ORG][NO;] (1)
where %, [ORG] = k[HCHO] + k;[RCHO] + kg[ALK]
+ ko{OLE]. The characteristic reaction times for NO; and

N,O; are both sufficiently short that their concentrations
can be assumed to be in a pseudo steady state:

[NO,] =
k1 [NO,J[03)(ks + kio[H;01) /[(k5[NO} + ko [ORG] +
RNOg]) (ks + kyo[Ho0)) + kok o[NO,][H,01] (2)

ko[NO,][NO;]
kg + kyo[H,0]

Since it generally will be the case that k3 > k1o[H;0}, the

[N,Os] = 3
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NO,-NO,-N,O; cycle of reactions 2 and 3 can be assumed
to be near equilibrium at any instant of time:

k,[NO,][NO
[N,O4] = -i—,i—[——ﬂ )
And, as a result
[NO;] =
kyk3[NO,[0s]
ky(ks[NO] + kog[ORG] + £,INQ,]) + kaky[NO,][H,0]
(5)

The denominator comprises the four NO; sinks: NO,
scavenging by NO, NO; reaction with organics, NO; re-
action with NO, to form NO, and nitric acid formation by
the N,0;~H,O reaction. Equation 5 can be evaluated to
give NOj; concentration estimates with only the necessary
rate constants plus the concentrations of basic precursors
often available from ambient measurements.

Nitric acid is produced by N,O5 hydrolysis (reaction 10)
and by the organic—-NOj reactions 6-8. The rate of nitric
acid production is
d[HNO;]
———— = 2kyo[N,O5][H;0] +

(ks[HCHO] + k,[RCHO] + kg[ALK])[NO;] (6)

The pseudo-steady-state expressions for NO; and N,O; can
be used in this equation to obtain the rate of HNOj, pro-
duction in terms of the concentrations of routinely mea-
sured pollutants. As will be seen in the next section, this
steady-state analysis can be used to estimate the product
distribution that arises from the numerical integration of
the complete nighttime chemical mechanism.

Nighttime Chemistry in an Offshore Oceanic
Environment

The first situation considered is an offshore oceanic
environment, the Santa Barbara Channel off the south
central coast of California. This region is of interest from
the standpoint of atmospheric chemistry because of pro-
jected increases in emissions associated with offshore pe-
troleum production (13). Although NO; data are not
available in this area, other ambient concentration mea-
surements have been carried out over the past 2 years (14).
These measurements can serve to specify initial conditions
for a simulation of the nighttime chemistry in the region
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Table II. Initial Conditions for Simulation of Nighttime
Chemistry in an Offshore Oceanic Environment®

less base case, more
species polluted, ppb ppb polluted, ppb
0, 40 70 100
NO 0.1 1 1
NO, 1.0 10 10
HCHO 0.5° 70 7*
RCHO 0.5% 6® [
ALK 10 (40 ppbc)© 15° 37
ARO 2 (14 ppbc)© 3 7
PAN 3 3 3

°Concentration ranges from South Central Coast Cooperative
Aerometric Monitoring Program, the Santa Barbara Oxidant
Study, and the 1983 Ozone Transport Study (I3, 14). ®Personal
communication with Alan Lloyd. ©Personal communication with
Rei Rasmussen.

as predicted by the reactions in Table I. Of particular
interest are the dynamics of NO, and the paths of con-
version of NO, into nitrate species. The photochemical
trajectory model of Russell et al. (9) will be used to track
the evolution of the NO, species in an air column from
sunset until 12 h thereafter.

Table II presents the range of initial concentrations that
we will employ for simulating a nighttime air parcel in the
Santa Barbara Channel. In the more polluted case, the
air mass is expected to have originated from source-en-
riched areas such as the Los Angeles basin, while in the
less polluted case the air is of “background” oceanic origin.
The base case is in between. Four simulations were carried
out, in the fourth of which the base case concentrations
have been used and the rate constant for reaction 10 is
decreased by a factor of 10. We include this case because
of the uncertainty in the magnitude of k.

Each simulation begins at sunset and proceeds 12 h, with
no fresh emissions. In the vertical diffusion calculation,
surface roughness was taken as 10™ m, corresponding to
water. As will be seen, due to the presumably stable
stratification at night and low surface roughness, turbulent
transport of species to the surface is limited, and hence,
removal by deposition at the ocean surface is relatively
minor.

Results of the four simulations are given in Table IIL.
Shown are the hourly NO, depletion rate, r™!, the HNO,
formation rate (as % h™ relative to the NO, present), net
PAN formation rate (as % h™ relative to the NO, present),
maximum NOj and N,Oj; concentrations, HNO, formation
as percent of initial NO,, total deposited HNO,, and the
maximum PAN produced.

Nitric acid formation rates, expressed relative to the NO,
concentration, vary between 16% and 36% h™l. Formation
of PAN is responsible for the bulk of the remaining NO,
consumed. Again, on the basis of the chemistry involved,
the HNO, formation rate must be at least as great as that
for PAN. The absolute increase in PAN concentration due
to nighttime reactions varies between about 1 and 3 ppb,
or between 2% and 23% of the initial NO,. As can be seen
from the last column in Table ITI, reducing the value used
for ki has little effect on the NO, loss rate, but it does
affect the split between the predicted HNO,; and PAN
formation. Significant quantities of HNO, still are formed.
Note that in the absence of fresh emissions initially NO,
is transformed to HNO; very rapidly, faster, in fact, than
would be predicted during the day by reaction with OH.
Likewise, PAN formation is rapid. The rate of NO; (and,
hence, PAN and HNO,) formation is limited by the O; and
NO; concentrations and the extent of formation by the
initial NO, concentration. In all cases studied, there is an

Table III. Results of Simulations of Nighttime Chemistry
in an Offshore Oceanic Environment

case’
1 2 3 4
NO; depletion rate 17 27 37 25
(), % htb ‘
HNO; formation 16 26 36 17
rate, % h? of
NO,*
PAN formation rate, 1 1 1 5
% h™ of NO,?
max NOjg, ppt 25 45 70 260
max N,Og, ppt 30 540 700 1700
max PAN increase, 0.02 (2) 0.6 (5) 0.6 (5) 2.6 (23)
ppb (% of
[NO, ]o)
HNO; produced, % 84 92 92 71
of [NO,]°
HNO; produced, %
of [NO,]o,° by
NO; + OH ~0 ~0 ~0 ~0
N,Os + H,0 80 86 84 43
NO,; + HCHO 0.5 1 1 5
NO;g + RCHO 3 5 6 23
HNO; deposited, % 14 1.7 1.9 1.1
of [NO,J¢°

¢ These four cases correspond to the initial conditions in Table II
as follows: (1) less polluted; (2) base case; (3) more polluted; (4)
base case, ko reduced by a factor of 10. ®Average over first 6 h.
After 6 h, very little NO, remains. °Percent at the end of a 12-h
simulation.
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Figure 1. Time evolution profiles of NO, for a relatively clean and a
more poliuted oceanic environment.

abundance of aldehydes to form PAN.

For the more poliuted marine situation, about 49% of
the NO, is oxidized to form NOj; 5% reacts with the RCO,
radical to form PAN, and 43% reacts with NO, to form
N,Os (and then HNO,). Less than 2% of the initial NO,
deposits out in any form.

Figure 1 shows a comparison of the predicted NOg
concentration for the more and the less polluted cases.
Note that the peak in the NO, concentration for the
polluted case is much sharper, rising much higher and then
dropping below the less polluted profile. Because of the
lower ozone concentrations in the less polluted case, the
NO, is not converted to HNO; and PAN as quickly, al-
lowing noticeable NO; concentrations to be sustained. The
more polluted case more closely reproduces the spiked
profile found just after sunset in urban environments (9).

Mechanistic explanation of the rate of NO, conversion
and the product split between HNO; and PAN can be
obtained by inserting the pollutant concentration data of
Table II into the equations derived on the basis of the
previous steady-state analysis. From the base-case con-
centrations in Table II, it is seen that the HCHO and ALK
reactions together are about 3 times less important than
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the RCHO-NO; reaction as a sink for NO;. The only sinks
from the NO,~NO;-N,O; cycle back to NO and NO, are
reactions 4 and 5, with reaction 4 being the only route to
produce NO in the absence of fresh emissions. Note that
at both the polluted and the unpolluted concentration
levels reaction 4 is dominated by reaction 7. Thus, once
an NO; molecule has been formed, it is highly probable
that that molecule will end up as HNOj; and that an as-
sociated NO, molecule will react to form either HNO, or
PAN, in accordance with the results of the full-model
simulation. Thus, the rate of NO, depletion at night
should be about twice the rate of NO; formation by re-
action 1:

d{NO,]
rramie ~2k,[NO,][Os] )
which can be expressed as
d[NO,] "
dt = [NOZ] (8)

where 7 = (2k,[0;])! is the characteristic decay time for
NO, by reaction 1, followed by reaction 10 or 11.

Next, the formation rates of PAN and HNO, can be
considered. An expression for the rate of nitric acid for-
mation was given in eq 6. Using the pseudo-steady-state
expressions for [NO;] and [N,O;] gives
d[HNO,]
_—= [2k2k1°[H20] [NOzl/ks + ks[HCHO] +
kq[RCHO] + kg[ALK]1[ksk,[05][NO,] / (k3(ks[NO] +

kog[ORG] + k([NO,]) + kokyo[NO,}[H,0])] (9)

Since NO, is converted almost quantitatively to HNO, and
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PAN, both nitric acid and PAN formation rates can be

expressed with the NO, decay rate as

M - _1_1.-1rN0 ](2 — t) (10)
dt - 2 L 2 /]
Similarly for PAN
d[PAN]} _1

where f is the fraction of NO, formed by reaction 1 that
reacts with RCHO. Comparing (9) and (10), it is seen that
f will be a function of the pollutant concentrations. Once
f has been computed by equating (9) and (10), the for-
mation rate of PAN is apparent from (11). Given the
conditions for the base case in Table II, the rates of nitric
acid and PAN formation are approximately 4 and 0.2 ppb
hl, respectively. The dominant route for nitric acid
production is reaction 10.

Analysis of the reaction rate equations for the mecha-
nism in Table I shows that the depletion rate of NO,
should be approximately equal to twice the rate of reaction
1. Comparison of the decay rate obtained by the full
computer simulation to that based on twice the initial rate
of reaction 1, which should represent an upper limit to the
NO;, loss rate, gives close agreement in all simulations. The
small deviations between the approximate calculation and
the full model are due to reactions of NO, with HCHO and
with NO, to form NO and NO, and to the continued de-
crease of the O; level.

Simulation of Nighttime Atmospheric Chemistry in a
Desert Environment

We now turn our attention to a desert environment,
typically very dry (relative humidities of about 20%) with
low pollutant loadings. In this case, one could expect that
the important chemical reactions dominating the nighttime
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Table IV. Initial Conditions for Desert Simulations

Edwards AFB® Death Valley?
0., ppb 35 35
NO,, ppb 0.95 0.15-0.075
NO, ppb 0.1 0.01
NO;, ppb 0 0
RCHO, ppb 0.5 0.5
monoterpene, ppb 0.005¢ 0.005¢
CO, ppm 0.1 0.1
RH, % 29 31
temp, °C 31 29

2Data for 23 May 1982 at Edwards Air Force Base. ?Data for 3
May 1982 at Death Valley. ¢From Winer et al. (8).
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Figure 2. Predicted (solid line) and measured (data bars) NO, con-
centrations (3) at Edwards Air Force Base, CA, 23-24 May 1982. The
dashed line near the bottom is the predicted concentration if the
unimolecular decomposition of NO; Is included In the simulation.

chemistry of N, O, might differ from those over the ocean,
particularly because of the lower water vapor concentra-
tions. In this section, the trajectory model is used to in-
vestigate the fate of nitrogen oxides in the desert at night.

The chemical mechanism used is identical with that
described for the ocean cases, except that the reaction of
NOj; with monoterpenes (MNT, see Table I) is included.
A very small NO emission rate was included in the cal-
culations, corresponding to arid, bare soil conditions (15).
The initial conditions used for the simulations are from
measurements taken by Platt et al. (3) in the Mojave
Desert of California and are shown in Table IV. In this
case, the predictions are compared against NO, measure-
ments at Edwards Air Force Base and at Death Valley, CA
(3). Results of this evaluation are shown in Figures 2, 3,
and 4 for the Edwards and Death Valley locations. As
seen, model predictions at Edwards closely track obser-
vations for both NO; (Figure 2) and NO, (Figure 3).

At Death Valley, the measured NO, concentrations were
below the detection limit (0.3 ppb) of Platt et al. (3). For
the simulations, the initial concentration of NO, was set
equal to one-half and one-fourth of that value. At this site,
two calculations were performed with the 0.15 ppb initial
condition: with and without emissions of NO. As seen
(Figure 4), the predicted NO, concentrations over time
with and without NO emissions are different, though the
peak NO; concentrations are about equal (~35 ppt).
Emissions of NO slightly retard the rise in NO, concen-
trations due to scavenging by NO. The peak measured
concentration of 19 ppt is about 40% less than that pre-
dicted and is attributable, in part, to the uncertainty in
the initial NO, concentration. NO, scales approximately
with the NO, concentration, so a lower initial NO, con-
centration would provide closer agreement and still be
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Figure 3. Predicted (dashed line) and measured {data points) NO,
concentrations (3) at Edwards Air Force Base, CA, 23-24 May 1982.
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Figure 4. Predicted and measured (data bars) NO,; concentrations (3)
at Death Valley, CA, 3—4 May 1982. The solid line shows the predicted
concentration given an initial NO, concentration of 0.15 ppb if no
emissions of NO are included in the caiculations, and the dashed line
includes a very small emission rate (75). The alternating dashed line
shows the predicted concentration of NO, given an NO, initial con-
centration of 0.075 ppb (one-fourth the detaction limit of NO,).

consistent with measurements. Using [NO,], = 0.075 ppb
proves this to be the case.

Integrating the reaction fluxes indicates that the ho-
mogeneous hydrolysis of N,Oj5 is the dominant reaction
producing nitric acid, even in a dry environment. In the
Edwards case, approximately 77% of the nitric acid is
produced by reaction 10, constituting 22% of the oxidized
nitrogen originally in the air column plus that emitted
during the night. Seven percent of the oxidized nitrogen
is converted to PAN by the following morning. Due to the
atmospheric stability and low nitric acid concentrations,
less than 1% of the total NO, deposits out during the
night. The peak N,O; concentration is predicted to be
about 25 ppt.

Unimolecular Decomposition of NOj

Recently Johnston et al. (16) reported that a number
of experiments (17-20) contain evidence for the unimo-
lecular decomposition of the NOj radical. Though the
experiments varied widely in nature and reaction volume,
reinterpretation of the results from the three room tem-
perature experiments led to approximately the same
first-order rate constant of about (3 + 2) X 1023 s7%. Using
results from the high-temperature experiment, they de-
rived the temperature-dependent expression of

ki5[M] = 2.5 X 10° exp(-6.1 X 103/T) s7!
at 1 atm and T in K, (reaction 15, Table I). They cited

further evidence for this reaction rate from field experi-
ments in which NO; and NO, were measured in relatively
clean atmospheres at an altitude of 3 km (4, 5). These
measurements indicated the loss rate of NO; by scavenging
is about 1 X 107% s7}, that the scavenger is not depleted,
and that the products of the NO; scavenging are neither
NO nor NO,. Reaction 15 satisfies the first two conditions,
and Johnston et al. (16) give reasoning that the final cri-
terion can be explained by other phenomena.

In this section, the unimolecular decomposition of NO;
is discussed in light of the recent review (16) and the field
measurements of Platt et al. (2, 3). In very clean atmo-
spheres, such as the desert cases considered in this study,
the proposed NOj; unimolecular decomposition would be
the major loss reaction from the NO3-N,O5 system. An
upper bound on the NO, concentration then can be found
by steady-state analysis, as done previously, and by as-
suming that reaction 15 is the only loss mechanism. In-
clusion of any other reactions of NO; or N,O5 would only
lower the calculated NOj concentration. In this case

k1[NO][Oy]

[NOslmax = “RaM] (12)

By rearranging this equation, the measured concentrations
can be used to estimate an upper bound for k;5[M]. For
the two desert cases previously discussed, use of the pro-
posed rate constant for NO; decomposition and the ob-
served NO, and Q; concentrations gives [NO;]yax of about
9 and <1.5 ppt for Edwards and for Death Valley, re-
spectively. This is in substantial disagreement with the
measured NO; concentrations of 81 and 19 ppt. In fact,
using the data for other sites and times (2, 3) in the same
calculation gives the same results: the measured NO;
concentration is much greater than the maximum calcu-
lated with steady-state analysis and the proposed decom-
position rate (16), except at higher relative humidities.
[This indicates that the loss of NOj (or N;O;) is due to
hydrolysis, either homogeneous or on deliquesced aerosols.}
Likewise, many of the data from the field studies in
Germany (2) are at variance with k;5[M] =~ 3 X 1073 s7L.
The magnitude of the effect of including this reaction in
the mechanism is seen in Figure 2. As shown, the peak
predicted concentration drops substantially, from 78 to 7
ppt. Inclusion of the decomposition reaction in the sim-
ulations of the offshore environment would decrease the
formation of HNO; and PAN. This reaction would have
little effect on simulations of urban environments because
of the much heavier loadings of hydrocarbon pollutants,
plus the effect of continued fresh emissions. ;
It is difficult to explain the reason for the discrepancy
between the experiments of Platt et al. (2, 3) and the study
of Johnston et al. (16), though a number of hypotheses can
be proposed: (1) the proposed rate of NO; decomposition
is too high, (2) the rate of formation of NQOj; (or N,Os) is
much greater than is implied by our general knowledge of
N,O, chemistry, or (3) there is a systematic bias in the
measurements. The actual rate of reaction 15 could lie
between that implied by the field measurements (2, 3) and
those derived from laboratory measurements (16). A small
uncertainty in the comparison is introduced by the pos-
sibility that the air parcels were not uniform over the path
of the measurement beam. However, the consistency of
the O; measurements would indicate that the error in-
troduced from the nonuniformities would be small com-
pared to the apparent discrepancy. Inhomogeneities in-
duced by nocturnal emissions would tend to increase the
apparent discrepancy, whereas air parcels enriched in both
NO, and O; would tend to decrease the discrepancy.
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Conclusions

A series of calculations were performed to elucidate the
important chemical reactions of N,O, species at night in
two quite different environments and under different
pollutant loadings. Calculations performed for conditions
found over the ocean near the California coast showed a
rapid conversion of NO, to nitric acid and PAN, predom-
inantly by hydrolysis of N,0; and by production of per-
oxyacetyl radicals from the NO;-aldehyde reaction. The
same reactions dominated the desert calculations, even
though the ambient conditions and pollutant levels were
quite different. However, the time evolutions of pollutant
species in the two cases were quite different, and a much
lower conversion rate of NO, to HNO, and PAN was found
for the desert case. In the desert case, predicted NO,
concentrations compare well with experimental measure-
ments.

The predicted NO; concentration—time profile for the
polluted, ocean environment case shows a sharp peak just
after sunset, much like that found in earlier calculations
for urban environments, though for different reasons. In
the urban environment, the sharp peak is due to ozone loss
by scavenging by NO emissions and deposition, whereas
over the ocean the NO emissions are small and the sharp
drop in NOj; concentration is due to NO, depletion. In the
desert solution, low ambient ozone levels and small NO
emissions lead to'a very small change in NO, concentration
and a smooth, sustained NO; profile that plateaus instead
of peaks. Calculations for marine, urban, and desert en-
vironments indicate that nighttime reactions of N,0, can
be important in forming nitric acid and PAN in all three
situations.

Steady-state analysis and simulation indicate that there
is a discrepancy between field measurements and a re-
cently proposed rate for the unimolecular decomposition
of NO;. Given our current knowledge of atmospheric
chemistry, the proposed value for the rate of decomposition
of NO, is too high, some other aspect of the NO;-N,0;
system is not well understood, or a systematic bias in the
measurements exists.
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Ammonia and nitric acid concentrations in equilibrium with atmospheric aerosols

greater than or equal to zero. In constructing (11) it
was assumed that the chloride ion present is found as
sodium chloride. The HCI produced by reaction (9)
might, in some cases, react with NH; to form NH,Cl,
and thus alternative forms of (11) could be
hypothesized.

The choice between the two types of external
mixtures just described has no effect on the calculated
equilibrium dissociation constant of ammonium nit-
rate, as K is solely a function of 7 and r.h,, but it does
affect the calculated gas and aerosol phase pollutant
concentrations. If pure ammonium nitrate is present
and is at equilibrium with the gas phase, then the
equilibrium dissociation constant should be equal to
the observed partial pressure product of NH; times
HNO; to within experimental and calculation un-
certainties. If the FREE NITRATE concentration is
zero, then ammonium nitrate may not be present, and
the calculated dissociation constant has no bearing on
the partial pressure of ammonia and nitric acid gas,
except that it should act as an upper bound on the
measured concentration product, CP.

Given the external mixture hypotheses, the theoreti-
cally predicted partition of measured total nitrate and
total ammonia between the aerosol and gas phases was
computed at each monitoring site shown in Fig. 1 over
each sampling interval during the period 30-31 August
1982. Results at three locations in the basin will be
discussed in detail: a near coastal site, Long Beach, a
mid-basin site, Anaheim, and a far inland site,
Rubidoux. Data on aerosol speciation at these sites are

1741

presented elsewhere (Russell and Cass, 1984). The
Long Beach sampling station, which is located about
6 km from the Pacific Ocean, experienced lower tem-
peratures (down to 18°C) and higher relative humid-
ities (1-h average above 909%) than the inland sites.
This led to a minimum 2-h average calculated
NH,NQO,; dissociation constant of less than
0.75 (ppbv)*. Rubidoux, located about 60 km inland,
was typically hotter and dryer, with peak temperatures
above 38°C, and a correspondingly high calculated
dissociation constant that exceeded 650 (ppbv)? over
one 2-h sampling interval. Comparison between
theory and experiment thus will be discussed for
dissociation constants varying over about three orders
of magnitude.

The calculated NH,NO, dissociation constant, K,
and the product of the measured HNOj;(g) and
NH,(g) concentrations at Anaheim are shown in
Fig. 3. One standard error about each calculated value
of K is given by the vertical bars, while the standard
error of the measured concentration product is in-
dicated by the dashed horizontal lines. Agreement
between the theoretical calculations and measure-
ments generally is good, especially for the second day
when shorter sampling intervals were used. Recall that
the calculated dissociation constant should serve as an
upper bound on the concentration product, CP.

In the first of the two external mixture cases
considered, all of the aerosol nitrate is assumed to be
present as ammonium nitrate. Given the time history
of the computed dissociation constant, the measured
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Fig. 3. Observed [HNO;}[NH,;] concentration product and calculated dissociation
constant of pure NH,NO; at Anaheim, CA. No data between 0000 and 0200 on 31
August. .
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