CHLOROBENZENE AND p-DICHLOROBENZENE

Chlorobenzene is an aromatic liquid at room temperature with a boiling
point of 132 °C. p-Dichlorobenzene has a melting point of 53 °C and a boiling
point of 174 °C. Commercial production was initiated in 1909 by the former
United Alkali Company in England. Hooker Electrochemical Company and Dow
Chemical began the U.S. production of chlorobenzenes in 1915. 1In general,
chlorobenzene is less toxic than benzene. The LD_, for chlorobenzene is
2.9 g/kg for rats and 2.8 g/kg for rabbits. The %EV for both components is
75 ppm in air (1).

The sampling and analysis techniques for chlorobenzenes are similar to
those for benzene. Solid sorbents are effective for collecting chlorobenzenes,
and EPA Method TOl uses Tenax-GC, which has a specific retention volume of
200 L/g for these compounds (2). The use of solid sorbents has also been
described by a number of other workers (3-6), and the sorbents are either heat
desorbed or solvent desorbed prior to analysis by GC/MS, GC/FID, GC/PID,
GC/ECD, or GC/Hall detector. Detection limits are generally in the low ppb
range with few interferences and excellent precision (5 to 20% RSD).

Cryogenic trapping also has been explored for chlorobenzene. Pleil and
McClenny (7) found that the trap had to be maintained at -150 °C to be effec-
tive. EPA Method T03 (8) uses a cryogenic trap and should be an effective
sampling technique for chlorobenzene.

Passive dosimeters using charcoal, Tenax-GC, or Porapak R have been
described (9,10). The major interference is contamination of the dosimeter,
and detection limits of 10 ng/badge were reported.

The methodology for sampling and analysis of chlorobenzene from incinera-
tion sources has been well developed using the VOST (11). This system could be
adapted to other sampling needs and allows several samples to be pooled to
obtain improved levels of detection.

The monitoring of chlorobenzene in ambient air and from specific pollution
sources appears to be well developed. Validation of specific methods requires
further study.

Sampling and analysis of p-dichlorobenzene would proceed similar to those
for benzene and chlorobenzene. Three basic references are of interest. The
EPA Tenax-GC method followed by GC/MS analysis (7) provides low detection
limits and excellent selectivity. Cryogenic trapping (8) also could be used.
NIOSH Method $281 (12) uses a charcoal absorbent, CS, to desorb the dichloro-
benzene, and analysis by GC.

The techniques for p-dichlorobenzene need to be validated. Extending
analytical detection limits to the ppt level requires further investigation.
Although sampling and analysis methods for p—dichlorobenzene exist, more work
needs to be done.
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XYLENES

Xylenes are C-8 benzene homologues with the molecular formula C HlO'
term mixed xylenes refers to a mixture of ethylbenzene and three xylene
isomers. Boiling points of the mixed xylenes are 144, 139, 138, and 135 °C for
-, m~, and p-xylene and ethylbenzene respectively. All are liquids at room
temperature. The xylene isomers are flammable liquids and should be stored in
approved containers, away from heat or open flames. Xylenes are not very
toxic. The oral LD., for rats is 4000 mg/kg. The 8-h TWA for humans is
200 ppm (1).

The

Sampling and analysis methods for xylene are similar to those for benzene
and chlorobenzene. Four methods are of particular interest. EPA Method TOL
using Tenax-GC sampling with GC/MS detection (2) provides low detection limits
and excellent selectivity. EPA Method TO3 uses cryogenic trapping and is an
alternative to sorbeat trapping (3). NIOSH Method S138 absorbs the analyte on
charcoal and uses CS, to desorb the sample (4). CARB Method A.D.D.L. 001
collects samples in Tedlar bags and then concentrates a 2-L sample onto
Tenax-GC (5).

The techniques for xylene need to be validated. If detection limits in
the ppt range are necessary, further research will be required.
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NITROBENZENE

Nitrobenzene (C H,NO,) is a pale-yellow liquid at room temperature with an
odor resembling that of bitter almonds. 1Its melting point is 6 °C, and its
boiling point is 211 °C. Nitrobenzene is very toxic. The TLV is 1l ppm
(5 mg/m3). It is readily absorbed by coatact with skin or by inhalation of the
vapor. It converts hemoglobin to methemoglobin and cyanosis appears when the
methemoglobin level reaches 15%. Chronic exposure can lead to spleen and liver
damage (1).

Sampling and analysis of nitrobenzene would proceed similar to those for
benzene and chlorobenzene. Four refereunces are of interest. EPA Method TOl
uses Tenax-GC sampling followed by GC/MS analysis (2) and provides low detec—
tion limits with excellent selectivity. Brown (3) has also investigated Tenax-
GC as a sorbent for nitrobenzene. Cryogenic trapping with EPA Method TO03 (4)
also could be used. NIOSH Method $217 (5) uses a silica-gel adsorbent and
methanol to desorb the nitrobenzene. -

The techniques for nitrobenzene need to be validated. Methods needed to
obtain detection limits in the ppt range, if necessary, also need investiga-
tion. Although sampling and analysis methods for nitrobenzene exist, more work
needs to be done.
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PHENOL AND CRESOLS

Phenol is a white crystalline compound with a characteristic odor. Tts
melting point is 41 °C, and it boils at 182 °C. Cresols (hydroxy toluenes)
have a characteristic odor. o-Cresol, m-cresol, and p-cresol melt at 31,

12, and 35 °C respectively. Phenol is toxic and has a TLV of 5 ppm (19 mg/m3).
Cresols have similar toxicities and have TLVs of 5 ppm (22 mg/m3) (1).

Phenols and cresols constitute a category and so may be discussed
together. Greist et al. (2) used Tenax-GC sampling and GC/MS analysis to
analyze cresols. NIOSH Method S167 (3) uses silica-gel sampling, extraction
with acetone, and GC/FID detection. Method $330 (4) uses a sodium hydroxide
solution in a bubbler to trap the acidic compounds. All of these methods
provide detection limits in the low ug/m3 range and provide good accuracy
(£10%) and precision (£10% RSD).

- The extension of the techniques to low levels (ppt) would require further
development and validation. The determination of the compounds in air has not
been studied to the extent that benzene and other aromatic compounds have been
examined.
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BENZYL CHLORIDE

Benzyl chloride (C_H.CH,Cl) is a colorless liquid at room temperature
(boiling point, 179 °C) with a very pungent odor. 1Its vapors are irritating,
and it is classified as a powerful lachrymator. Benzyl chloride is slightly
toxlc to rats and is carcinogenic, producing local sarcomas when administerved
by subcutaneous injection. The TLV for benzyl chloride is 1 ppm (5 mg/m3) (1.

Sampling and analysis of benzyl chloride would proceed similar to those
methods for benzene and chlorobenzene. Three basic refarences are of interest.
EPA Method TOl (2) uses Tenax—-GC sampling with GC/MS analysis to provide low
detection limits and excellent selectivity. Cryogenic trapping also could be
used (3). NIOSH Method S115 (4) uses a charcoal absorbent and Cs, to desorb
the benzyl chloride. -

The techniques for benzyl chloride need to be validated. The requirement
of low detection limits (ppt) also needs investigation. The stability of
benzyl chloride to the various sampling techniques needs to be studied.
Although sampling and analysis methods for benzyl chloride exist, more work
needs to be doune.
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C. Sampling and Analysis Methods for Semivolatile
and Nonvolatile Aromatic Compounds

The determination of semivolatile and nonvolatile aromatic compounds has
been studied for many years. Sampling methods include collection on glass-—
fiber filters (1), membrane filters (2), and polyurethane foam (PUF) (3) using
high-volume samplers. High-volume samplers collect air samples at rates vary-
ing from 0.2 to 1.7 m3/min depending on back pressure. The more volatile com-
pounds such as low-molecular-weight PAHs, PCDDs, PCDFs and PCBs require a
sorbent backup to the particulate filter collection. Tenax~GC (&), XAD-2 (5),
and the Source Assessment Sampling System (8) have been used to collect sam-
ples. The analytical methods in use are based on GC with FID, ECD, NPD, FPD,
or MS detection. HPLC with UV or fluorescent detection has been used for PAH
analysis. These compounds are frequently found as part of complex mixtures and
often require cleanup prior to analysis. HPLC, TLC, open~column chromatog-
raphy, and solvent partitioning are popular methods of cleanup.

L. Sampling methods

a. High-volume sampling method

High~volume sampling methods are the methods of choice for ambient-air
monitoring. The measurement of PAHs can often be accomplished by using a
glass-fiber filter to collect particulate and extracting the filter to begin
the sample workup. Most high-volume samplers can collect up to 1.7 m3/min when
only a glass-fiber filter is used. The wore volatile PAHs have a high enough
vapor pressure to breakthrough a simple glass-fiber filter. These rvrequire a
sorbent back-up such as XAD-2 or Tenax-GC. PCDDs, PCDFs, and PCBs may be
collected on a PUF filter with a high-volume sampler. EPA Method TO04 deséribes
collection of PCBs with a PUF filter. The flow rates are generally limited to
<1 m3/min because of the high back pressure created by the PUF plugs.

b. Source sampling method

Source sampling methods generally use sampling trains such as the EPA
Modified Method 5 (MM5) train or the Source Assessment Sampling System (SASS).
These samplers consist of a probe for stack sampling, a particulate collection
system, and sorbent cartridges with the capability of sampling from 4 to 30 dry
standard cubic meters of stack gas over a sampling period of 3 to 5 h.

2. Sample workup

Samples taken with high-volume samplers and associated with particulates
often require cleanup prior to the final analysis step. This can involve sim-
ple liquid-liquid partitioning to separate a sample into acid, base, and
neutral fractions or more elaborate TLC and HPLC fractionations. These steps
result in less complicated sample fractions but more samples to be analyzed.
Depending on the degree of characterization of the sample required, more or
less sample workup may be necessary.
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3. Analytical methods

The analysis of PAHs uses many different analytical techniques. The two
of most interest involve GC with FID or MS detection and HPLC with fluorescence
detection. These methods can give detection limits in the pg/m3 range.

The analysis of PCDDs and PCDFs is generally based on GC/MS with
selected-ion monitoring. GC columns have been developed which will separate
most PCDD and PCDF isomer groups. Detection limits below 1 ppb have been
reported.

The analysis of PCBs is usually based on GC/ECD although GC/MS is being
more widely used. EPA Method TO4 allows the detection of PCBs in the ng/m3
region.

Research in the analysis of PAHs has also used room-temperature
phosphorescence, Shpdlski fluorescence, laser—induced fluorescene, and MS/MS.
PCDDs, PCDFs, and PCBs have been studied by high-resolution MS, MS/MS, and
negative chemical ionization MS. LC/MS is a method which may be applicable to
all three classes of compounds. '

Individual discussions for the specific compounds of interest follow this
discussion.
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POLYCHLORINATED BIPHENYLS

Polychlorinated biphenyls (PCBs) were first manufactured commercially in
1929. The sole producer in the United States was Monsanto Industrial Chemicals
Company under the trade name "Aroclor." The various Aroclor products that have
been marketed include Arochlor 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262,
and 1268. The latter two digits indicate the percent chloriane in each formula-
tion except 1016, which contains 41% chlorine. PCBs have been used in a vari-
ety of commercial and industrial products including transformers, capacitors,
paints, inks, paper, plastics, adhesives, sealants, and hydraulic fluids (1).

The toxicity of PCBs is of particular concern because they are persistent
in the environment. PCBs are lipophilic, have been found in human and wildlife
adipose tissue, and have been implicated as carcinogens in laboratory studies
in mammals (2). :

Numerous methods for the determination of PCBs in air have been developed.
Many of them use a high-volume sampler for sampling and GC/ECD for analysis.

Margeson (3) reviewed the methods available in 1976. Many collection
techniques have been tried. Liquid adsorption using ethylene glycol or toluene
to collect PCBs has been reported. Liquid phases coated oa solids have also
been used to collect PCBs. The phases have included silicone oil on nylon,
glycerine on Florisil, cottonseed oil on glass beads, and paraffias on chromo-
sorb. Solid sorbents, including florisil and polyurethane foam (PUF) plugs,
were discussed in the review as collection methods for PCBs. The analysis
method generally used GC/ECD or GC with microcoulometric detectors. Other
workers have used high-volume samplers with PUF plugs (3-5) and in some cases
solid sorbents (5-11) to collect the more volatile PCB congeners. Interfer-
ences from contamination of glassware and from some pesticides are possible.
Limits of detection below 1 wmg/m3 were generally found. Good precision
(<10% RSD) but variable recoveries (24 to 130%) were found in both ambient air
monitoring and source monitoring.

If only total PCBs are to be measured, the sample may be perchlorinated
(12,13) prior to analysis by GC/ECD. This eliminates interferences from most
sources unless the sample coutains biphenyl.

Source sampling using an EPA Modified Method 5 (MM5) sampler was performed
during the trial burns of PCBs aboard the M/T Vulcanus (§). Detection limits
in the 50 to 200 ppb range with recoveries of 24 to 130% were measured.

The methods for monitoring PCBs appear to be well developed. The use of a
solid sorbent to collect low-molecular-weight PCBs behind a PUF plug in a high-
volume sampler would provide an adequate sample. GC/ECD or microcoulometric
detection provides low limits of detection. 1In some instances GC/MS may be
needed to analyze the PCBs if interferences are present.
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POLYNUCLEAR AROMATIC HYDROCARBONS

Polynuclear aromatic hydrocarbons (PAHs) may be the most widespread envi-
ronmental contaminants. Combustion processes inveolving carbon and hydrogen
produce PAHs, and many are naturally present in vegetation and fossil fuels.
Many PAHs are known to be carcinogenic or cocarcinogenic (the result of oxida-
tive reactions in the body). The ability to detect and quantify low levels of
the various classes of PAHs is important.

The sampling and analysis of PAHs in air has been studied by numerous
workers. This review covers some of the more recent research on air method-
ology.

The sampling of ambient air for PAHs generally involves high-volume sam-
plers. High-molecular-weight PAHs (three or more rings) are collected effi-
ciently on glass—-fiber (1-9) or membrane (10-12) filters or on polyurethane
foam (PUF) plugs (13-17). Low—molecular~we1ght PAHs require another collection
medium such as Tenax-GC (18,19), XAD-2 (20), or Florisil (21). The sampling
capac1ty of the materials is in the hundreds to thousands of cubic meters of
air for most compounds (15).

Lee and Wright (22) reviewed GC techniques for the analysis of PAHs with
numerous detectors (Ffﬁ, ECD, NPD, FPD, MS). HPLC, with UV or fluorescence
detection, has been applied with excellent results (4,5,13,14,15,17,23-28) by
many researchers. Room-temperature phosphorescence (29-30), TLC with GC/FID
(1) or MS/MS (3) or UV fluorescence (3,12) detection, " laser-induced fluores-
cence (25), and Shpslskii fluorescence (26) have also been studied as cleanup

and analysis techniques for PAHs.

In many cases, the high sampling volumes and specific analysis techniques
allow picogram (pg/m3) limits of detection (31). Stray et al. (24) used liquid
CO extraction, HPLC cleanup, and capillary GC/negatlve ~chemical-ionization MS
to establlsh 11m1ts of detection of 10 pg/m3 for pyrene and 500 pg/m3 for ben-
zofluoranthene in particulate samples. Tanner (31) established a limit of
detection of 1 pg/m3 for benzo(a)pyrene using a hlgh—volame sample, derivatiza-
tion, and GC/ECD.

The interferences encountered in the determination of PAHs depend on the
sampling and analysis technique. The use of HPLC/fluorescence to analyze PAHs
from PUF plug extracts (13,14) allowed the detection of 1 to 5 ng/m3 of pyrene,
chrysene, perylene, and benzo(a)pyrene but UV absorbers in the PUF plug can be
extracted and may interfere with the determination by causing quenching. The
analysis of samples collected on glass—fiber filters may be complicated by the
reaction of NO, with some PAHs (32,37). Interferences from polychlorinated
cyclic hydrocarbons (9), some pesticides (17), and contaminated reagents
(12,13) have also been reported.

PAHs are generally associated with the particulates in a sample. Analysis
methods for particulate samples have been studied using GC/FID (34,35) GC/NPD
(35), 6c/pID (36), GC/MS (37,38), HPLC (27), and laser MS (39). Duval and
Frledlander (40) used a hlghvvolume sampler and GC/FID to examine PAHs in Los
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Angeles. The range was in the low ng/m3 range for anthracene, benzo(a)pyrene,
and coronene.

PAHs can differ greatly in chemical properties. The compounds may contain
functionalities which greatly influence the analytical methods required. No
single sampling-and-analysis method will be suitable for all PAHs in a partic-—
ular sample. An ambient-air sample collected on a glass—-fiber filter with a
solid-sorbent back-up may require numerous fractionation and cleanup steps
prior to analysis. These procedures may cause widely varying recoveries and
poor precision. A procedure developed by Swenson and Vestor (6) gave
recoveries of 53 to 104% and relative standard deviations of 5 to 63% for
relatively simple PAHs.

The development of methods for PAHs at low levels in ambient air may be
implemented by choosing indicator compounds to represent the different chemical
properties of this important group of pollutants. We recommend naphthalene,
fluoranthrene, and benzo(a)pyrene as representative unsubstituted PAHs,
Substituted PAHs may be represented by nitrofluoranthrene and carbazole. Other
PAHs may be chosen as needed for specific sampling—and-analysis needs.

The detection of low levels of PAHs using high-volume samplers and HPLC/
fluorescence or GC/MS is well developed. Validation of a method using the
indicator compounds suggested above would be required to develop a comprehen-—
sive PAH screening technique.
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PCDDs AND PCDFs

Few eunvironmental or occupational health issues have received the sus-
tained international attention that has been focused on polychlorinated
dibenzo(p)dioxins (PCDDs) and, more recently, polychlorinated dibenzofurans
(PCDFs) (1). The public has become familiar with these toxic pollutants
because of the use of Agent Orange in Vietnam, the improper disposal of toxic
wastes in Missouri and New York, veports of contaminated fish in the Midwest,
and the consequences of transformer fires.

The toxicity of PCDDs varies greatly. Table 28 (2) gives toxicity data
for several coangeners of PCDDs.

The toxicity of PCDFs has not been studied as thoroughly as PCDDs. Tt is
thought that the toxicity of furans is similar to dioxins. The levels of
furans in the environment may be even higher than dioxins.

PCDDs and PCDFs are being studied intensely as enviroumental pollutants.
Most of the work has concentrated on water, soil, and sediment analysis.
Ambient-air monitoring of PCDDs and PCDFs has not been studied extensively.

Smith et al. (3) used a high-volume sampler to measure tetrachlorodibenzo-
p-dioxins (TCDDs) and tetrachlorodibenzofurans (TCDFs) on the roof of an office
building after a transformer fire. The TCDDs and TCDFs found in these samples
were thought to be the result of dilution of the soct material from the fire
with dust particles.

Redford et al. (4) collected PCDDs and PCDFs with a high-volume sampler
and analyzed them by GG/MS. Detection limits of around 0.25 ng/dry standard
cubic meter (dscm) were quoted. 1In the same study, 0.5 ng/g of PCDDs in fly
ash were detected.

Source sampling has been studied in more depth. Several investigators
have used EPA Modified Method 5 samplers (MM5) or Source Assessment Sampling
System (SASS) trains to collect PCDDs and PCDFs. In all cases GC/MS has been
the method of analysis. Two studies were performed to examine the feasibility
of sampling incinerator effluents. DeRoos and Wensky (8) spiked XAD-2 and
Florisil sorbents and measured recoveries of 92 * 8% and 95 * 8% of 2,3,7,8-
TCDD respectively. Cook et al. (6) spiked a simulated incinerator stack with
1,2,3,4-TCDD and measured recoveries of 115 % 45% with the MM5 and SASS trains.
An MM5 train was used to monitor the incineration of PCBs aboard the M/T Vul-
canous (5). Detection limits of 2 to 22 ppb for TCDDs and TCDFs were reported
using GC/high-resolution MS. An Environmental Standards Workshop (9) held on
September 18, 1984. has published a method for PCDD and PCDF using HRGC/HRMS or
low-resolution (LR) MS at detection limits of 10 to 100 pg/g in stack effluent.
Similarly, an MM5 with GC/MS/SIM gave limits of detection for PCDDs and PCDFs
in the 30- to 500-pg/g range.

Rappe et al. (10) used HRGC with electron ionization and negative
chemical-ionization MS to measure PCDDs and PCDFs generated in PCB fires.
Levels of PCDDs and PCDFs generated a PCB fire in Binghamton, New York, were
also studied by Schecter (11).
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TABLE 28. ACUTE LETHALITY OF PCDD

Isomeric PCDD, LD, o (pg/kg),
Cl position gulnea pilg
2,8 300,000
2,3,7 29,000
2,3,7,8 1
1,2,3,7,8 3
1,2,4,7,8 1,125
1,2,3,4,7,8 73
1,2,3,6,7,8 100
1,2,3,7,8,9 100
1,2,3,4,6,7,8 7,200
1,2,3,4,6,7,8,9 4 x 100 (mice)
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The methodology for the detection of low levels of PCDDs and PCDFs is an
active area of research. Smith et al. (12) have reported ppt quantification of
PCDDs and PCDFs. However, the cleanup and concentration of samples to allow
specificity and low limits of detection require further study and validation.
Sampling methods similar to those used for PCBs may be effective but must be
validated. The volatility and solubility in nonpolar solvents of PCDDs and
PCDFs decreases as the molecular weight of the PCDDs and PCDFs increases.
Collection, extraction, and cleanup methods may be slightly different from one
isomer group to another. This class of compounds will require much additiomal
research before validated procedures can be published. The selection of PCDD
and PCDF congeners to be representative of the 75 PCDDs and 135 PCDFs isomers
should include at least one congener from each isomer group.
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D. Aldehydes--Formaldehyde, Acetaldehyde, Acrolein

The determination of aldehydes in air has received considerable attention
among environmentalists over the last 10 to 20 years. Counsequently, typical
levels of several predominant aldehydes have at least been tentatively estab-
lished. The more volatile aldehydes (i.e., C, to Cg aldehydes) exist primarily
in the gaseous state in air (1). The concentration of these aldehydes asso-
ciated with particulate matter is a small, insignificaat fraction (<1%) of
their total concentration in air (l). Formaldehyde levels in relatively clean
air over isolated regions of the oceans have been found to be 0.2 to 1.0 ppb
(2,3). 1In a rural continental area, concentrations of 0.6 to 1.3 ppb have been
found (4). Semirural or light industrial areas with little photochemical smog
may exhibit levels between 1 and 5 ppb (4,5). Moderate smog conditions in the
California South Coast Air Basin produced levels in the 5- to 15-ppb range (6),
and intense smog produced 40 to 150 ppb (1,6). In other urban areas, levels in
the range of 10 to 40 ppb are typical (1,7). Levels in residences approach 25
to 107 ppb, concentrations comparable to those fouad in heavily polluted air
(8,9). Levels in diesel exhaust are 5 to 10 times greater than ambient levels.
Lipari and Swarin (5) report concentrations of 141 to 491 ppb, and Menzies
et al. (10) report 9,800 to 13,200 ppb. Workplace atmospheres have been found
to contain about 500 to 2,200 ppb dependiang on the chemical process involved
(5,11).

Considerably less information is available with regard to acetaldehyde
levels in air. However, several studies have indicated that acetaldehyde is
often found in polluted atmospheres along with formaldehyde. Acetaldehyde
levels are usually less than formaldehyde levels. Tanner and Meng (7) found
that acetaldehyde levels were 20 to 50% of formaldehyde levels near Brookhaven
National Laboratory in New York. 1In diesel exhaust, Menzies et al. observed
that acetaldehyde levels were about 20%Z of formaldehyde levels. Grosjean and
Kok (12) report acetaldehyde levels up to 35 ppb in a study of the California
South Coast Air Basin. Typical concentrations, however, were 5 to 10 ppb when
formaldehyde levels were 5 to 40 ppb. Kuwata et al. (13) observed 2 ppb of
both acetaldehyde and formaldehyde in a Japanese industrial area.

Information regarding concentrations of acrolein in air are even wmore
sparse than that of acetaldehyde coacentrations. Altshuller and McPherson (iﬁ)
reported in a 1963 study that acrolein levels averaged 7 ppb with a maximum of
14 ppb. Changes in these levels were related to changes in formaldehyde con-
centrations. The acrolein concentrations were typically about 15% of the for-
maldehyde concentrations. In a much more recent survey of air contaminants in
1978, Pellizzari (15) found acrolein concentrations of about 2 ppb downwind of
a waste-disposal site and concentrations from 0.3 to 0.8 ppb downwind of a
chemical plant. Acetaldehyde levels at the same sampling sites were usually
>10 times higher. Formaldehyde levels were not determined. Cohen and Altshul-
ler (16) reported 7,000 to 8,700 ppb of acrolein in automobile exhausts.

Numerous air—-sampling and analysis methods have been developed that are
capable of determining aldehydes in ambient air. Most of these are also
adaptable to source monitoring. Many have exploited the reactivity of the
carbonyl group. Traditional methods have involved the reaction of aldehydes
with reagents to form color-absorbing species that are determined spectrophoto-
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metrically (17,20). Sampling methods appropriate for these colorimetric analy-
sis methods have often involved collection in absorbing solutions in impingers
or bubblers (17,21). At least one colorimetric method has been automated to
measure forméTaehyde levels continuously (18). More recently, passive samplers
based on diffusion or permeation have been a adapted to some of these traditional
analytical methods (8-9, 22-23). Other analytical methods iavolve derivatiza-
tion of aldehydes to form bpec1es that can be easily speciated accordlng to
Sampling methods amenable to these derlvatlzatlon adEf§§I§7§eEEdE§'EEVE‘
involved the use of impingers and solid-sorbent tubes.

Other methods are available that determine aldehydes directly without
reaction. These include GC analysis methods in which air samples are injected
into the GC column with a gas-sampling loop or syringe (10, 31-33) and methods
in which aldehydes are collected in a cold trap or sorbent bed and then ther-
mally transferred to the GC (30-31, 33-34). Other direct methods are based ou
sophisticated instrumental technlques involving FTIR (35-36), UV (4), micro-
wave (31,37), and photoacoustic laser spectroscopy (38) and chemiluminescence
and 1aser 1nduced fluorescence (31).

All methods, both reactive and direct, are summarized in Tables 30 through
32. To allow easy comparison of their relative merits, we have presented
information relating to method interferences, the limit of detection, accuracy
and precision, sampling capacity, and the stability of samples. A detailed
discussion of each method is given separately below for formaldehyde, acetalde-
hyde, and acrolein.

1. Formaldehyde

a. Spectrophotometric methods for the determination
of formaldehyde

(1) Chromatropic acid method/active sampling

Of the traditional colorimetric methods for aldehydes, the chromatropic
acid (CA) method appears to have been used and evaluated most extensively. 1In
fact, the method is considered reliable enough to have been used in recent
years as a reference air-sampling and analysis method in several studies of the
comparative reliability of several approaches (1,9,10).

Principle and History of the Method. The CA method is based on the forma-
tion of a purple monocationic chromagen. The chromagen results from the reac-
tion of formaldehyde with CA, which is 4,5-dihydroxy-2,7-naphthalene disulfonic
acid in a strong sulfuric acid solution. As early as 1935, Eegriew (39) pro-
posed CA as a spot test reagent for identifying formaldehyde in the presence of
other aldehydes in organic samples. Bricker and Johnson (39) subsequently
published in 1945 a spectrophotometric method for the determination of formal-
dehyde in aqueous solution. In the early 1950s and 1960s, West and Sen (41)
and Altshuller et al. (17) developed and refined air-sampling and CA analysis
methods for the determination of formaldehyde in ambient air. Since then,
numerous iavestigators have used or recommended the use of the method in air-
pollution studies (17,42), source monitoring (10), indoor-air monitoring (9),
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and workplace-air monitoring (43). Summary descriptioms of the CA method and
modifications of the method are given in Table 30.

Sampling Procedures. The method as originally proposed by Altshuller
involved the collection of formaldehyde in air in a standard midget impinger
continuing 0.1% CA in concentrated sulfuric acid (17). 1In addition to being
very corrosive, the concentrated sulfuric acid also increased the likelihood of
negative interferences from alkenes. Alkenes have been observed to react with
formaldehyde in the presence of concentrated sulfuric acid (31). Consequently,
subsequent refinements specified altermative collection media, including dis-
tilled water, 1%Z (w/v) sodium bisulfite in water, and 0.1% CA in water. Once
sampling was complete, aliquots of these collection media were combined with
the appropriate reagents for the subsequent absorbance measurements. Of these
three alternative media, water and 1% sodium bisulfite have been used more
extensively. Sodium bisulfite solution appears to have offered greater utility
than has water in the sampling of particularly complex source samples, such as
diesel exhaust, presumably because of the limited solubility of many poten-
tially interfering contaminants in the salt solution (10) Menzies reports a
98% collection efficiency for 1% sodium bisulfite (10). Water has been found
to be an entirely acceptable sampling medium, however in less complex samples,
such an ambient air or indoor air (9,42). Information concerning differences
in formaldehyde collection efficiency between water and sodium bisulfite solu-
tion is conflicting (9,42,44). The Intersociety Committee on Methods of Air
Sampling and Ana1y51s has suggested that formaldehyde can be efficiently col-
lected in air samples as large as 1,400 L.with midget impingers containing
water as a collection medium (42). Georgiou et al. report a collection effi-
ciency of >90% for water (44).

Sensitivity, Specificity, and Stability. No matter which sampling medium
has been used, the CA method with impinger sampling offers several advantages
for application to ambient air and source monitoring. The sensitivity of the
method is good, with reported detection limits ranging from 10 to 50 ppb in a
60-L air sample and 2 ppb in a 1,400-L air sample (1,9,10,17,31,39,40,42-44).
Another advantage of the method is it selectivity for formaldehyde over other
aldehydes. Sleva (45) reported that other saturated aldehydes at levels compa-

rable to formaldehyde present less than 0.01% positive interference while acro-
lein causes only a few percent positive interference on a molar basis. As
noted above, alkenes in general do not cause significant interference when the
formaldehyde is collected in water or 1% sodium bisulfite. Furthermore, other
potential interferents——alcohols, aromatic hydrocarbons, and phenol--are not
expected to interfere unless present in great excess. The purple chromagen
formed by reaction of formaldehyde with CA is reasonably stable in solution.

A 3% loss occurs after 1 day and a 10% loss after 10 days at room temperature
(42).

Accuracy and Precision. Yet another advantage of the method is its accu-
racy and precision. In an interlaboratory test, analytical results agreed to
within 5% for the determination of 1 to 20 pg of formaldehyde (42). One com-
parative study of the CA method, the MBTH method (see below), and the DNPH/HPLC
method (see below) found all three methods equivalent at concentrations near
1000 ppb of formaldehyde in clean air (10) Another research group found
reasonable agreement between the CA method and determinations by FTIR for 120
to 320 ppb of formaldehyde in ambient-air samples Ql)
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(2) Chromatropic acid method/passive sampling

Recently the CA method has been adapted to passive sampling techniques.
Although the accuracy and precision has not yet been shown tc match that of
corresponding impinger methods, the simplicity and portability of passive sam-
ples can be greatly advantageous in ambient-air monitoring. Hodges et al. (22)
have evaluated a passive sampler comprising a glass tube with one end open to
the atmosphere and the other sealed. Inside the tube near the sealed end is
placed a glass-fiber filter impregnated with sodium bisulfite. Formaldehyde
diffuses to the filter where it 1is chemically fixed. The collected formalde-
hyde is desorbed with water and determined by the CA method. The device has
been shown to yield a +15% bias relative to the impinger sampling method.
Accuracy 1is also a function of the relative humidity, and at relative humidi-
ties above 607, accuracy is acceptable. The precision of determinations with
the device, however, appears to be acceptable. One major advantage of the
device is that exposed samples can be stored at ambient temperatures for up to
two weeks prior to analysis. But a potential disadvantage is that the device
is only practical for determining formaldehyde at ambient air levels 1if long
exposure times are used. For example, the tube must be exposed for one week to
reach a limit of detection of 18 ppb. Similar performance has been found with
the formaldehyde badge marketed by 3M Company (8). The detection limit (5 ppb/
week) is somewhat lower than that for the tube device because of the greater
surface area of the sodium bisulfite-impregnated collection pad and the shorter
diffusion path length. Once again, accuracy is dependent on the relative
humidity. In contrast to the tube sampler, however, low relative humidity
(i.e., <40%) causes determinations with the 3M badge to be inaccurate (46). A
third passive device, the Pro-Tek badge (8) marketed by Du Pont, is not subject
to the effects of relative humidity. This device comprises an aqueous sodium
bisulfite reservoir interfaced with a polymer permeation barrier for the
"sampling" of formaldehyde. A field test of the device revealed that results
were comparable to results obtained with impinger sampling. A limit of
detection of 40 ppb/24 h has been reported with the caution that the error in
determinations is significant because of high sampler blanks unless sampling
times are >72 h.

(3) Pararosaniline wmethod

Principles and History of Method. Another colorimetric method that has
received wide usage is the pararosaniline method as developed by Lyles et al.
(18). The principle of the method involves the reaction of formaldehyde in
aqueous solution with acid-bleached pararosaniline and sulfite to produce a
blue alkylsulfonic acid chromophore with an absorbance maximum near 570 nm
(47). As early as 1866, Schiff (48) used the reaction of basic fuchsin--a
mixture of rosaniline hydrochloride and pararosaniline hydrochloride--with
formaldehyde as a spot test for formaldehyde. Tt was not until 1956 that West
and Gaeke (49) demonstrated the importance of using purified pararosaniline
instead of basic fuchsin to enhance color development. Actually, West and
Gaeke developed a method for the determination of sulfur dioxide with bleached
pararosaniline and formaldehyde as the color-developing reagents. 1In this
method, sulfur dioxide was stabilized in solution by complexation with tetra-
chloromercurate(II) to form dichlorosulfitomercurate(II). Lyles et al. then
adapted the West and Gaeke approach to the highly sensitive determination of
formaldehyde. See Table 30 for a summary description of this method.
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Sampling Procedures——Active and Passive. In the procedure published by
Lyles et al. (18), formaldehyde is sampled by both manual and automated tech-
niques. In the manual approach, formaldehyde 1is collected in distilled or
boiled demineralized water in impingers. After air sampling, aqueous sodium
tetrachloromercurate and sodium sulfite are added to the impinger solution.
Subsequently, acidified pararosaniline hydrochloride in aqueous solution is
added. The solution is mixed thoroughly and should stand for about 15 wmin for
color development. In the automated approach, a dilute aqueous tetrachloromer-
curate solution and a sodium sulfite solution are continuously mixed and then
circulated through an air scrubbing chamber where the formaldehyde is sorbed.
On exiting the scrubber, the solution 1s combined with a stream of pararosan-
iline solution to develop the color and the intensity of the color is monitored
continously. One minor disadvantage of the manual technique is that the
dichlorosulfitomercurate complex is somewhat unstable and must be replaced
every 24 h. The automated method generates the complex coutinuously and, thus,
avoids the instability problem.

Recently, Miksch and his co-workers (50) have shown that the use of the
toxic tetrachloromercurate(II) solution in the manual or automatic approach is
unneccesary if the sulfite is added after the addition of the pararosaniline
reagent. They also found it necessary to maintain the mixed sample solutions
at 25 °C for 60 min for color development prior to the measurement of absorb
ance. Miksch and his co-workers also designed a refrigerated field-sampling
chamber for sampling with impingers containing water. With the device, 24-h
samples (>1000 L of air) can be taken without unacceptable loss of the water-
absorption medium. Furthermore, the solution of collected formaldehyde in
water has been found to be stable for two weeks under refrigeration. One major
disadvantage of the modified pararosaniline approach is that it suffers fraom
interference by sulfur dioxide in the atmosphere, whereas the original method
by Lyles et al. does not.

Matthews and Howell (51) have adapted a solid-sorbent sampling procedure
to the pararosaniline method. Formaldehyde is collected on 13X molecular
sieves, desorbed with water, and then determined by the modified pararosaniline
procedure developed by Miksch et al. The solid sorbent facilitates field sam-
pliag considerably; however, the coadsorption of water vapor limits air-
sampling volumes to about 60 L for a 10-g bed of 13X molecular sieves.

Gammage et al. have reported the use of a passive sampler comprising a
reservoir of water with a poly(dimethyl silicone) (PDMS) membrane as a permea-
tion barrier. Formaldehyde in air permeates the membrane and dissolves in the
water. The water is then analyzed by the modified procedure of Miksch et al.

Sensitivity. Irrespective of the sampling approach, the sensitivity of
the pararosaniline analysis method is an attractive feature with regard to
ambient air sampling. Estimates of the limit of detection for impingers and
sorbent-tube sampling methods have generally been around 25 ppb of formaldehyde
in a 30- to 60-L air sample. Lyles and co-workers (18) reported a detection
limit of about 25 ppb in a 30-L air sample. Although the estimate was based on
analytical data only, Miksch and co-workers (50) estimated a detection limit of
25 ppb in a 60-L air sample, which corresponds to about 1 ppb in a 1000-L air
sample. Matthews and co-workers (51) also report a detection limit of 25 ppb
in a 30-L air sample taken with 13X molecular sieves. The passive sampler of
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Gammage and co-workers (23) allows a limit of detection of about 25 ppb in

24 h, The continuous analyzer based on the modified pararosaniline method and
marketed by CEA Instruments, Inc., has a reported limit of detection of

2 ppb (18).

Specificity. The pararosaniline method is virtually specific for formal-
dehyde. Lyles and co-workers (18) found that many other aldehydes, including
cinnamaldehyde, crotonaldehyde, butyraldehyde, and chloroacetaldehyde, did not
give positive responses even when concentrations were as high as 10% by volume.
Propionaldehyde and acetaldehyde interfered only slightly with formaldehyde
determinations. Miksch and co-workers (50) demonstrated that the following
concentrations of other aldehydes gave only a l10% interference when determining
33 uM formaldehyde by their modified pararosaniline method:

acetaldehyde--220 uM
acrolein--120 M
propionaldehyde-—640 pM
glyoxal--500 1M -

Negative interferences with sodium sulfite, potassium cyanide, and hydrox-
ylamine were, however, observed. Formaldehyde forms adducts with sulfite,
cyanide, and hydroxylamine that limit the availability of formaldehyde for
reaction with pararosaniline. The addition of heavy metal ions, including
Hg(II), Cd(II), Ni(II), Fe(II), or Zn(II), were found to greatly reduce these
negative interferences by decomposing the adducts. Also the sulfite interfer-
ence was reduced to insignificant levels by the addition of sodium hydroxide to
the sample solution prior to analysis.

Accuracy and Precision. The accuracy of the pararosaniline method has
often been demonstrated by comparison to the CA method. 1In indoor air determi-
nations near 50 ppb, it was found that the modified pararosaniline procedure
and the CA methods gave results that were not statistically different at the
95% confidence level (50). The error in individual analyses of spiked solu~
tions was estimated to be 1 to 2% over the range of the method (50). The CEA
continuous analyzer demonstrated agreement to within #3%Z of results obtained by
the CA method with a 1% range of reproducibility in replicate analyses (8). At
concentrations from about 25 to 100 ppb, Matthews demonstrated excellent agree-
ment between results obtained with the 13X wmolecular sieve tube sampler and
results obtained by impinger sampling or the CEA analyzer (51). All analyses
were performed by the modified pararosaniline procedure. Test results defining
the reliability of the permeation sampler of Gammage et al. (22,23) were
unavailable. ’

(4) MBTH method

Principle and History. Another colorimetric method that has received wide
usage involves the reaction of formaldehyde with 3-methyl-2-benzothiazolone
hydrazone hydrochloride (MBTH) (19). The azine resulting from this reaction is
then oxidized with ferric chloride in an aqueous solution of sulfamic acid to
form a blue cationic dye with strong absorption in the range of 628 to 635 mm.
Formaldehyde is collected in 0.05% aqueous MBTH and the colored reaction
product is developed just prior to analysis.
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The method has been used to determine "total" aldehydes (19,31,52). Most
other aldehydes demonstrate similar reactivity toward MBTH. However, there are
significant differences in molar absorptivity among the reaction products of
individual aldehydes (10). The molar absorptivity of the formaldehyde reaction
product is about 25% greater than the molar absorptivity of other straight-
chain aliphatic aldehydes and about three times the molar absorptivity of
branched-chain and olefinic aldehydes. Consequently, the MBTH method is only
quantitative when it has been calibrated for an individual aldehyde and when
the concentration of that aldehyde in an air sample is predominant relative to
the concentration of other aldehydes. The method has found the greatest appli-
cation in the determination of formaldehyde in air where the concentrations of
other aldehydes are much lower than formaldehyde levels (10,19).

Sensitivity, Stability, and Accuracy. The greatest advantage of the
method appears to be its sensitivity. Estimates of limits of detection have
been as low as 1 ppb in a 720-L air sample or 10 ppb in a 60-L air sample
(10,19). Also, the formaldehyde reaction product is stable for 13 days in
MBTH solutions. Furthermore, the method is rugged enough to have been adapted
to a visual-screening field procedure for indoor air monitoring with a lower
limit of detection of about 100 ppb (51). In this application, formaldehyde is
collected passively in a water reservoir capped with a PDMS-membrane permeation
barrier and subsequently determined by the MBTH method. The ‘analytical method
alone has been demonstrated to be accurate in interlaboratory testing. Results
in three different laboratories agreed to within 5% over the range of the
method (19).

Specificity. The susceptability of the method to interferences from other
aliphatic and olefinic aldehydes is a major disadvantage. Less severe inter-
ference also occurs from several compound classes (19,52) including aromatic
amines, imino heterocyclies, carbazoles, azo dyes, stilbenes, Schiff's bases,
the aliphatic aldehyde 2,4-dinitrohydrazones, and compounds containing the
p-hydroxystyryl group. In practice, however, few of these compounds are vola-
tile enought or water—soluble enough to present major interferences in air
sampling.

(5) J-Acid method

One of the less frequently used colorimetric methods involves the reaction
with 6-amino-l-naphthel-3-sulfonic acid (J-acid) to produce a chromophore with
an absorbance maximum near 470 nm. As originally proposed by Sawicki (20),
formaldehyde is collected in water in an impinger and then an aliquot of the
solution is reacted with J-acid. The method is selective for formaldehyde, but
high concentrations of other aldehydes will interfere.

Nevertheless, a recent modification of the method makes it potentially
applicable to ambient and source air sampling. Bisgaard et al. (54) have
developed a method that involves the collection of formaldehyde on )n Chromosorb W
coated with a solution of 0.6% J-acid in concentrated sulfuric acid. The reac-
tion product is desorbed with concentrated sulfuric acid and determined by
either of two alternative analysis methods. One is the traditional spectropho-
tometric approach with a detection limit of about 150 ppb in a 4-L air sample
or 50 ppb in a 12-L sample. The other method is a fluorimetric determination
with an excitation wavelength of 470 nm and an emission wavelength of 520 nm.
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The detection limit of the fluorimetric method is about 13 ppb in a 4~L air
sample and about 4 ppb in 12-L sample.

An important improvement of the fluorimetric method over the original
spectrophotometric method is that interference problems have been reduced sig-
nificantly. Acetaldehyde and propionaldehyde do not exhibit any interference
with the fluorimetric method. Acrolein gives a response that is only 5 to 7%
of the response for an equimolar amount of formaldehyde. An additional advan-
tage is that formaldehyde samples collected on the tubes are stable for
210 days at room temperature.

Fluorimetric and spectrophotometric accuracy and precision of the solid-
sorbent sampling approach with both analysis techniques has been found to be
acceptable in laboratory testing in the range of about 175 to 630 ppb. The two
methods have been found to agree to within 5%, and the average recovery of
results with both techniques has been observed to be 101 = 87 (95% confidence
limits) when compared to standard atmospheres prepared with permeation tubes,

One disadvantage of the solid-~sorbent sampling approach, however, is the
limitation on the capacity of the tube for formaldehyde at high relative humid-
ity (RH). The capacity is 47 yg of formaldehyde for each gram of sorbent in
dry air but falls to 9 ug of formaldehyde for each gram of sorbent at 70% RH.

b. Chromatographic methods for the
determination of formaldehyde

(1) DNPH/HPLC method

Principle and History. One derivatization method involves the coundensa-
tion reaction of carbonyl compounds with 2,4-dinitrophenylhydrazine (DNPH) to
form the corresponding hydrazones (1,5,7,10-13,27-30,66). Each individual
aldehyde or ketone produces a unique compound that can then be determined by
gas chromatography (GC) or high-performance liquid chromatography (HPLC).
Historically, investigators have found that HPLC separates the isomeric hydra-
zones better than does GC (Z). Thus, greater emphasis has been given to the
HPLC approach, and we will limit our discussion to DNPH methods involving this

approach.

The primary advantages of determining formaldehyde in air by the DNPH/HPLC
approach include acceptable specificity that makes the methods almost inter-
ference free for air samples, sensitivity that allows determinations of
ambient-air levels in clean or polluted air, and accuracy and precision compar-
able to or better than that offered by alternative techniques. Some minor
disadvantages are related to the instability of DNPH solutions and the contami-
nation of samples with extraneous formaldehyde. Both advantages and disadvan-
tages are discussed in greater detail below.

DNPH Sampling Techniques and Collection Efficiencies. Several sampling
schemes have been developed for the DNPH/HPLC approach. Most of these have
included impinger sampling, but others have used a rotating flask containing
coated raschig rings or a solid-sorbent tube. The collection solvents in the
methods involving impingers have been acidified aqueous solutions of DNPH
(1,10,12, 27,30), DNPH in acidified acetonitrile (7,29), or a two-phase mixture
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of hydrocarbon solvent and an aqueous acidified DNPH solutionm (1,12,28,66).
All solutions have been acidified primarily to promote the protonation of the
carbonyl (1,26). The DNPH/acetonitrile solution will collect formaldehyde at
concentrations of <150 ppb with 80% efficiency in 30-L air samples, but an ice
bath is required to maintain this sampling efficiency (7).

The most novel liquid-phase sampling device that has been used with the
DNPH/HPLC approach is that developed by Lowe et al. (27). The device comprises
a custom-made glass flask packed tightly with raschig rings that are continu-
ally rotated into a pool of DNPH and sulfuric acid in aqueous solution. With
this device the collection efficiency for formaldehyde has been found to be 95
to 100% for air-sampling rates of <50 L/min. The device was routinely operated
at 40 L/min for sampling times up to 1 h, corresponding to 2-m3 air volumes.

Several types of DNPH sorbent tubes have been applied to the collection of
formaldehyde in air. Grosjean and co-workers (55) have coated 20-mesh glass
beads with phosphoric acid saturated with DNPH and with a small amount of
poly(ethylene glycol) added to prowote the formation of a viscous film on the
beads. Unspecified amounts of this sorbent have been packed into 100 x 6-mm
glass tubes for sampling. The collection efficiency at a 1-L/min sampling rate
has been found to average 90% for about 100 ppb of formaldehyde in air
maintained at 40 to 50% RH but has been observed to fall to =25% at <1% RH. ’

Beasley et al. (11) have designed a sorbent tube containing silica gel
coated with DNPH and hydrochloric acid (55). This type of tube has been found
to be >90% efficient for the collection of over 100 pg of formaldehyde in a
20-L air sample at a sampling rate of 0.1 L/min. Humidity has been observed to
have little effect on collection efficiency or the capacity of the tube for
formaldehyde. However, collection efficiency has been found to be highly
dependent on the tube preparation procedure. The order of the addition of
reagents is especially critical.

Kuwata and co-workers (13) have found the Sep-Pak C g cartridge (Waters
Associates, Milford, MA) coated with DNPH and phosphoric acid to be effective
in sampling a variety of aldehydes, including formaldehyde. These tubes have
demonstrated better collection efficiencies than those produced by Fung and
Grosjean (26) and are less difficult to prepare than those of Beasley et al.
(11). In taking ambient air samples with the modified Sep-Pak C g cartridges,
the collection efficiencies have been found to be >95%4 for <2 ppb conceuntra-
tions of C, to C, aldehydes in 100-L air volumes and at sampling rates of 0.7
to 1.2 L/min. At concentrations of about 900 ppb of formaldehyde and 500 ppb
of acetaldehyde, the collection efficiency has been found to the 100% in 2- to
10-L air samples collected at 0.5 to 1.5 L/min. Furthermore, humidity has no
effect on collection efficiencies.

Lipari and Swarin (5) have recently reported the design and evaluation of
another sorbent tube. Florisil (60 to 80 mesh) in Thermosorb/F air-sampling
cartridges (Thermo Electron Corporation, Waltham, MA) is coated with DNPH
alone. At 1 L/min, the collection efficiency for formaldehyde at a conceantra-
tion of 92 ppb in 1-m3 air samples is >95%. As with the coated Sep-Pak C18
cartridge, relative humidity demonstrates no effect on sampling efficiency.
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Interferences. The specificity of the DNPH derivatization reaction for
carbonyl compounds and the resolution of derivatives by HPLC make the determi-
nation of formaldehyde by the DNPH method generally free of interferences
(1,11). The formaldehyde derivative is easily separated from the derivatives
of acetaldehydes higher aldehydes, and, also, ketones. Although high concen-
tration of oxidants (e.g., 0.1% ozone in air) will degrade DNPH and its deriva-
tives, Lowe et al. (27) have observed that concentrations of ozone near
100 ppb, which are typical of ambient air, did not interfere. Furthermore,
Lipari and Swarin also have found that nitrogen dioxide at concentrations of
from 137 to 550 ppb in air does not interfere with the determination of 77 ppb
of formaldehyde samples on their DNPH/Florisil tube samples.

The potential interference of sulfur dioxide in techniques using liquid
collection media is avoided because the collection solutions are strongly
acidic. Sulfur dioxide dissolves in aqueous solution to form sulfurous acid,
which dissociates to yield sulfite and bisulfite ions. Bisulfite is known to
react with formaldehyde, but the resulting adduct is unstable under strongly
acidic conditions (27). Lowe et al. (27) have observed that 90 ppb of sulfur
dioxide does not interfere with determinations when the pH of the collection
solution medium is 3. Lipari and Swarin (5) have also found that 100 ppb of
sulfur dioxide in air has had no effect on the determination of 92 ppb of for-
maldehyde in their DNPH/Florisil tube sampler. The DNPH derivatives are
apparently stable to mixtures of reactive gases in the ambient air. Grosjean
QL) has found that, once formed, the dinitrophenyl hydrazone of acetaldehyde is
stable to =15 ppb of nitrogen dioxide, =200 ppb of ozone, and undetermined
concentrations of sulfur dioxide, peroxyacyl nitrates, free radicals, and other
pollutants in urban air. Presumably the formaldehyde hydrazome is as stable to
reactive atmospheric contaminants.

There are at least two potential causes of interferences for the DNPH
approach. One of these involves reagent contamination and will be discussed in
depth in the paragraph below describing sensitivity. Briefly, the contamina-
tion of the DNPH and other reagents with formaldehyde limits analytical sensi-
tivity to levels at least tenfold higher than could be attained otherwise
(1,5,27). The second potential cause involves degradation products of the DNPH
that can interfere with formaldehyde determinations. Lowe et al. (27) found
that DNPH solutions deteriorated in an unpredictable manner to give two degra-
dation products. One of these products sometimes reached levels high enough to
interfere with formaldehyde determinations. Storage in sealed Pyrex bottles at
4 °C reduced the decomposition significantly. In most methods involving
impinger sampling, the possibility of interference by DNPH degradation products
has been avoided by the extraction of the aqueous acid DNPH collection media
with a hydrocarbon solvent. Apparently, little DNPH and none of its degrada-
tion products are extracted along with the aldehyde hydrazonmes.

Potential interference from water vapor in ambient air was mentioned above
in the discussions of collection efficiency. As pointed out there, humidity
has demonstrated an effect on formaldehyde collection efficiency with only one
type of sampler, a tube sampler containing DNPH, phosphoric acid, and poly-
ethylene glycol on glass beads (55). High humidity enhanced the sorptiom of
formaldehyde but the compound was s not sorbed well at low humidity.
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Sensitivity. Many of the DNPH/HPLC methods have demonstrated adequate
sensitivity for the determination of formaldehyde at ambient-air levels.
Whether the sampling technique involves a liquid collection medium or a sorbent
tube, most methods are capable of quantifying levels of <1 to <3 ppb in 30- to
100-L air samples (1,5,7,10-33,27-30,66). Furthermore, lower levels can usu-
ally be determined by increasing the sampling volume as long as the break-
through volume is not exceeded. Thus, with the method developed by Lowe et al. .

(27) one can determine 0.2 ppb of formaldehyde in a 2-m3 air sample.

Lower levels could be determined if method blanks could be lowered. For
most methods, the instrumental detection limit is on the order of <0.1 ng/ml of
formaldehyde in the final extract or solution analyzed whereas method blanks
correspond typically to 1 to 60 ng/mL (5,12,27), Extraneous sources of for-
maldehyde include the DNPH reagent, solvents (including water), plastic lab-
ware, contaminated glassware, and exposure of samples to ambient air.

Although wost investigators have attempted to purify commercially avail-
able DNPH by recrystallization or extraction, traces of the formaldehyde deriv-
ative persist. Lipari and Swarin (5) report a contamination level equivalent
to 2 ng of formaldehyde in each milligram of DNPH even after two recrystalliza-
tion steps. Thus, in most DNPH methods involving sorbent tubes and in nonaque-—
ous impinger methods, DNPH appears to be a primary source of high blank values.
For example, if we assume a contamination level of 2 ng/mg, the tube developed
by Beasley et al. (1l) contributes 250 ng to the blank and corresponds to a
formaldehyde concentration of 125 ng/mL in the acetonitrile extract, which, in
turn, would correspond to about 10 ppb in the recommended 20-L air sample
volume. In fact, Beasley and his co-workers did experience unusually high
blanks (21000 ng/mL) that limited accurate determinations to concentrations on
the order of 80 ppb. Beasley et al. also attributed another primary source of
contamination to Bakelite vial caps.

Water is a primary source of extraneous formaldehyde in those methods
involviang aqueous collection media. TLowe et al. (27) found that formaldehyde
levels could be minimized by passing the water through a dual ion-exchange
high-purity water system. However, even after this treatment, contamination
levels were still 0.5 to 5 ng/mL. In the rotating-flask sampler used by Lowe
et al., water would be expected to contribute the major portion of the
3.5-ng/mL blank value observed. Also, in the impinger methods of Grosjean
et al. (1,12,26,55), Menzies et al. (10), Riggin (28,66), and Harris et al.
(ég), water would be expected to contribute enough formaldehyde to produce
blank concentrations of from 1 to 60 ng/mL. Formaldehyde may also be absorbed
from background air into sampling solution prior to actual air sampling. Con-
sequently, Riggin (28,66) suggested that DNPH solutions be prepared no sooner
than 48 hours before sampling and doubly sealed within two airtight containers
until sampling.

Accuracy and Precision. Although the DNPH/HPLC method has not been evalu-
ated as thoroughly as have many of the spectrophotometric methods previously
discussed, a number of research groups have attempted validation for formalde-
hyde determinations with reasonable success. Grosjean and co-workers (lalgs
26,55) have recovered an average of 96% of spikes into impinger solutions of
aqueous, acidic DNPH for 4- to 19-ng quantities of formaldehyde with a relative
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standard deviation (RSD) of 4.2%. The overall method including impinger sam—
pling, solvent extraction and coucentration, and HPLC analysis compared well
with reference methods in determining formaldehyde levels in the vange of 120
to 320 ppb. Regression analysis of the DNPH method versus the CA method or the
FTIR approach gave slopes near unity. Menzies et al., (10) found that the aanal-
ysis of diesel exhaust for formaldehyde by the DNPH method with aqueous, acidic
DNPH impinger sampling was statistically equivalent to the CA and MBTH methods
at concentrations around ! ppm with RSDs from 3.0 to 13.6%. The DNPH method
gave values within :10% of the theoretical value in laboratory testing. Riggin
(28,66) stated that recoveries for several aliphatic aldehydes including
formaldehyde from impinger solutions of isooctane and aqueous, acidic DNPH
solutions are generally -75%Z with RSDs of 15 to 20% for replicate air samples.
Tanner et al. reported linear calibration curves in the range of 30 to 150 ppb
of formaldehyde samples in standardized atmospheres with impinger solutions
containing DNPH and sulfuric acid in acetonitrile. Singh et al. (29) reported
good correlation of the CA procedure and the HPLC analysis of impinger solu-
tions of DNPH and sulfuric acid in acetonitrile. However, to obtain accurate
results, the authors heated the solutions for 20 min at 75 °C to eansure the
completeness of the derivatization reaction. Lowe et al. (27) reported a pre-
cision corresponding to an RSD of +1% for 20-ng/mL solutions of formaldehyde in
aqueous acidic DNPH. Furthermore, determination of formaldehyde in ambient air
samples with the rotating-flask sampler developed by Lowe et al. gave values
within 20% of those observed by a differential optical absorption technique
(27) (see Section V.D.l.c [2]).

The accuracy and precision of methods involving tube sampling have also
been found to be respectable. Although Fung and Grosjean (26) did not report
the accuracy of determinations with their tube-sampling approach involving
glass beads impregnated with DNPH, phosphoric acid, and poly(ethyleme glycol),
precision has been observed to be good with an RSD of 2.9% for formaldehyde
levels in the range of 2.4 to 7.9 ppb. Beasley et al. (11) have validated
their DNPH hydrochloric acid-coated silica gel in the concentration range of
100 to 3800 ppb. They obtained an average recovery of 947 with an RSD of 4%
for 20~L air samples. Kuwata et al. (13) reported a limited validation of
their DNPH sulfuric acid-coated Sep-Pak C,, cartridge. Recoveries of 6-,g
spikes averaged 102% with an RSD of 4.2%. A 6-,g spike corresponds to approxi-
mately 50 ppb in a 100-L spike. The precision of formaldehyde determination in
a synthetic air sample corresponded to an RSD of 5.5% at an average observed
level of 914 ppb. However, recoveries were not stated. TIn additional work,
Kuwata et al. (13) reported that the precision of formaldehyde determinations
in ambient air correspond to aan RSD of 7.5% at average observed levels of 1.5
to 1.6 ppb. However, simultaneous determinations were unot made by an indepen-—
dent method. Finally, Lipari and Swarin (5) recently completed a field valida-
tion of their Thermosorb/F cartridge containing DNPH-coated Florisil. The
accuracy of the sampling method was determined relative to DNPH impinger sam-
pling. In 60-L air samples, the average ratio of the cartridge results to
impinger results was 1.02 for 10 samples taken at formaldehyde concentrations
in ambient air ranging from about 1 to 6 ppb. Similar agreement was also found
for measurements in foundry workplace air and automobile exhausts at concentra-
tions between about 150 to 1200 ppb.

Storability/Stability. Once the dinitrophenylhydrazone of formaldehyde is
formed, it can be stored prior to analysis if the proper precautions are
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takean. Lowe et al. (27) have stored the product in excess DNPH solutions for
up to two weeks in sealed Pyrex glass bottles at 4 °C. These investigators
observed that the glass containers for the solutions have to be rinsed with
dilute acid and DNPH solution prior to storage. Other authors have recommended
that DNPH solutions should be stored at refrigerator temperatures after sam—
pling (1,10,28,66). However, when desorbed into acetonitrile the derivative is
reasonably stable. With the silica gel removed after the first day, sample
solutions have been observed to be stable up to 20 days. Lipari and Swarin
have demonstrated much better stability of the formaldehyde derivative on their
sorbent tube containing Florisil impregnated with DNPH. Quantities of the
derivative corresponding to 4.5 yug of formaldehyde have been found stable for
at least three weeks at 21 °C when sealed in the tubes. These tubes were each
spiked with 1000 L of ambient air containing formaldehyde at a concentration of
38 ppb.

(2) GC/helium ionization detection

Andrawes (32) reported the determination of formaldehyde in air by gas
chromatography with helium-ionization detection (HID). Air is sampled with a
230-uL gas sample loop and injected onto a Porapak T column. The HID provides
a sensitive but nonspecific detector for volatile compounds. Consequently, the
sensitivity of the GC/HID for formaldehyde is limited to somewhat less than
800 ppb by the elution of the peak attributed to air near the formaldehyde
peak. Water vapor does not interfere with formaldehyde because the Porapak T
column allows the elution of formaldehyde about 4 min prior to the elution of
the water peak. However, the large response to water vapor in ambient air
limits the aumber of samples that can be analyzed in a given analysis perviod.
The water peak may require as long as 40 min to elute. With laboratory test
atmospheres, the method has demonstrated 927 recovery at the 800-ppb level with
the CA approach as the refereance method. Furthermore, Andrawes reported that
precision corresponds to an RSD of 8.6% at the 800-ppb level.

The method in its present form does not seem entirely satisfactory for
determining ambient levels of formaldehyde. However, several improvements are
feasible that could make the technique a valuable and useful tool and that
would be simple to use in ambient-air monitoring. One improvement that could
easily be implemented is the proper selection and optimization of chromato-
graphic coanditions including the evaluation of other GC column packings that
would better separate the air and formaldehyde peaks. A secondary improvement
would be the use of a column backflush valve to reverse GC carrier-gas flow
after the elution of the formaldehyde peak. Water could be backflushed out of
the column before reaching the detector. A third improvement would be the
operation of the HID in the pulsed mode to improve sensitivity. 1In fact,
Brazell and Todd (56) have coupled a pulse generator to am HID and have found
significant reductions in noise and background levels. Furthermore, the device
can be operated at much higher voltages than a nonpulsed detector. Because HID
response increases exponentially with increases in voltage, greater sensitivity
for formaldehyde is likely with the pulsed detector. Brazell and Todd are
currently empirically determining the sensitivity for individual compounds.
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(3) Molecular sieve 13X - GC/MS

Yokouchi et al. (33) have developed a method involving the collection of
formaldehyde on 13X molecnlar sieve with subsequent thermal desorption onto a
gas chromatograph coupled with a mass spectrometer (GC/MS) (33). The advan—
tages of this method include excellent sensitivity and selectivity. The pre-
concentration of formaldehyde on molecular sieve 13X with subsequent thermal
desorption of the entire sample onto the GC affords a detection limit of
0.3 ppb in a 1-L air sample. Interference by water is avoided by separatiomn
from formaldehyde on a Porapak T column. The formaldehyde is determined by MS
with mass fragmentograms of the m/e 29 and 30 ions. Recovery studies with
spiked tubes yielded 101% recovery of l-ng and 10-ng quantities, corresponding
to 0.8 and 8 ppb in 1-L air samples. Precision at these levels corresponds to
an RSD of 147% for l-ng spikes and 2% for 10-ng spikes. Another advantage is
that formaldehyde 1is stable on the molecular sieve 13X for at least 24 h at
ambient temperatures.

(4) Derivatization methods with determination by GC

Two derivatization methods involving determinations by GC have been pub-
lished recently for formaldehyde (24,25). Neither of these methods has been
found to offer the sensitivity necessary for the determination of formaldehyde
at low parts—-per-billion levels in air. However, both methods may possess
considerable promise in being optimized to determine formaldehyde in ambient
air,

One method as reported by Levine et al. (24) involves the reaction of
benzyloxyamine hydrochloride with formaldehyde in buffered methanol solution to
form formal-0O-benzyloxime. The oxime is then determined by GC with thermionic
detection, usually referred to as nitrogen-phosphorus specific detection (NPD).
The use of the NPD avoids many interferences from atmospheric contaminants that
do not contain nitrogen or phosphorus. Fortunately, the GC/NPD method is not
sensitive to excess benzyloxyamine. Levine et al. reported that it is feasible
to trap formaldehyde in impingers coantaining a solution of benzyloxyamine
hydrochloride in wmethanol buffered with sodium acetate. They report efficien—
cies of 90% at 25 °C for conversion of the formaldehyde to its derivative;
however, collection efficiencies of actual test atmospheres have not been per-
formed. Nevertheless, they found that unspecified amounts of formal-O-benzyl-
oxime were completely retained in impingers at 25 °C at an airflow rate of
0.75 L/min for 23.3 min or 17.5 L.

The detection limit is not reported by Levine et al. (24). But they do
claim that aldehyde impurities in the methanol solvent set the experimental
detection limit for C, to C, aldehydes. By analogy to the GC/NPD response for
a methyl-o-oxime derivative, a detection limit of about 40 ppb is estimated.
The detection limit for formaldehyde may actually be considerably lower. How-
ever, until the breakthrough volume is empirically determined and until the
instrumental detection limit for the formaldehyde derivative is found, the
detection limit for the overall sampling and analytical method cannot be
defined.

Kennedy and Hill (25) reported a second derivatization approach that
involves the reaction of formaldehyde with N-benzylethanolamine coated on Chro-
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mosorb 102 to form 3-benzyloxazolidine. The coated Chromosorb 102 is packed
into glass tubes for sampling. The oxazolidine derivative is desorbed with
isooctane and determined by capillary GC with flame-ionization detection
(GC/FID). With a 25-m by 0.2-mm-1ID Carbowax 20-M fused-~silica capillary
column, the derivatives of formaldehyde, acetaldehyde, propionaldehyde, and
n-butyraldehyde are separable. The investigators reported the limit of detec-
tion to be 1 pg/mL in a 2-ml isooctane extract. This corresponds to =270 ppb
in a 12-L air sample. As with the other derivatization methods discussed, the
factor limiting sensitivity appears to be contamination of the reagents with
formaldehyde.

The breakthrough volume of a 120-mg bed of the coated Chromosorb 102 has
been found to be about 16 L in test atmospheres at 80%Z RH and containing 8 ppm
of formaldehyde and 6 ppm of acetaldehyde. Thus the 120-mg sorbent bed has a
capacity for at least 160 pg of formaldehyde. XKennedy and Hill actually recom-
mended that a 12-1 air sample be taken for analysis. Because formaldehyde is
collected on the tube by reaction, it is conceivable that the capacity of the
tube is not strongly dependent on the air volume sampled. Consequently, the
breakthrough volume for ambient levels of formaldehyde may, in fact, be higher
than 16 L and high enough to allow accurate determinations with this method at
concentrations much lower than 270 ppb.

The benzylethanolamine method has been validated in the concentration
range of 400 to 3800 ppb with standardized test atmospheres. Kennedy and Hill
reported that recoveries averaged 94.5% with a pooled precision corresponding
to a RSD of 6.1%. The formaldehyde derivative is also stable on the sorbent
tube. The investigators reported that the recovery of 37.6-ug spikes was 95.8%
after storage for 7 days at room temperature.

c. Established techniques for continuous
monitoring of formaldehyde

At least three instrumental analytical techniques have been developed that
are capable of determining formaldehyde at ambient-air levels and that may be
adapted to source monitoring. One of these is the automated pararosaniline
method (18) discussed in detail in Section V.,A.l.a.[3]. The portable CEA
Continuous Colorimetric Analyzer has been used to apply the pararosaniline
method with a limit of detection of 2 ppb. Two other instrumental techniques
that have been found useful are long-path, Fourier-transform infrared (FTIR)
spectroscopy (35,36), and differential UV-optical absorption spectroscopy (4).
These are described in detail below.

(1) FTIR

The development of FTIR spectroscopy has extended infrared measurements to
concentrations of air coantaminants about 100 times lower than previously pos-
sible (35, 36). Consequently, the detection limit for formaldehyde determina-
tions is now <5 ppb. This sensitivity is possible because of several innova-
tive developments in optical scieace over the past 20 years. Folded path cells
now allow path lengths as long as 1000 m in a cell housing that is only 20 to
23 m in length. Improvements in detector technology have improved signal-to-
noise ratios. The major improvement, however, is the replacement of dispersive
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IR spectrophotometers with Michelson interferometers equipped with computers to
perform Fourier transforms of the resulting interferograms. The use of the
interferometer has increased "throughput" of incident energy and has allowed
multiplexing (i.e., the simultaneous observation of multiple spectral resolu-
tion elements). Multiplexing has resulted in signal-to-noise ratio gains of

10 to in excess of 100 times those attainable with dispersive IR spectrometers
and, also, has resulted in high spectral resolution. 1In addition, digitized
reference spectra have helped to overcome interferences. Ratios of sample
spectra to reference spectra of known interferents have been used to enhance
the absorption bands of formaldehyde.

Although the FTIR instrument is considered to be a reliable tool for
obtaining formaldehyde concentrations, little information conceraning the valid-
ity of such determinations is available. Hanst et al. (35) have estimated IR
molar absorptivities for a number of air coataminants including formaldehyde,
but the reliability of these estimations is unknown. Tuazon et al. (36) have
obtained reference spectra with known quantities of formaldehyde released into
the sample cell, but potential wall losses and the possibility of other sources
of error are not dealt with. Grosjean and Kok (lg) reported that they sampled
standardized test atmospheres and compared the concentrations found by FTIR to
concentrations found by the DNPH/HPLC and the CA methods. (Presumably Grosjean
and Kok used the absorptivities reported by Hanst et al. iu calibrating the
FTIR.) TFor nominal formaldehyde concentrations of 30 to 380 ppb, they reported
that the linear regression of DNPH/HPLC versus FTIR results yielded a slope of
0.95 and that CA results versus FTIR results yielded a slope of 0.89. However,
they claimed that the comparison of FTIR to the other methods was not valid
because sampling times were different. CA and DNPH/HPLC results were inte-
grated over an hour while FTIR results were taken every few minutes.

Two primary disadvantages of long-path FTIR include the lack of portabil-
ity of the system and the expense of the sophisticated equipment involved. The
size of the gas sampling cell alone (=23 x 0.81 x 0.84 m) limits the portabil-
ity of the system. Consequently, air monitoring in remote locations or source
monitoring does not seem entirely feasible unless the system could be mounted
near the emission source. Nevertheless, at least one FTIR system has been
mounted in a van for field studies (36). Furthermore, air samples have also
been transported to FTIR systems in plastic bags (36).

(2) Long-path differential optical
absorption spectroscopy

Platt et al. (&) reported the determination of formaldehyde in air by this
technique. Three absorption bands in the near ultraviolet, 326.1, 329.7, and
339.0 nm, have been used for identification and quantification of formaldehyde.
The light source, a Xenon high-pressure lamp, and the receiving mirror, a cooa-
cave spherical mirror of 30-cm diameter and 1.8-m focal length, are separated
by a distance of 5 to 10 km depending on atmospheric visibility. The light
received is focused on the slit of a spectrometer. A rotating disk with radial
slits located in the focal plane at the exit slit of the spectrometer scaas
13-nm increments of the spectrum. The light passing through the radial slits
is monitored by a photomultiplier. A microcomputer records and adds the super-
imposed intensities of scans for each 13-nm spectral solution. Thus, raundom
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fluctuation of light intensity, atmospheric density, and curreat fluctuations
are averaged out. The microcomputer also facilitates the subtraction of
reference spectra from sample spectra to remove interference from ozone and
nitrogen dioxide.

With this device, Platt et al. claimed a detection limit of 0.15 ppb for
formaldehyde in air using a 5-km path length and a 20-min wmonitoring time. The
instrument has been calibrated by determining the decadic differential absorp-
tion coefficient to be 20.4 (mole/L)”! c¢m™! at 326.1 nm. However, the authors
did not report the accuracy of the overall method in relation to reference ana-
lytical methods. Lowe at al. (27) reported that the differential optical
absorption technique indicated formaldehyde concentrations of 0.25 to 2.5 ppb
that were within 20% of concentrations found by their DNPH/HPLC technique. As
with the FTIR technique, the sophistication of the differential optical absorp-
tion technique limits its usefulness to only highly skilled technicians or
scientists.,

d. Exploratory techniques for continuous
monitoring of formaldehyde

Several novel analytical techniques have been investigated for the deter-
mination of formaldehyde in air. Because these techniques have not been fully
evaluated or because they presently are not entirely satisfactory, we discuss
them as exploratory but promising methods.

(1) Chemiluminescent method

This method is based on the chemiluminescence (CL) produced by the reac-
tion of gallic acid and hydrogen peroxide with formaldehyde in solution (6,12).
The combined intensities of the major emissions bands at 643, 702 and 762 nm is
proportional to the concentration of formaldehyde in the solutions. Grosjean
and Kok (12) reported that formaldehyde in air is first collected in an
impinger containing water. An aliquot of the solution is then analyzed by CL.
For an air-sample volume of 60 L, the limit of detection corresponds to
0.6 ppb. When compared to three other air-sampling and analysis methods in
laboratory tests at 30 to 320 ppb, the correlation of results by the CL
approach to corresponding theoretical results by the FTIR and CA methods gave
slopes that were 30 to 357 higher than unity. Although the slope of the linear
regression curve comparing the CL results with the DNPH/HPLC results was 0.98,
the correlation coefficient was disappointingly low (0.76). Furthermore,
ambient-air determinations under heavy smog conditions revealed a large nega-
tive interference with the CL method. Results by the CL approach were about
one third the results obtained by the CA and DNPH/HPLC method.

(2) Microwave spectrometric methods

Kamens and Jeffries (31) reported that Lawrence Livermore Laboratories .
(LLL) has developed a microwave spectrometer for the determination of formalde-
hyde in air. Ambient formaldehyde is euriched by selective permeation through
a dimethyl silicone membrane to yield a limit of detection of 30 ppb. Hrubesh
et al. (37) of LLL reported no interference from acetaldehyde, methanol,
toluene, ammonia, or ethanol. However, a major limitation of the instrument 1is
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its slow response to concentration fluctuations. Hrubesh et al. suggested that
a major redesign of the instrument to include the heating of the inlet and
microwave cavity would shorten response times.

(3) Laser-induced fluorescence methods

Kamens and Jeffries (31) reviewed a fluorescence technique originally
described by Becker et al. (57) in 1975. Formaldehyde is excited by a
frequency-doubled tunable dye laser in the wavelength range of 320 to 345 nm.
Becker reported that concentrations as low as 40 ppb can be detected.

More recently, Mohlmann (58) reported an improved technique with a detec-
tion limit (S/N = 3) of 10 ppb of formaldehyde in dry air at a measuring time
of 100 s. He uses a Q-switched Nd:YAG laser with frequency-tripled output at a
wavelength of 354.7 nm. The intensity of the nondispersed fluorescence is
measured using a color/interference filter (420 *+ 5 nm) and a photomultiplier,
The fluorescence spectrum has also been recorded with a monochrometer-
photomultiplier combination in the range of 360 to about 525 nm. Neither water
vapor nor acetone has been found to quench the formaldehyde fluorescence.
However, water vapor produces a significant background response that can be
corrected if the relative humidity of the air sample is known.

(4) Photoacoustic laser spectrometric method

Currently, Atkinson (38) is adapting-photoacoustic spectroscopy to the
determination of aldehydes in air. His technique involves pulsed laser excita-
tion of the analyte in the ultraviolet region (308 nm) in an evacuated chamber.
A microphone responds to the time-dependent variations of pressure caused by
the absorption of energy by the analyte. The photoacoustic waveforms are
digitally stored and averaged to obtain a composite signal with random noise
minimized. In preliminary work, Atkinson has demonstrated quantitative deter-
minations of formaldehyde down to 3 ppm. However, he has suggested a number of
improvements that could improve sensitivity. One improvement would be to sub-~
stitute a tunable laser for the fixed-frequency laser. The 309-nm excitation
energy causes significant photodecomposition of formaldehyde. A tunable laser
should allow the selection of an excitation energy that is below the photodis-
sociation threshold. Another improvement would be a better design of the sam-—
ple cell to decrease background noise. Cells that provided greater isolation
of the microphone and-cell windows and less absorption of energy by the windows
are currently being tested. Microphones of higher quality are also being used
in current experiments,

2. Acetaldehyde

Methods that have been used to determine acetaldehyde in ambient air
include the DNPH/HPLC method, the MBTH method, several GC methods, and some
continuous monitoring techniques.

a. DNPH/HPLC method for acetaldehyde

The advantages of this method in the determination of acetaldehyde in air
closely parallel those of the same approach applied to the determination of
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formaldehyde (see Section V.D.1.b[1]). That is to say, that the approach has
been found to be selective, sensitive, accurate, and precise. Variations of
the method and their relative merits are discussed below.

DNPH Impinger Collection. Theoretically, the DNPH/HPLC method is appli-
cable to the determination of any carbonyl compound in air providing an effi-
cient collection medium is used. Most of the DNPH methods have been used to
sample acetaldehyde as well as formaldehyde. Menzies, et al. (10) reported in
a limited number of tests that they were able to collect acetaldehyde with an
efficiency of =90% in 60 L of diesel exhaust with 0.25% DNPH in 2 N HCL.
However, Grosjean et al. (1,12,26,55) have shown that a hydrocarbon phase must
also be present in the impinger solution to trap acetaldehyde efficiently in
ambient air sampling. These authors have used n-hexane, cyclohexane, or iso-
octane. They report that the recovery of acetaldehyde from 6-L air samples
rose from =20 to =1007 when hexane was added to the aqueous collection medium.
Riggin (28,66) suggested the use of isooctane as the hydrocarbon phase in a
DNPH/ HPLC method written for the EPA for ambient air or source sampling.
However, he does not present collection efficiencies. Singh et al. (29)
reported that they sampled acetaldehyde in acidified DNPH in acetonitrile. But
they did not report collection efficiencies. Tanner and Meng (7) reported a
collection efficiency of 74% in 30-L air sample with an acidified DNPH acetoni-
trile solution.

DNPH Solid-Sorbent Collection. Several DNPH solid sorbent samplers have
been evaluated as collectors of acetaldehyde. These have already been des-
cribed in detail in Section V.D.l.b[l] as collection media for formaldehyde.
Grosjean et al. (55) reported that their solid sorbent, which comprises glass
beads coated with DNPH, polyethylene glycol, and phosphoric acid, collected
acetaldehyde efficiently in dry air but not in humid air. Even in dry air,
however, the breakthrough volume was less than 6 L at 200 ppb of acetaldehyde
in air.

Kuwata et al. (12) reported the same excelleant collection efficiency for
acetaldehyde as reported for formaldehyde with their Sep-Pak C 8 cartridge
impregnated with DNPH and phosphoric acid. Although Lipari an& Swarin (5) did
not determine the efficiency of their DNPH/Florisil sorbent for the collection
of acetaldehyde, they did determine acetaldehyde in actual field tests. Water
has not been found to affect the collection.efficiencies of the Sep-Pak or
Florisil sampler.

Interferences. As in the determination of formaldehyde, the determination
of acetaldehyde by the DNPH/HPLC method is essentially interference free. As
discussed in Section V.D.1.b[1l], the following air contaminants do not
interfere at typical concentrations: ozone, nitrogen dioxide, sulfur dioxide,
peroxyacylnitrates, free radicals, and other aldehydes. \

Sensitivity. Limits of detection for acetaldehyde by DNPH/HPLC wethods,
whether impinger or sorbent sampling has been used, are comparable to those
reported for formaldehyde above (see Section V.A.2.a). These limits are <l to
<3 ppb in 30~ to 100-L air samples. As with formaldehyde also, contaminants in
the DNPH, other reagents, and solvents have prevented the attaiunment of lower
limits.
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Accuracy and Precision. The accuracy and precision obtained with the
DNPH/HPLC approach in the determination of acetaldehyde are comparable to the
accuracy and precision obtained in the determination of formaldehyde by the
same method. Grosjean and co-workers (1,12,26,55) recovered an average of 98%
of spikes into impinger solutions for 6- to 113 ng quantltles of acetaldehyde
with RSDs of 1.1 to 1.9%Z. The overall method including air sampling, sample
preparation, and HPLC analysis gave results that were within about 20% of the
theoretical values in test atmospheres of 150 to 400 ppb of acetaldehyde in
air. Tanner and Meng (7) reported linear calibration curves in the range of 10
to 75 ppb of acetaldehi&e in standardized test atmospheres.

The accuracy and precision of at least one DNPH/HPLC approach involving
sorbent sampling appears also to be favorable. Kuwata et al. (13) reported an
average recovery of 96.5% with an RSD of 2.4% for 6-yug spikes on DNPH/sulfuric
acid-coated Sep-PAK C cartridges The precision of determinations of acetal-
dehyde in synthetic a1r samples yielded an RSD of 3.5% at concentrations near
500 ppb and RSDs of 7.2 to 8.7% for determinations at 3-ppb concentrations in
ambient air. Apparently, no independent reference sampling-and—analysis method
was used to assess accuracy in this laboratory or field testing.

Storage/Stability. The hydrazone derivative of acetaldehyde is stable in
impinger solutions after the compound is formed. Grosjean (1) reported that
impingers each containing 10 mL of acidic aqueous DNPH reagent and 10 mL of a
9:1 by volume mixture of cyclohexane and isooctane were spiked with 1.23 g of
the hydrazone and then exposed to ambient air. After sampling 45 L of air
containing 70 to 120 ppb of nitrogen dioxide, 65 to 170 ppb of ozone, and unde-
termined concentrations of sulfur dioxide, peroxyaclynitrates, free radicals,
and other pollutants, the average recovery was found to be 100 + 107 when com-
pared to unspiked impingers. The stability of the hydrazone on reactive solid
sorbents has not been reported.

b. MBTH method for acetaldehyde

The MBTH impinger-sampling and colorimetric—analysis method described
above in Section V.D.l.a[4] can be used for the determination of acetaldehyde
in air. However, several disadvantages of the method limit its usefulness for
ambient air sampling or source sampling. The method is only quantitative for
acetaldehyde when it has been calibrated with acetaldehyde standards and when
no other aldehydes are present at significant concentrations. Thus, specific-—
ity and accuracy are questionable in actual ambient air testing. The Inter-
society Committee on Methods of Air Sampling and Analysis (19) reported that
the MBTH method was less sensitive to acetaldehyde and higher aldehydes than to
formaldehyde. Reliable determinations of acetaldehyde can be done at concen-
trations in impinger solutions of no less than about 0.3 pg/mL, or 3 ug in a
sample. This corresponds to only 70 ppb in a 25-L air sample (50 min at
0.5 L/min). However, the limit - of detection can be extended by sampling a
greater volume of air. Thus, a reliable determination could possibly be made
at 2 pph in 720-L air samples (24 h at 0.5 L/min).
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c. Gas-chromatographic methods for acetaldehyde

(1) Impinger—-GC/FID

One tentative method published by the Intersociety Committee involved the
determination of aliphatic G, to C. aldehydes by a GC method (59). The alde-
hydes are collected in 1% sodium bisulfite solution. An aliquot of the solu-
tion is then injected into a glass GC inlet packed with sodium carbonate. The
acetaldehyde-bisulfite adduct decomposes upon countact with the carbonate, and
the free aldehyde is introduced onto the GC column. The limit of detection for
a 120-L air sample is reported to be 20 ppb of acetaldehyde in air. No inter-
ferences are reported. No accuracy and precision data are available for atmos-
pheric samples. However, it is reported that known standards in bisulfite
solution can be determined to within 5% of their "true'" value. When stored at
6 °C, sample solutions are stable for up to two days prior to analysis.
Collection efficiencies are not reported. However, the breakthrough volume 1is
apparently greater than the recommended air-sampling volume of 120 L if the
impingers are immersed in an ice bath during sampling.

(2) Sorbent/cold trap-—-GC/FID

Bellar and Slgsby (31 60) reported a method that involved the concentra-
tion of acetaldehyde in a a dry-ice cold trap. Air is first drawn through a GC
column packing to collect acetaldehyde. The compound is then backflushed from
the packing with carrier gas and trapped in a cold fiager in a dry-ice bath,
Subsequently, the temperature of the finger is raised and the acetaldehyde is
flushed into the GC. The limit of detection for C, to C. aliphatic aldehydes
is 30 to 80 ppb. Perhaps the limit of detection could be lowered by maximizing
sampling volume. However, breakthrough volume is not discussed. Neither accu-
racy, precision, nor stability on the column packing are discussed.

(3) Sorbent/cold trap-—-GC/MS

In a survey of ambient air pollutants near industrial facilities and chem-
ical waste dumps, Pellizzari (15) reported that acetaldehyde concentrations
ranging from about 2 to 29 ppb are in 100~ to 150-1L air samples. His method
involves the concentration of air contaminants on a 1.5 x 6.0 cm bed of the
solid sorbent Tenax-GC (35/60-mesh) in a glass cartridge. The sorbed contami-
nants are thermally desorbed into a capillary cold trap and then thermally
transferred to a GC capillary column and detected by mass spectrometry.

Because the technique has not been specifically evaluated for the determination
of acetaldehyde, the accuracy and precision of the determinations and the stor-
ability of acetaldehyde on Tenax-GC are unknown. A great advantage of the
method is the high specificity of mass-spectromatic detectiom. Thus, the
method allows the identification of acetaldehyde in polluted ambient air,

(4) Direct injection——-GC/FID
Kamens and Jeffries (31) reported a GC method that involved conversion of
aldehydes to methane to increase sensitivity. Two-milliliter air samples are

directly injected onto a Porapak Q column. After elution of light hydrocar-
bons, the eluting aldehydes including acetaldehyde are chemically reduced to
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hydrocarbon gases. Subsequently, the hydrocarbons are detected by an FID. The
limit of detection is reported to be 10 ppb of acetaldehyde in air.

(5) Derivatization—-—GC/NPD

Levine et al. (24) described the collection and derivatization of acetal-
dehyde in air by benzyloxyamine hydrochloride ian wmethanol solution with a
sodium acetate buffer. Air was sampled into impingers containing the solution.
The resulting O-benzyl oxime of acetaldehyde was then determined by GC/NPD.

The NPD allowed a high degree of selectivity because of its poor response to
compounds that do not contain nitrogen or phosphorus atoms. The application of
this procedure to the determination of formaldehyde is discussed in

Section V.D.1.b{4] along with many details of the technique that will not be
repeated here. Levine and co-workers reported an efficiency of 97% at 25 °C
for the conversion of acetaldehyde to its derivative; however, collection effi-
ciencies in impinger solutions are not reported. Thermionic detection (NPD)
affords picogram sensitivity; however, the investigators report that aldehyde
ilmpurities in the methanol solvent set the exparimental detector limit. No
limit is stated for acetaldehyde. But it is estimated that concentrations on
the order of 40 ppb could be determined by analogy to the determination of the
nonanal derivative of methyloxyamine. During the development of this method,
GC/MS was used to verify the ideuntity of the derivatives.

d. Promising techniques for the continuous
monitoring of acetaldehyde

There appear to be no well established and validated continuous monitoring
methods for the determination of acetaldehyde at ambient air levels. FTIR can
probably be applied to the determination of low-ppb levels of acetaldehyde.
But apparently this application has not been documented in the current litera-
tures. A microwave spectrometer has been designed to detect acetaldehyde and
several other air contaminants of industrial hygiene significance (31,37).
However, the detection limit for acetaldehyde is 16 ppm, about 10,000 times
higher than required for ambient air monitoring. The same photoacoustic laser
spectrometric technique described in Section V.A.4.d for the determination of
formaldehyde has also shown considerable promise for determining acetaldehyde
(38). 1In fact, Atkinson demonstrated quantitative determinations down to
100 ppb of acetaldehyde in air. Furthermore, he expects to be able to improve
detectability by using a tunable laser for excitation, by altering the design
of the sample cell, and by using more state-~of-the-art microphones.

3. Acrolein

Several sampling and analysis approaches have been applied to the determi-
nation of acrolein in air. However, few have been evaluated thoroughly. The
subsequent paragraphs discuss the information available with respect to cur-

rently used methods.

a. 4-Hexylresorcinol method for acrolein

In a 1965 publication, the Taterbranch Chewical Advisory Committee of the
U.S. Public Health Service recommended the 4-hexylresorcinol method over others
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for acrolein because of its greater sensitivity and specificity (61). This
method was originally developed by Cohen and Altschuller (16). 1In 1977, the
method was published by the Intersociety Committee of the American Public
Health Association as Method 114 (21) with only a few changes from the original
version. As a portion of another method (APHA Method 116) originally devised
by Lenagge et al. (42) for €,-C. aldehydes, the 4-hexylresorcinol is applied to
an aliquot of a 1% sodium bisulfite collection medium. The method is based on
the reaction of acrolein with 4-hexylresorcinol in a solution of trichloro-
acetic acid and mercuric chloride in ethanol. The trichloroacetic acid is
actually added to the ethanol as a saturated solution in water. The product of
the reaction is blue with a strong absorbance maximum at 605 nm. Impinger
sampling with the mixed reagent has a collection efficiency of 95% for two
impingers in series for 60-L air samples taken at 1 to 2 L/min.

The method is free of interferences from ordinary coacentrations of sulfur
dioxide, nitrogen dioxide, ozone, and most organic air contaminants. A small
but insignificant interference is cause by olefins. Other aldehydes form a red
product with the reagents. However, this product does not interfere with the
determination of acrolein,

No accuracy and precision data are reported for the method. An estimate
of the detection limit is 10 ppb in a 50-L air sample based on a difference of
0.05 absorbance unit from the blank using a l-cm cell.

Once exposed to acrolein, the sampling solution is stable for only about
3 h. 1If the acrolein is collected in ethanol or sodium bisulfite in water, the
resulting solutions can be stored several days if the solutions are refrig-
erated. Subsequent to storage, 4-hexylresorcinol and trichloroacetic acid, are
added to an aliquot of a solution for color development.

b. DNPH/HPLC method for acrolein

Acrolein is among the several volatile aldehydes that have been determined
by the DNPH/HPLC approach. Lipari et al. (62) used the method to determine
acrolein in the effluent from burning wood. Riggin (28,66) has recommended
DNPH/HPLC method with impinger sampling as a reliable technique for determining
acrolein in ambient air and source sampling. However, neither Riggin nor
Lipari et al. have assessed the validity of the method in determining
acrolein.

At least oune DNPH/HPLC method involving sorbent-tube sampling has alo been
used to determine acrolein in air. Kuwata et al. (13) performed field tests of
their DNPH/hydrochloric acid-coated Sep-PAK cartridges as a sampler for Cl to
C, aldehydes and detected acrolein at levels around 0.3 ppb in municipal incin-
erator emissions. However, the accuracy and precision of these ambient air
determinations were not assessed. No interferences were reported. The stabil-
ity of the hydrazone resulting from reaction of DNPH with acrolein was not

determined.

c. GC methods for acrolein

Numerous GC methods have been developed for the determination of acrolein.
Several have involved the direct determination of acrolein after collection of
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solid sorbents such as Tenax GC (15), 13X molecular sieves, hydroquinone-
treated charcoal (64), and various porous polymers in tandem with activated
charcoal (34). One method involves the derivatization of acrolein on a solid
sorbent (65). Another method proposes the collection of acrolein in glass
bulbs or plastic bags but gives little information to support the validity of
the approach (30).

Hurley and Ketcham (64) have developed an industrial hygiene air-sampling
and analysis approach involving the collection of acrolein on hydroquinone-
treated charcoal. The sorbent acrolein is extracted from the treated charcoal
with 1,2-dichlorethane, and the extrvact is then analyzed for acrolein by
GC/FID. The sensitivity of the method is adequate for the determination of
acrolein in workplace air but only marginally acceptable for ambient air and
source monitoring., The limit of detection is estimated to correspond to 20 ppb
in 5-L air samples. The empirically determined breakthrough volume is about
6 to 7 L of air for 100 mg of treated charcoal and is not significantly
affected by the relative humidity of the air sample. In accuracy and precision
tests with standardized test atmospheres, the recovery ranged from 69 to 76% at
50 ppb of acrolein in air. Precision corresponded to RSDs of 1 to 2% for
determinations at concentrations of 50 to 60 ppb. Acrolein sorbed on the tubes
is not stable for more than a day at voom temperature. However, sorbed acro-
lein is stable for at least five days when exposed tubes are stored at -22 °C.
The specificity of the GC analysis procedure avoids interference frowm a variety
of air contaminants, including propylene, acrylic acid, acetaldehyde, acetic
acid, isopropyl ether, and acetone.

Among the other solid sorbents that have been used to collect acrolein,
Tenax—GC and 13X molecular sieves have shown considerable promise. Pellizzari
(15) found 0.3- to 1.8-ppb levels of acrolein downwind from a waste disposal
site. His method involved the sampling of 100-L air volumes through a Tenax-GC
cartridge. The sorbed species were then thermally desorbed into a cold trap
and subsequently vaporized and determined by GC/MS. The reliability of the
techniques was not determined for acrolein. Nevertheless, determination by
GC/MS allowed excellent specificity in identifying the compound as an air con-
taminant in the presence of a multitude of other contaminants. Gold et al.
(63) reported 13X molecular sieves to be an efficient collector of acrolein in
air., Water vapor was found to be deleterious to the capacity of the sorbent
for acrolein. However, even at 100% RH, an air sample volume of 8 L/g of sor-
bent was allowed. The recovery of 3- to 8-pg spikes of acrolein extracted from
1 g of 13X molecular sieves with distilled water was 90 * 11%. The recovery of
60 to 200 pg spikes was 90 * 7%. Sorbed acrolein was found to be stable for
over four weeks when stored at 0 °C. One major disadvantage of the method is
its limited semsitivity. Gold et al. reported that 110 ppb of acrolein can be
detected in an 8-L air-sample volume.

West et al. (34) described a four-stage solid-sorbent sampler that was
evaluated for the collection of air contaminants, including acrolein, for sub-
sequent thermal desorption and determination by GC/MS. Several grams of each
of Tenax-GC, Porapak R, and Ambersorb 340 were packed into individual tubes.
The tubes were then attached in tandem in the following order: Tenax-GC,
Porapak R, and Ambersorb 340. Also, a second Ambersorb 340 tube was attached
as a back-up to the first Ambersorb tube. 1In laboratory testing with test
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atmospheres of mixed contaminants, recoveries of unspecified quantities of
acrolein from all three types of sorbents were low when compared to theoretical
concentrations in the test atmospheres., However, it is uncertain whether or
not the low recoveries were the result of low desorption efficiencies or of the
poor generation of test atmospheres. In actual field tests in Houston, acro-
lein was tentatively identified on the Tenax-GC portion of the sampler but the
concentration was not reported.

Kennedy et al. (25) developed a GC method that involved the derivatization
of acrolein with oxazolidine. Acrolein in air reacts with 10% (w/w)
2-(hydroxymethyl) piperidine coated on Amberlite XAD-2 to produce a bicyclic
oxazolidine. The derivative was desorbed from the sorbent matevrial with
toluene, and the extract was analyzed by GC/NPD.

The accuracy and precision of the oxazolidine method were determined in
the range of about 55 to 700 ppb. Average recoveries were 127%Z at 55 ppb, 97%
at 150 ppb, and 100% at 700 ppb. The pooled RSD found over the range of the
method was 11.1%. The acrolein derivative corresponding to a 2.6—pg spike of
acrolein sampled from standardized test atmospheres was stable for up to
28 days. No interferences were reported for the sampling~and-analysis method.
The limit of detection of the method was also not reported. Consequently, the
usefulness of the method for ambient-air sampling is uncertain.

4. Recommendations for the sampling
and determination of aldehydes

A number of methods for the determination of formaldehyde have been demon-
strated to be reliable for measurements in ambient air and in effluent from
emission sources. These include the CA wmethod, the pararosaniline method, and
the DNPH/HPLC method with impinger and solid-sorbent sampling. For acetalde-
hyde, only the DNPH/HPLC method has been demonstrated to be reliable although
the several GC techniques that have been applied to the determination of
acetaldehyde appear prowmising. Only the colorimetric 4-hexylresorcinol method
has been evaluated enough to demonstrate its present utility in determining
acrolein in ambient air. However, even this method has not been rigorously
validated. The DNPH/HPLC methods and the oxazolidine derivatization procedure
also show considerable promise. But neither of these have been validated for
the determination of acrolein.

The DNPH/HPLC method seems to show the greatest potential in providing a
single method that can be used to determine the three aldehydes of interest and
others. The DNPH solid-sorbent samplers especially offer simplicity and con-
venience in taking air samples. However, these samplers and the DNPH/HPLC
analysis method itself require wmore extensive evaluation for acetaldehyde and
especially acrolein determinations. EPA Method TO05 was developed by Riggin
(28 66) and has been used to determine 14 aldehydes and ketones in air samples.
Low detection limits <l ppb) and a freedom from interferences make this method
particularly attractive. The use of impingers to take samples is the method's
biggest disadvantage. After validation EPA Method TO5 could be readily applied
to ambient—air and source monitoring.
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E. Other Compounds

NITROSAMINES AND NITROSOMORPHOLINE

Nitrosamines are of concern to environmental chemists because they have
been shown to be carcinogenic in many animal species. They are formed by the
interaction of amines and the nitrite ion or other nitrogen oxides. They have
been found in high-protein foodstuffs and in some herbicides and industrial
chemicals. Some nitrosamines are also formed during the production of rubber
(1). Most analytical-methods development has centered on the determination of
nitrosamines in foodstuffs; however, the discovery of nitrosamines in the air
of an industrial site (2) and in ambient community air (3) has prompted method
development applicable to accurate determination of nitrosamines in ambient
air,

Sampling methods

Investigators have used both liquid and solid sorbents for collection of
nitrosamines from the air. <Cryogenic KOH traps have been used to collect
nitrosamines (3-7). Fine et al. (3) found the recovery of dimethylnitrosamine
(DMN) to be 43.6% with traps of 1 mL of 1 N KOH. Fisher et al. (6) reported
artifact formation of DMN when dimethylamine and NO, were brought together by
cryogenic trapping. The artifact did not occur with ambient-temperature traps.
Rounbehler et al. (7) found that the retention of nitrosamines in KOH traps, as
well as ascorbic acid traps, is dependent on temperature, sampling time, and
the specific nitroso compound. The liquid traps efficiently retain nitrosomor-
pholine, but the dialkylnitrosamines are readily lost from these sorbents.
Retention decreases for all nitroso compounds as sampling temperature or time
are increased.

Rounbehler et al. (7) also evaluated six dry solid sorbents for nitros-—
amine collection, including activated charcoal, activated alumina, silica gel,
Florisil, Tenax-GC, and ThermoSorb/N cartridges. All of the solid sorbents
except Tenax-GC retained 100% of the nitrosamines. The dry sorbents, however,
with the exception of ThermoSorb/N, were found to be prone to artifact
formation of nitrosamines from secondary amines and nitrogen oxides. They
concluded that the wet impinger traps are free from artifact formation but lack
the ability to quantitatively retain a broad spectrum of volatile nitrosamines.
The only sorbent system found to be free of artifact formation and having the
desired retaining ability was the ThermoSorb/N cartridges.

Analytical methods

Gas chromatography has proven capable of separating volatile nitrosamines
contained in extracts. Most of the research has been channeled into selective
and sensitive detection of the separated compounds. One of the first methods
for detecting nitrosamines involved oxidizing them to the corresponding nitra-
mines which are extremely sensitive to the ECD (8-11). The response of nitra-
mines to the ECD was greater by two to three orders of magnitude than the
response of the parent nitrosamine to the flame-ionization detector (10).
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The alkali FID was applied to the direct detection of nitrosamines (12).
This detector gives a selective response to nitrogen— and phosphorus-containing
compounds. The presence of other nitrogen-containing compounds does cause an
interference with the use of this detector.

The development of the thermal-energy-analyzer (TEA) detector, which was
more selective for nitrosamines, ilmproved the capabilities for their determina-
tion (13). The detector is selective for nitric oxide. The nitrosamines are
cleaved at the N-NO bond, and the nitric oxide is detected by its chemilumines-
cent reaction with ozone. The emission is monitored in the near IR region (14,
15). The selectivity of this detector eliminates many potential interferances.
The additiomn of a cold trap between the TEA catalytic pyrolyzer and the TEA
luminescent reaction chamber freezes out many potential interferents (16). The
TEA is also extremely sensitive for nitrosamines. Fine et al. (16) demonstrated
the detection of less than l-ng/mlL concentrations of several nitrosamines.

Even though the selectivity of the TEA is very good, the problem of arti-
facts in the determination of nitrosamines still exists (17,18). Rigorous
quality-control measures must be followed when low levels are being determined.

Researchers have also used mass-spectrometric detection in counjunction
with GC separation to determine nitrosamines. The research in this area through
1978 was reviewed by Gough (1). Selective-ion monitoring is often preferred (2,
19) Investigators have matched the detection limits of the TEA using GC/MS (6
19, 20). This method is free of the artifacts sometimes associated with the TEA
(6) However, these artifacts are rare, and the TEA is usually just as reliable
as the MS detector (20).

A recent technical report (21) reviews the determination of N-nitroso
compounds as applied to .the factory environment.

GC combined with either a TEA or MS detector has emerged as the most
appropriate analysis method for nitrosamines. Collection on ThermoSorb/N
cartridges appears to be the most reliable sampling procedure. Marano et al.
(19) used the ThermoSorb/N and both methods of detection to determine
N-nitrosodimethylamine (NDMA) and N-nitrosomorpholine (NMOR) in the air near
tire-storage locations. The detection limits for the GC/MS method were 35 ng of
NDMA and 27 ng of NMOR. The corresponding detection limits using the TEA were
5 ng of NDMA and 8 ng of NMOR. The detection limits for N-nitrosoethylamine and
N—n1trosod1-n~buty1am1ne were comparable, but these compounds were not detected
in this study. The agreement obtained between the two methods was excellent.
Webb et al. (20) compared the two detection methods for the analysis of
foodstuff extracts for nitrosamines. Again, in most cases the two techniques
agreed very well. The authors suggest using GC/MS for confirming TEA results.
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PROPYLENE OXIDE

Propylene oxide (methyloxirane, 1,2-epoxypropane) is a colorless, flamma-
ble, low-boiling liquid. Tt is miscible with most organilc solvents but forms a
two-layer system with water (1). Propylene oxide (P0O) has an odor that is
described as sweet, alcoholic, and like natural gas, ether, or benzene (2). PO
boils at 34.2 °C at 760 mmHg. It is miscible with acetone, benzene, carbon
tetrachloride, ether, and methanol. It is used largely for the production of
propylene glycol and its derivatives. Substantial quantities are used in the
preparation of hydroxypropyl celluloses and sugars, surface—active agents, iso-
propanolamine, and a host of other chemicals. It is also used as a fumigant,
herbicide, preservative, and in some cases, as a solvent. PO is highly reac-
tive chemically, being intermediate between ethylene oxide and butylene oxide.
The liquid is relatively stable but can react violently with materials having a
labile hydrogen, particularly in the presence of catalysts. The hazard to
health of PO 1is not as great as that of ethylene oxide, but it is recognized by
NIOSH as being a toxic substance. Therefore, the permissible exposure limit
(PEL) and the TLV have been set at 100 ppm and 20 ppm respectively (2).

Absorption on charcoal, desorption with carbon disulfide, and determina-
tion by GC/FID is NIOSH's present recommended method for propylene oxide in the
atmosphere (3). The method was validated over the range of 121 to 482 mg/m3 at
a temperature and pressure of 24 °C and 766 mm of mercury using a 5-L
sample (4). The Coefficient of Variation (TVp) for the total analyt-
ical and sampling method over the validated range was 0.085. Aan advantage of
the method is that the sampling device is small, portable, and involves no
liquids. Also, interferences are minimal, and most of those which do occur can
be eliminated by alternating the GC conditions. One disadvantage of the method
is that the amount of sample which can be taken is limited by the number of
milligrams that the tube will hold before overloading. Furthermore, the preci-
sion of the method is limited by the reproducibility of the pressure drop
across the tubes.

In a similar procedure to the NIOSH method, Porapak N is used for adsorp-
tion of propylene oxide (4). The PO is eluted by placing the tube with the
Porapak N directly into the carrier gas stream of the chromatograph, and the
tube 1is heated to 200 °C. Advantages of the technique are ppb sensitivity and
quantitative recovery. One disadvantage of the method is that high humidity
may cause peak broadening and somewhat shorter retention times. This effect,
which coacerns the chromatographic column and not the sampling tube, may be
compensated by using mass-spectrometric detection or by spiking a sampling tube
with a standard to aid in peak identification.

A method was developed for determination of PO in air by GC/FID using
Porapak Q as the collection device (5). The method is sensitive to 0.0001 ug
in a 5-mL sample with a relative error of 8%. The major disadvantage of the
method is that the PO was not stable on Porapak Q after 6 h.

An IR analyzer is one of the most useful portable monitors for propylene

oxides. The instrument is calibrated for a wavelength of 12.0 ym for PO.
Propylene oxide is brought into the gas—sample cell by means of an
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integral sample pump and is exposed to IR light. The gas-sample cell has
sufficient pathlength for sensitivity, and the resulting absorbance is
indicated on a meter calibrated directly in parts per millions. The limit of
detection is 0.3 ppm (6).

Presently, the NIOSH method is the best procedure for determination of PO
in air. The charcoal tubes can be analyzed by means of a quick, instrumental
method. Also, the method is sensitive enough to detect the present OSHA
standard. However, further work is needed to obtain ppb and sub-ppb levels.
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GLYCOL ETHERS

The monoalkyl ethers of ethylene glycol are usually colorless and almost
odorless liquids. Their boiling points and refractive indices increase with
molecular weight; their specific gravities decrease. They are miscible with
most organic solvents. The lower members up to butyl ether are completely
water soluble (1). Recent studies have shown that 2-methoxyethanol and
2—ethoxyethanof—cause adverse reproductive effects in male and female workers.
OSHA maximum TWA for an 8-h exposure is 80 mg/m3 (25 ppm) for 2-methoxyethanol
and 740 mg/m3 (200 ppm) for 2-ethoxyethanol. The acetate esters of
2-methoxyethanol and 2-ethoxyethanol have shown similar toxic results (2).

Various sampling methods have been used for glycol ethers ranging from
sorbent-tube collection using sampling pumps to passive collection with diffu~
sion monitors and dosimeters. The samples were usually analyzed by GC/FID.

There are two methods described for glycol ether collection on charcoal
tubes. In one procedure outlined by Langhorst Qé), several glycol ethers col-
lected on charcoal tubes are desorbed with a two-phase eluent consisting of
5 mL of carbon disulfide and 5 mL of water. Both layers are analyzed by GC/FID
on a column packed with 2.5% Oronite NIW on 60/80-mesh Carbopak B,

The method was validated for both short-term (15-min) and long-term (8-h)
time-weighted averages. Detection limits are in the 5-pg/sample (1 ng/ injec-
tion) range for most of the ethers evaluated. Relative precision at the 95%
confidence level averaged 16.3%. The other charcoal-tube procedure outlined in
NIOSH Method No. S79 is for 2-methoxyethanol and 2-butoxyethanol (4). It
involves extraction with 0.5 mL of a 5% methanol in methylene chloride solution
and analysis by GC/FID on a column packed with 10% FFAP on 80/100-mesh
Chromosorb W (AW-DMCS). This method was validated over the range of 44 to
160 mg/m3 for 2-methoxyethanol and 124 to 490 mg/m3 for 2-butoxyethanol.

The collection of glycol ethers on a silica-gel tube and analysis by
GC/FID is described by Langhorst (3). After collection the silica=-gel tube is
desorbed with 5 mL of a 25% methanol in water solution and analyzed on a column
packed with 2.5% Oronite NIW on 60/80-mesh Carbopak B. Long-term sampling of
the silica-gel tube under high-humidity conditions may result in breakthrough
of some of the more volatile glycol ethers. Detection limits are ia the 6~-pg/
sample (2-ng/injection) range. Relative precision averaged 15.7% RSD.

The collection of 2-methoxyethanol and 2-ethoxyethanol using diffusive
monitors is described by Hamlin et al. (5). The monitors are stainless steel
tubes approximately 0.25 in. in diameter packed with a suitable absorbent.
After collection the monitors are thermally desorbed into a GC/FID containing a
column packed with 10%Z SP-1000 on Chromosorb W (AW). The method is automated
by using an automatic sample handler to introduce the sample onto the GC
column. Concentrations as low as 0.} ppm are determined during a 5-h sampling
period.
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The collection of 2~-methoxyethanol, 2-ethoxyethanol, and l-methoxypropanol
on 3M Organic Vapor Monitor Badge is described by Langhorst (3). After
collection the charcoal pad is removed and desorbed with 2 mL carbon disulfide
plus 2 mlL distilled water. The water layer is analyzed by GC/FID on a column
packed with 5% SP~1000 on 60/80-mesh Carbopak B. Detection limits are in the
5-ug/badge range. Sensitivities may be inadequate for sampling periods less
than 1 h. Relative precision averaged 14.9% RSD for the three ethers
evaluated.
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p~DIOXANE

Dioxane (CHHSOZ) is a colorless liquid miscible with water and most
organic solvents. The odor of dioxane in low concentrations is faint and gen-
erally inoffensive and has been described as being somewhat alcoholic. 1t is
hygroscopic, and because of its ether linkages, it produces peroxides and other
degradation products upon standing in the presence of moisture. Dioxane is a
poisonous substance with ‘acute and chronic effects. Animal studies show that
dioxane may be considered a weak-to-moderate carcinogen to animals at high
dosage levels. The liquid is painful and irritating to the eyes and skin.
Dioxane vapor has poor warning properties and can be inhaled in amounts that
may cause serious systematic injury, principally in the liver and kidney
areas (1). Because of the toxic effects of dioxane, the OSHA maximum TWA is
100 ppm for an 8-h exposure (2).

Dioxane in the atmosphere has been successfully determined by using NLOSH
Method P&CAM 127. This method involves collecting organic solvents including
dioxane on charcoal tubes. After collection, the tube is desorbed imn 0.5 mL of
carbon disulfide and determined by GC/FID. The limit of detection is 0,05 mg/
sample in an 18-L sample. The mean relative standard deviations of the analyt-
ical method and the analytical and sampling method are 8% and 10% respectively,
One advantage of the method is that the sampling device is small, portable, and
involves no liquids. Interferences are minimal, and most of those which do
occur can be eliminated by altering chromatographic conditions. The tubes are
analyzed by means of a quick instrumental method. One disadvantage of the
method is the amount of sample which can be taken is limited by the number of
milligrams the tube will hold before overloading. Also, the precision of the
method 1s limited by the reproducibility of the pressure drop across the tubes.
This drop will affect the flow rate and cause the volume to be imprecise
because the pump is usually calibrated for one tube only (3).

Determination of dioxane by NIOSH Method S$360 is very similar to NIOSH
Method P&CAM 127. Dioxane is collected on charcoal tubes. The charcoal tube
is desorbed with 1 mL of carbon disulfide, and dioxane is determined by GC/FID,
The method was validated over the range of 155 to 651 mg/m3 at an atmospheric
temperature and pressure of 21.5 °C and 754 mmHg, using a 10-L sample. The
Coefficient of Variation (TVy) for the total analytical and sampling
method in the range of 155 to 651 mg/m3 was 0.054. This value corresponds to a
19-mg/m3 standard deviation at the OSHA standard level. One advantage of the
method is that the sampling device is small, portable, and involves no liquids.
Also, the tubes are analyzed by means of a quick instrumental method. One
disadvantage of the method is that the amount of sample which can be taken is
limited by the number of milligrams the tube will hold before overloading.
Also, the precision of the method is limited by the reproducibility of the
pressure drop across the tubes. Furthermore, when water is present in great
amounts, condensation occurs in the charcoal tube, and organic vapors are not
trapped. High humidity also decreases the breakthrough volume (4).

The collection of dioxane on charcoal followed by heat desorption is an
alternative method to the NIOSH methods. The dioxane is desorbed from the
charcoal and condensed in a liquid-nitrogen-cooled trap prior to introduction
into the GC/MS for identification and quantification (5).
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ACRYLONITRILE

Acrylonitrile is a colorless to pale-yellow liquid with an odor that
resembles peach seeds. It solidifies at -84 °C and boils at 77 °C. It is very
reactive and polymerizes readily. It is classified as a cocarcinogen, and the
OSHA TLV is 2 ppm (1,2).

Sampling methods for acrylonitrile are based on collection of the compound
on a sorbent or cryogenic trapping. Analysis of the sample uses GC with a
variety of detectors including FID and MS.

The collection of acrylonitrile using a CMS sorbent tube, followed by
thermal desorption into a cryogenic trap and analysis by GC/MS using capillary
columns has been described in a recent EPA document (Method T02) (3). The
sampling procedure and the analytical method can be automated in a reasonable,
cost-effective manner. The analytical detection limit is between 1 and 20 ng,
depeading on the mass-spectral coaditions chosen. Multiple samples are easily
taken and are transported easily. The use of high-resolution capillary columns
combined with detection by MS offers a high degree of specificity for acryloni-
trile. Compounds having a similar mass spectrum and GC retention time to
~acrylonitrile will interfere with the method. The analyst must take extreme
care in the preparation, storage, and handling of the CMS cartridges throughout
the entire sampling-and-analysis procedure to minimize contamination problems.
The reproducibility of the method was found to be 25% on parallel tubes, but
has not been completely validated.

NLOSH method P&CAM 204 (4) utilizes the adsorption of acrylonitrile onto
Carbosieve. The NIOSH method uses methanol desorption and GC/FID detection.
The sensitivity of the method is in the ppm range because of the 1 mL
extraction volume. A second NIOSH method (15) and a method by Marano et al.
(6) uses charcoal to collect acrylonitrile. The tubes are then extracted with
methanol. Marano used GC/NPD to detect 10 pg of acrylonitrile per injection,
and the NIOSH method used GC/FID to detect 4.5 mg/m3 per sample.

Several workers have used other sorbents to trap acrylonitrile. Tenax-GC
(7,8,9) has a low breakthrough volume (<5 L/g) for acrylonitrile. However, it
is a popular sorbent. Porapak N (10) has also been used to collect acryloni-
trile but is also somewhat limited by breakthrough volume (5 L/g).

Cryogenic trapping is a sampling technique that is applicable when small
samples (<3 L) can be utilized. The methods (11,12) provide low-nanogram
detection limits but are hampered by the collection of water in the traps.

Passive samplers for acrylomitrile using Tenax-GC sorbents have not been
very successful (13). The problem with a Tenax-GC passive sampler was the low
sample capacity (0.3 L/g) found in the study. The preparation and determina-
tion by GC/MS of in situ standards of acrylonitrile has also been discussed in
the literature (14).

Sampling with a carbon-based sorbent followed by detection with GC/MS or
GC/NPD offers the possibility of low detection limits and high sample capacity.
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The technique based on the EPA method (3) needs to be explored further and
validated.
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HEXACHLOROCYCLOPENTADIENE

Hexachlorocyclopentadiene is a nonflammable liquid which has a pungent,
musty odor. Hexachlorocyclopentadiene is commercially important as an inter-
mediate for many insecticides, polyester resins, and flame retardants. 1t has
a boiling point of 239 °C, is toxic, and is readily absorbed through the
skin (1).

A method for the determination of hexachlorocyclopentadiene in air has
been published by NIOSH (2). In this method a known volume of air is drawn
through a tube containing Porapak T to trap the hexachlorocyclopentadiene
present. The Porapak T is then transferred to a small vial and extracted with
hexane. An aliquot of the sample is then analyzed by GC/ECD. The breakthrough
volume of hexachlorocyclopentadiene on the sorbent tube was found to be greater
than 100 L with a sampling rate of 0.2 L/min at a hexachlorocyclopentadiene
concentration of 0.4 mg/m3 and at a relative humidity of greater than 90%. The
detection limit is 25 ng/mL of extracting solvent. Compounds having the same
retention time as hexachlorocyclopentadiene will interfere with the method.

A second method for the analysis of hexachlorocyclopentadiene has appeared
in the literature (3). A known volume of air is passed through an impinger
containing an organic solvent, and then an aliquot of the solution is analyzed
by GC/ECD. Benzene was found to be a better solvent than hexane. Recovery at
ambient temperatures was reported to be quantitative at the l-ppb level in air.
The main problem with this method is the evaporation of the solvent from the
impinger. No validation study has been performed on this method.

At the present time the Environmental Protection Agency has not proposed a
method for the analysis of hexachlorocyclopentadiene in air. The NIOSH method
is sensitive into the ppb range. The selectivity and sensitivity of this
method can be improved by using capillary columns and GC/MS. More work needs
to be done in this area.

References
1. Stevens, J. E. Chlorinated derivatives of cyclopentadiene. In: Encyclo-~
pedia of chemical techmology; v. 5. New York: John Wiley and Soas; 1979:

791-797.

2. Hexachlorocyclopentadiene: Method No. P&CAM 308. 1In: Taylor, D.G., ed.
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MALEIC ANHYDRIDE

Maleic anhydride (CHHZO ) is commercially available as a white crystalline
solid or a fused block. Maleic anhydride is miscible with most organic sol-
vents, has a boiling point of 202 °C, and reacts violently with alkali metals,
When dissolved in water or alcohols, maleic anhydride forms maleic acid and
esters. Naphthalene, o-xylene, n—butene-1, and other similar compounds can
oxidize to form maleic anhydride. Maleic anhydride is a powerful irritant to
skin, eyes, and mucous membranes. Inhalation of maleic anhydride vapor can
cause pulmonary edema. OSHA has established a time-weighted average (TWA) of
1.0 mg/m3 (0.25 ppm) for an 8-h exposure (1).

Brown and Purnell (2) have evaluated the use of Tenax-GC as a collection
medium for maleit anhydride in the atmosphere. The effects of humidity, sam-
pling rate, and sampling temperatura were studied. Maleic anhydride is
retained well by Tenax-GC and has a safe sampling volume of 440 L/g of sorbent
at ambient temperature. After sample collection the Tenax-GC tubes were
thermally desorbed at 160 °C and analyzed by GC/FID.

In NIOSH Method P&CAM 302, atmospheric maleic anhydride is collected in a
midget bubbler containing 15 mL of water. Maleic anhydride hydrolizes immedi-
ately to maleic acid when in contact with water. Maleic acid is then analyzed
by HPLC with UV detection at 254 nm. The limit of detection is estimated to be
50 ng per injection, and the relative standard deviation is in the 6.3%
range (3). The precision of the method is limited by the reproducibility of
the pressure drop across the bubbler. This drop will affect the flow rate and
cause the measured sampling volume to be imprecise. This method has several
disadvantages. Bubblers are difficult to ship and are easily broken. Also,
this method cannot distinguish between maleic anhydride and maleic acid.

Several GC methods have been used to determine maleic anhydride as a reac-
tion product from the air oxidation of n-butene-1, o-xylene, or naphthalene
(4-7). Maleic anhydride was either collected in an organic solvent trap and
then analyzed by GC or was collected and analyzed directly on the GC column.
The relative errors of these methods ranged from 3 to 10%. The concentration
of maleic anhydride in copolymers has been determined using a potentiometric
method by Raetzsch and co-workers (8).

At the present time no routine, validated analysis method exists for
maleic anhydride. The method based on collection on Tenax-GC is promising but
further work is needed.

References
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19 and 785.
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ETHYLENE OXIDE

Ethylene oxide (1,2-epoxyethane) is a colorless flammable gas or liquid.
It condenses to a liquid at 10.4 °C at 760 mmHg. It is miscible in water,
alcohol, ether, and many other organic solvents. Ethylene oxide (E0) is highly
reactive and is used to manufacture many chemicals, including ethylene glycol,
acrylonitrile, and nonionic surfactants (1). Ethylene oxide is widely used as
a bactericide, fumigant, sterilant, and insectide. It is used in hospitals
either alone or in combination with carbon dioxide or Freon 12 for steril-
ization. RO production in the United States is approximately 6 billion pounds
per year (2). Approximately 99.5% of the EO is used in the chemical industry
and the remaining 0.5% is used as a sterilant in hospitals.

Numerous ailr—-sampling and analysis methods have been developed for EO in
ambient air. Some of these methods are suitable or can be adapted to source
monitoring. The major obstacles to overcome in sampling and analysis methods
are imposed by the volatility and reactivity of EO. The volatility of EO
limits both the selection of suitable sorbents and the total volume of air that
may be sampled without the loss of EO. The reactivity further limits the
selection of sorbents. However, the reactivity of EQO is used to advantage in
some methods that are based on the rapid and complete reaction of E0 to form a
stable compound suitable for analysis. Other sampling and analysis methods are
available to determine EO directly. These sampling and analysis devices are
direct monitors that do not rely on concentration, desorption, or reaction
techniques. Air samples are injected without concentration into the GC column.
Portable infrared analyzers can measure transient peak concentrations and
ambient councentrations and operate with little attention.

All methods—-both reactive and direct——are summarized in Table 40. A
detailed discussion of each method is given below.

NIOSH Method 8286 for the collection and analyses of ethylene oxide uses a
sampling tube containing 400 mg of activated charcoal and a back-up tube of
200 mg of charcoal. The method was validated over a range of 22 to 98 ppm and
has a probable useful range for a 5-L air sample of 11 to 150 ppm (3). Pilney
and Coyne (4) improved this method by using l-g charcoal, and they further
explored the use of two 600-mg charcoal tubes in series. They used an
MSA C-210 mass flow pump at a flow rate of 50 mL per minute and a concentration
of 15.6 ppm of EO. Breakthrough was observed after 5 h with the single 600-mg
tube, but no breakthrough occurred when two 600-mg tubes were used in series.
Ethylene oxide is desorbed with carbon disulfide and analyzed by GC/FID using a
10-ft x 1/8-in. stainless steel column packed with Porapak QS.

Ethylene oxide is a highly reactive gas. In developing a sound sampling
procedure for such a reactive gas, several parameters such as choice of collec-
tion materials, its absorption capacity, desorption efficiency, humidity,
sampling rate, sample volume, and shelf life should be investigated. Ozai and
Ketcham (5) evaluated six noncarbon and nine activated carbon sorbents. The
percent recovery data showed that noncarbon adsorbents were aot suitable for
collecting EO in air. The activated carbons gave variable recoveries and
migration within the tubes., After several experiments Columbia JXC activated
carbon was selected because it showed promising recoveries. EO
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was desorbed from the carboa by carbon disulfide and analyzed by (GC/FID).
Columns were evaluated, and two columans (Tergital TMN or UCON LB550X) were
found suitable for EO analyses. The lower detection limit of the method is
0.15 ppm in a 10-L air sample. Furthermore, other contaminants that may be
preseat with EO such as formaldehyde, vinyl chloride, vinyl acetate, ethylene
glycol, propylene oxide, acrolein, propionaldehyde, ethanol acetaldehyde, and
ethylene dichloride will not normally interfere.

Romano and Rinner (2) used impingers containing 0.1 N sulfuric acid to
collect ethylene oxide. The ethylene oxide is converted to ethylene glycol and
the glycol is determined by GC.

Impregnating activated carbon with sulfuric acid and using this as a
collection medium in sorbent tubes promises possibilities of an enhanced
sampling method and is now under investigation.

GC as a means for rapid determination of EO in air'has been investigated.
Collins and Barker (6) used a portable GC (Photovac 10A10) with a highly
sensitive photoionization detector. EO was analyzed on a 2 ft x 1/8~in. Teflon
column packed with microfine carbon. EO was quantified at ambient-air coacen-—
trations by operating the column at ambient temperature and using peak height
measurements. Of more significance, the level of detection was 0.1 ppm, the
retention time for EO was less than 2 min, and ths instrument was suitable for
24-h monitoring. The Photovac 10Al10 gas chromatograph was operator—-dependent;
however, autosampling is possible. For continuous monitoring, a fully
automated air-monitoring system was described (6). The sensitive
Photovac 10Al10 gas chromatograph designed to analyze low concentrations
(0.001 to 100 ppm) of EO was found to work equally well at higher levels used
for fumigants (7).

A gas chromatograph equipped with a thermistor cell was investigated by
Dumas (8) for determination of ethylene oxide in air. The sample size was
5 mL, and it was injected directly on the column. The limitation of this
method lies in the detection limit. It requires ! pg/mL in air to give full-
scale detection. This method is not suitable for ambient-air monitoring.

Vanell (9) described a portable infrared analyzer. He found that the most
useful portable monitor for EO is an infrared analyzer calibrated for a
wavelength specific to ethylene oxide. Air containing EO is brought into the
IR cell by means of a sampling pump. A meter reads the concentration of EO in
parts per billion.

Absorption of ethylene oxide on activated carbon, desorption with carbon
disulfide, and determination by GC/FID is the present method of choice. This
method has a detection limit of 4 ng per injection with good recovery and good
precision. At 0.5 and 5.0 ppm, statistical evaluation showed an average
recovery of 97% with precision (relative standard deviation) and systematic
ervror of 3.76 and 2.97% respectively.

212



References

Hine, C.; Rowe, V.K.; White, E.R.; Darmer, K.I., Jr.; Youngblood, G.T.
Ethylene oxide. 1TIn: Patty's industrial hygiene and toxicology; v. 2A.
3d rev. ed. New York: John Wiley & Sons; 1981: 2166-67.

Romano, $.J.; Renner, J.A. Analysis of ethylene oxide-—worker exposure.
Am. Tund. Hyg. Assoc. J. 40: 742-745; 1979.

Ethylene oxide in air; Method No. S286. 1In: Taylor, D.G., ed. NIOSH
manual of analytical methods; v. 3. Cincinnati, OH; U.S. bept. of
Health, Education, and Welfare, Public Health Service, Center for Disease
Control, National Institute for Occupational Safety and Health; 1977
April: S286-1 to S5286-9. DHEW (NIOSH) Publication No. 77-157-A.

Pilney, R.J.; Coyne, L.B. Industrial Hygiene Laboratory, Dow Chemical
Co., Midland MI 48640; DOW CRI Report No. B-600-125-80.

Oazi, A.H.; Ketcham, N.H. A new method for monitoriang personal exposure
to ethylene oxide in the occupational enviroanment. Amer. Ind. Hyg.
Assoc. J. 38: 635-647; 1977.

Collins, M.; Barker, N.H. Direct monitoring of ambient air for ethylene
oxide and ethylene dibromide. Am. Lab. 15(7): 72-81; 1983.

Bond, E.J.; Dumas, T. A portable gas chromatograph for macro- and
microdetermination of fumigants in the field. J. Agric. Food Chem. 30:

966-988; 1982,

Dumas, T. Determination of ethylene oxide in air by gas chromatography.
J. Chromatogr. 121: 147-149; 1976.

Vanell, L. On-site monitoring of ethylene oxide sterilizers. Am. Lab.
13(12): 70-73; 1981.

213



(M) sanjezsdway ajnTosqe

1
b

atou_‘Bap Ut juejsuco seb = .
ey juey (0°28
jybTam IBTNI3TOW = MW
sazaydsowie utr ainssaid = d

azaym

1 (LD°Z8)

(¢0L) (qdd) (MW} d

= ms\mn wo1j pajeInoTe],

1032333p
9 YN mE\mz 081> 100" D WN IBTTWTS y3TM spunodwo] uotjezrUOTOjOyd YITM J9 Vi
39 4g uoTjeuTWIajag "3
1094716
auaTAyj3a 03 pajyaAaucd g3 °g
BWTJ UOTU33}3I :omwx N L°p Buturejuod
z AI8A0DI3I %7° 44 ms\m: 09¢ YN YN IBTTWIS Y3jTM spunoduwo) siabutdwt ur UoIjOaTTO] ‘Y ¢
QT 4/39_uU3Tm uoTjBUTWISlag °)
Nmu y3tM uotridiossq ‘g
abues wdd uy uor333fuT 3WT3 UoTUa3}al ‘uoqaeo pajeATIoR JX(
4 AxsA0031 %/¢ mE\mn 0.2 oL Iad bu ¢ JBTTWIS Yy3ztM spunoduo) eTqUNTO] U0 UOT3I3TI0] ‘Y Z
aT4/39_43TH uoTjRUTWIA}aQ *J
uotjoalur aWTI] UOT3Ua}aI Nmu y3jtm uorydaiosag g
e so1'o = o ms\mn HOLXL Y 14 13d Bu g-| JIETTWIS Y3IM spunoduwo) [B02IBYD LD UOTFI3TTO] Y L
ED IE] uorstoaid uot JBIJU3IL0D | ITWIT §20U2I9JI33UT a1drautay *ON
~I23}9y pue a1qej30933p ‘sauntoa uoT309338p Tetjuajoy poylap
Aoeanaoy UNUTUTH aTdwes Teo13A1BUY
TBOTdA}

30IX0 3NITAHIA 40 NOTIVYNIWHIIIQ FHI H04 SQOHIIW WITIATYNY TWHIANID  “of 318Vl

214



EPICHLOROHYDRIN

Epichlorohydrin (l-chloro-2,3-epoxypropane) is an important solveat in the
production of resins. An important constituent of epoxy resins is synthesized
by alkylating bisphenol A with epichlorohydrin (ECH). XCH is also used in the
manufacture of pharmaceuticals, insecticides, agricultural chemicals, textile
chemicals, coatings, adhesives, ion-exchange resins, solvents, plasticizers,
nail enamels, glycidyl ethers, surface active agents, and many other chemicals
(1). 1In 1978, the domestic production of ECH was approximately 500 million
pounds. It is not surprising, therefore, that many occupations offer possible
exposure and many industries use products that are known or suspected to
contain ECH. (2)

ECH is a colorless liquid with a characteristic chloroform-like, irritat-
ing odor. It boils at 117.9 °C at 760 mmHg. 1In general, ECH is miscible with
ethers, alcohols, carbon tetrachloride, benzene, chloroform, and trichlo-
roethylene. 1t causes CNS depression; irritation of the skin, eyes, and
respiratory tract; and possibly sensitization. ECH is readily absorbed through
the skin and is counsidered extremely toxic. Because of receat inhalation
studies on rats and epidemiologic studies on exposed workers, industrial
hygienists indicate that ECH should be considered carcinogenic (3). Therefore,
a TLV for ECH in workroom air in the United States was set by NIOSH at 2 mg/m3
(0.5 ppm), which was determined as a TWA concentration for up to a 10-h workday
in a 40-h workweek (2).

The sampling and analysis of ECH at the ppm to ppb level is generally
based on adsortion techniques and gas chromatography. Determination at the ppb
level has been reported using GC/MS (l). The analysis by GC uses a variety of
detectors including FID, ECD, and MS (2) Activated charcoal is recommended by
NIOSH for sample collection (3). Amberlite XAD-2, a styrene divinyl benzene
polymer, and XAD-7, an acrylic ester-type polymer, have been used for sampling
ECH in air (1).

The colorimetric determination of ECH in air has also been widely used
(4). ECH is hydrolyzed to glycerol, oxidized by HIO, to formaldehyde in the
presence of H SO , and titrated with chromatropic acid to produce a color. The
colorimetric method is generally useful in specific environments for routine
work when interferences have been shown to be absent, Acetone and phenol cause
severe interference in the colorimetric procedure.

A detailed sampling and analytical method for ECH is described in the
NIOSH Manual of Analytical Methods, 3d ed. (5), as NIOSH Method No. 1010. The
sampler 1s a sorbent tube containing coconut-shell charcoal. Air is sampled at
flow rates from 10 mL to 200 mL/min. The collected sample is reported to be
stable for at least two weeks. The applicable range is 2 to 60 mg/m3 (5),
which is higher than may be required for ambient-air monitoring. The measure-
ment technique is GC/FID. The ECH is desorbed with CS, and analyzed on a Chro-
mosorb 101 column at 135 °C. The NIOSH method has been validated and is in
wide use.
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NIOSH Method S118 (6) is a similar method to NIOSH Method 1010 for sam-
pling and analysis of ECH. This method involves the adsorption of ECH on a
coconut-charcoal tube and desorbing the tube with carbon disulfide. An aliquot
of the desorbed sample is then determined by GC/FID using a 10 ft x 1.8-im.
stainless steel column packed with 10% FFAP on 80/100-mesh, acid-washed DMCS
Chromosorb W. The ECH at the OSHA standard, 0.38 mg, was stable on coconut
charcoal for six days at ambient temperature. One advantage of the method 1is
that the sampling device is small, portable, and involves no liquids. The
major disadvantage of the method is that the amount of sample which can be
taken is limited by the number of milligrams the tube will hold before over-
loading. Also, the precision of the method is limited by the reproducibility
of the pressure drop across the tubes. This drop will affect the flow rate and
cause the volume to be imprecise.

A sampling method has been evaluated in Sweden using Rohm and Haas Amber-
lite resins (1). This study compared the results of adsorption of ECH on char-
coal and Amberlite XAD-2 (1) with the results of a study using XAD-7. The
resin was precleaned, dried, and used to fill small glass tubes, 5 by 0.4 cm.
Air was sampled at 0.2 L/min. ECH was desorbed with CS, (or CH2C12) and
analyzed by GC/FID on a 0.2% Carbowax 1500 on Carbopack C column at 85 °C. The
recovery of ECH from XAD-2 was poor (=47%); however, the recoveries from XAD-7
were better than or equivalent to those obtained with charcoal. The sampled
compound was also found to be stable on XAD-7 during storage of the tubes.

NIOSH Method Wo. 1010 is the best available method for the determinatioan
of ppm levels of ECH in air. The major problems with this method lie in the
use of charcoal, which is universally a good adsorbent and therefore likely to
concentrate other compounds from ambient-air samples that may interfere in the
GC/FID analyses. Also, the l-mL extraction volume limits the overall detection
limit of the method. Alternative recommendations would be to use
high-resolution GC/FID, GC/MS, or to further evaluate the sorbent XAD-7. EPA
Methods TOl, T02, and TO3 have not been evaluated for ECH, but may offer
detection limits in the ppb and sub-ppb ranges.
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PHOSGENE

Phosgene (COClz) is a colorless, low-boiling liquid. At room temperature
and 760 mm pressure, it is a colorless gas. Impurities may cause discoloration
of the product from pale yellow to green. Phosgene has a characteristic odor,
and the odor of the gas can be detected only briefly at the time of initial
exposure. At 0.5 ppm in air, the odor has been described as pleasant and
similar to that of new-mowed hay or cut green coran. At high concentrations,
the odor may be strong, stifliag, and unpleasant. In general, phosgene is
soluble in aromatic and aliphatic hydrocarbons, chlorinated hydrocarbons,
organic acids, and esters. It is removed easily from solvents by heating or
air blowing, but because of its toxicity, great care must be taken to control
its presence in the atmosphere (1). To prevent the occurrence of pulmonary
edema from phosgene exposure, the American Conference of Government Industrial
Hygienists established a TLV of 0.1 ppm (2).

Colorimetry, gas chromatography, and infrared spectrophotometry have shown
promise of attaining the sensitivity required to detect levels of phosgene
below its present TLV and of being adaptable to do continuous real-time moni-
toring for phosgene (3). These three techniques, plus a recently developed
paper tape monitor and piezoelectric crystal device, were chosen for develop-
ment, evaluation, and a side-by-side test under actual field conditions.

A manual colorimetric method is the current NIOSH recommended standard
procedure for phosgene in air (4). This method involves the collection of
phosgene in midget impingers containing &4,4-nitrobenzyl pyridine (NBP),
N-phenylbenzylamine (BA), and diethyl phthalate (DEP). When phosgene is
‘present, this solution produces a red color. The absorbance is determined at
475 nm. Sampling efficiency is 99% or better. Five micrograms of phosgene can
be detected; the minimum sample size is 25 L. High sensitivity is the major
advantage of this method. Some of the disadvantages of the method include
potential interferences, relative change in color formation with various lots
of reagents, and the need for frequent calibration checks. The NBP-BA method
is not subject to interferences from normal concentrations of chloride, hydro-
gen chloride, chlorine dioxide, or simple chlorinated hydrocarbons such as
carbon tetrachloride, chloroform, and tetrachloroethylene. A slight depression
of color density has been observed under high humidity conditions. Other acid
chlorides, alkyl and aryl derivatives which are substituted by active halogen
atoms, and sulfate esters are known to produce color with these reagents.
However, most of these interferences can be removed in a prescubber containing
an inert solvent such as "Freon-113" cooled by an ice bath (3).

The NBP-BA method has been adapted for continuous automated use on a Tech-
nicon Air Monitor IV autoanalyzer. Sample air is bubbled into a flowing stream
of NBP-BA-DEP reageunt. During passage through a mixing coil, the reagent
absorbs the phosgene, and the colored complex formation takes place. Air bub-
bles and liquid avre thea separated, and the developed reagent is passed to the
colorimeter where the color absorbance 'is measured. The estimated detection
limit for the automated Technicon method is 0.05 ppm of phosgene in air using
l-cm cells and 0.0l ppm using 5-cm cells. The Techaicon Autoanalyzer has great
sensitivity but has a long response time. Up to 20 min may elapse before an
excursion is noted, or an excursion of short duration may be missed
altogether (3).
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GC employing an ECD has been used to detect phosgene in air. Priestley
(5) employed a GC system consisting of an aluminum column packed with 30%
didecyl phthalate on 100/120-mesh GC22 Super Support Heltes, Burghardt, and
Bremen (6) reported a similar method for the determination of low conceatra-
tions of_phosgene. Dahlberg (7) and Kihlman recommended a stainless steel GC
column packed with 20% DC-200 on Chromosorb W. Sensitivities down to 1 ppb
were achieved with all three GC methods. However, because of the reactivity of
phosgene, the GCs required frequent column conditioning and recalibration.
Recently, Singh, Lillean, and Appleby (8) used pulse-flow coulometry for the
determination of sub-ppb concentrations of phosgene. They demonstrated that it
is possible to compensate for column losses by extrapolating to zero retention
times in the column, thereby eliminating the necessity for routine calibration.
This method requires a special GC equipped with dual ECDs in series. An
investigation of a wide series of column materials and packing indicated that a
Teflon column packed with Chromosil 310 would give the best recoveries and
resolution at all phosgene concentrations (9).

Infrared spectrophotometry (IR) is another approach used to determine
phosgene in the atmosphere. Esposito, Lillean, Podalak, and Tuggle success-—
fully used a Miran TII IR gas analyzer (Wilks Scientific Corporation, South
Norwalk, CT) to detect phosgene (9). They used a wavelength of 11.8 m
(850 cm™!) because it was relatively free from interferences. The blank region
at 11.2 ym (890 cm_l) was used as the reference wavelength. The Miran IT was
set for a slow (8-s time constant) response and the sample set for a 20.25-m
path. One advantage of the method is its ability to detect phosgene at levels
as low as 0.025 ppm. Because the Miran II is continuously sampling a large
cell volume (5.4 L), there is a "lag" time for the instrument to come to a
constant reading when a change in concentration occurs. Trichloroethylene has
an absorption band at the phosgene sample wavelength with an intensity about
one-third of that for phosgene. Other potentional interferences iaclude
ammonia, dioxane, ethylene oxide, ethylene amine, and some Freons.

A recent development in the area of phosgene monitoring is the U.E.L.
Model 7020 paper-tape monitor. A controlled flow of sample air is drawn
through the top half of the tape. The bottom half of the tape, used for
reference, remains unexposed. The chemically impregnated tape reacts specif-
ically with phosgene to produce a color whose intensity is proportional to the
phosgene concentration. As the exposed tape passes to the photometer, two
beams of light guided by optics from a common source are reflected off the top
(sample) and bottom (reference) halves of the tape and measured photometric-—
ally. The resulting reference-corrected signal drives a concentration-level
(panel) meter, and an external recorder is used to set off an alarm if a preset
phosgene coacentration is exceeded. The detection limit for the tape monitor
is 0.005 ppm (3).
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A piezoelectric quartz crystal coated with methyltrioctylphosphonium

dimethylphosphate was found to be a good detector for phosgene in air. The
response curve is linear from 5 to 140 pg. One advantage of the method is that
the coated crystal can be used for more than six weeks without significant loss
in sensitivity, provided that high ammonia concentrations are not encountered.
The response to ammonia is irreversible, and if the substrats is exposed to
large doses of ammonia, the response to phosgene is irreversible and increases
markedly (10).

10.
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