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11.5 Meteorological Fields Needed for Model Evaluation

The basic meteorological inputs to the atmospheric diffusion equa-
tion are shown in Table 11.2. Two of the dominant processes that
influence pollutant dispersion over the airshed are advective transport
and turbulent mixing. In the model they are characterized by the velo-
city field, the height of the mixed layer, the surface aerodynamic
roughness, solar insolation and vertical temperature structure. These
fields were generated, for the period June 26-28, 1974 using the pro-—
cedures described in Chapters 3 and 4. Figure 11.3 shows a typical
surface wind field distribution and Figure 11.4 the spatial variation
of the mixing height over the airshed. The basic meteorological input
data needed for the model were derived primarily from the South Coast
Air Quality Management District (SCAQMD) monitoring stations (APCD,

1974).

11.6 TEmissions Inventory for South Coast Air Basin

The most important input to any airshed model is a comprehensive
detailed and accurate emission inventory, constructed at a level of
detail consistent with the required spatial, temporal and chemical
resolution of the model. In this study emissions from 130 different
source categories were spatially distributed over the region shown in
Figure 11.1. A summary of the daily totals and the distributiom
between mobile and stationary source classes is shown in Table 11.3, a
more detailed breakdown is presented in Table 11.4. Diurnal variations

in emission rates were rescolved to within one hour in order that the



(c)

FIGURE 11.3

Typical Surface Wind Field Distribution for 27 June 1974
(a) Direction and Magnitudes at Monitoring Sites

(b) Generated Ground Level Fiow Field

{(c) Streamlines for Generated Flow Field
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FIGURE 11.4

Mixing Height Distribution Above Sea Level
(16:00 PST 26 June 1974)
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TABLE 11.3

Summary of Total Emissions Into South Coast Air Basin¥®

SOURCE CLASS
CONTRIBUTION (%)
TOTAL EMISSIONS

SPECIES (Kg/day) MOBILE STATIONARY
Carbon Monoxide (CO) 8,610,000 98.8 1.2
Nitrogen Oxides (NOX) 1,320,000 62.3 37.7
Sulfur Oxides (SOX) 427,000 13.7 86.3
Reactive Hydrocarbons (RHC) 1,240,000 71.0 29.0

%
June 26, 1974
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model predictions would be compatible with the averaging time used in
making ambient air quality measurements. The spatial and temporal
variations of pollutant emissions are shown in Figures 11.5-11.7. To
avoid any ambiguity, all data times for input of information to the
airshed model were defined in terms of the standard time (PST) of the
region. For the South Coast Air Basin the standard time corresponds to
time zone eight (8) which covers the longitudinal range 105-120°W.
Table 11.5 gives the estimated 1974 composition of reactive hydrocarbon
emissions in the SCAB grouped according to the chemical lumping scheme
introduced in Chapter 8. The detailed hydrocarbon inventory is docu-
mented in Table 11.6. These results were derived from detailed compo-
sition profiles developed for each source category. For further

details of the emission inventory the reader is referred to AQMP

(1978).

11.7 Assessment of the Accuracy of the Emissions Inventory

In order to become confident in making decisions based on an
inventory, it is not sufficient merely to assemble the basic data.

What is required is a quantitative evaluation of the likely errors.

The development of emissions data for a large urban area is an
extremely complex undertaking and involves considerable resource com-
mitments. From a praétical point of view many simplifications and
approximations must be invoked during the compilation of a spatially,
chemically and temporally resolved inventory. The assessment of the

level of uncertainty in a particular emission inventory is obviously a
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TABLE 11.5

Composition of Reactive Hydrocarbons in Inventory Region

EMISSIONS COMPOSITION(%) MOLE WEIGHTED AVERAGE

SPECIES kg sT7  WEIGHT  MOLE M%EEICEHL?R ;gﬁggg
Formaldehyde (HCHO) 0.18 1.25 2.88 30.0 1.00
Other Aldehydes (RCHO) 0.25 1.74 2.22 63.1 3.36
Ethylene (C2H4) 0.82 5.73 13.4 28.0 2.00
Other Olefins (OLE) 1.98 13.8 14.2 67.4 4.83
Aromatics (ARQ) 2.03 14.2 9.4 100.2 7.506
Alkanes (ALK) 9.04 63.3 57.9 83.5 5.82

TOTALS 14.30 100.0 100.0
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substantial undertaking and, most properly, should be carried out when
the inventory itself is compiled. The objective of this section is to
present a methodology for assessing the accuracy of existing emission
inventories given estimates of errors in individual source categories.
The procedure uses chemically weighted sensitivity analysis methods
that distribute both percentage and physical errors in accordance to
their total contribution to photochemical oxidant production. By
applying the techniques to the present inventory, those sources contri-
buting most to the uncertainty in total emissions can be identified.
This information can then be used to help design field and source test
programs that will provide improved data bases for control strategy

development,

Emissions from each source class can be characterized according to
level of spatial resolution, level of temporal resolution, and source
activity or emission factor. The level of spatial resolution achiev-
able is in principle as fine as one desires since the locations of all
sources can presumably be specified (although traffic count data may
not be available on a street-by-street basis). Temporal emission rates
will fluctuate some from day to day and the output from some stationary
sources may vary with ambient temperature. Even with these variations
the major problem in properly specifying source emissions is still the
uncertainty in emissions quantities derived from source activities and
emission factors. Goklany (1980) presents a detailed discussion of

emission inventory errors and suggests various engineering checks that
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can be made to insure that the basic data are reliable, accurate and

self consistent.

Two basic factors are involved in emission specification, the
quantity emitted and its composition. Emission compositions are typi-
cally estimated from engineering or source tests. Recent studies aimed
at establishing NOx and S0 emission inventories for stationary sources
in the South Coast Air Basin have presented estimates of the level of
accuracy of the overall inventories (Bartz et al., 1974). These
reports estimate that a +20% uncertainty in the total emissions is rea-
sonable, whereas, uncertainties in individual source emissions can
range as high as +300%. A compensating factor is that gemerally the
large uncertainties are associated with small absolute emission levels.
Probably the most serious emission inventory problems are those associ-
ated with hydrocarbon emissions. Given the existence of uncertainties
in the inventory, one must develop methodologies for identifying the

major errors.

The basic goal of this analysis is to develop a procedure that
will place error bounds on emissions of reactive hydrocarbons (RHC),
nitrogen oxides (NOX) and carbon monoxide (CO). With the exception of
CO, these groupings represent the sum of many individual species. 1In
order to generalize the methodology consider a chemical grouping, j],
composed of emissions of nj species. If there are m source classes in
the emissions inventory then the total emissions from group j, E%, is

given by



n,
EJ _ m ] k
T = Z Z wiE. (11.1)

where D¥ is the emission of species i from source class k and LA is a
weighting factor that can be used to account for differences in chemi~
cal reactivity of the individual species. The choice of suitable forms
for LA is discussed subsequently. In (11.1), for example, nj =1 for
CO and uj = 2 for NOx since ENOx = ENO + ENOZ' If the E? are con-—
sidered to be statistically independent then the variance of the total

emissions, (o%)z, for a linear model is simply the sum of the indivi-

dual components Oé k (Feller, 1968)
i

n,
. m N
(o3)2 = k)_jl 21 A CEY (11.2)
= 1= 1

In practice the standard deviation of the emissions from a particular

. . k .

source 1s normally expressed as some fraction fi of the total, i.e.
ko k k . .

OE = fiEi' If a further assumption is made that each source class k
i

contributes to the total error an amount proportional to the total

emissions then the right hand side of (2) can be manipulated to give

the fractional uncertainty f% in emission group j as

. Lo 112

(2 ]

f = w. f. — (11-3)
T SRS S R

One obvious conclusion that can be drawn from this analysis is that the

fractional error in the total emissions is less than the sum of the
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errors associated with the individual components. Ditto et al. (1976)
present a similar analysis including a gemeralizatiom that accounts for

the case when one or more of the GEk are fixed.
i

In the above derivation the only assumption made about each of the

J

E? was that they were independent and so the uncertainty bounds on ET

are simply E%(l 1_f%). In developing the fractioms fj for each source
type it is important to consider the types of errors that might be

involved in calculating the emission data.

When error distributions deviate significantly from normality a
theorem due to Chebyshev (Feller, 1968) can be used to estimate upper
bounds on the confidence intervals. This theorem states that for a
random variable E% that has a mean E%, and standard derivation (fgﬁg),
the probability that IE% - Egl > r(f%ﬁ%) is less than l/rz. Thus a
(1-s)x 100% confidence interval is given by (Eg (1 i_rf%)) where r(f%)
= 1/s. An important feature of the theorem is that it is independent
of the distribution of the random variable E%. While the inequality is

true for any value of r > 1, the bounds are not sharp, and, as a

result, the estimate of the confidence intervals is comservative.

One of the most important reasons for incorporating the weightings
W in (11.1) is to account for differences in the chemical reactivity
of individual species. The need for weighting can be illustrated by
considering the emissions of methane from landfills. While there are
typically very large uncertainties associated with estimating the mass

fluxes, the contribution of methane to oxidant production within an
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urban airshed is small, Unless the methane emissions are appropriately
weighted, the uncertainties place unrealistically large error bounds on
the hydrocarbon inventory. Given this situation it is clearly desir-
able to develop a weighting scheme that accounts for differences in
chemical reactivity. From a practical view point there are two impor-
tant considerations that any proposed scheme must satisfy. First it
must be able to be applied in an a priori manner and secondly, the pro-
cedure should not require the numerical solution of kinetic rate equa-
tions. Primary attention in this section will be given to characteriz—

ing the weighting scheme for the reactive hydrocarbon grouping (RHC).

As might be expected there are many different ways to characterize
the chemical reactivity of hydrocarbons including: organic consumption
rate, peak oxidant levels, NO, formation rate and the time to the ozome
peak (Dimitriades, 1974; Trijonis and Arledge, 1975; CARB, 1976; Darnall
et al., 1976; and Bufalini et al., 1976). The scheme adopted here is
to weight the emissions of individual hydrocarbon species on the basis
of their rate of removal by reactions involving the hydroxyl radical

(OH) (Darnall et al., 1976).

The normalized weighting factors in (11.1) for the hydrocarben

group are given by

J r k OH
22 o5 (OH)
— MW
) moJ L (om)
2: z: P p (11.4)
. MW
j=1 p=1 p

where kp(OH) is the rate constant for the reactionmn HCP + OH. MWp is
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the molecular weight of hydrocarbon species p and rp is the weight
fraction; together MWp and rp convert the emissions from a mass to a
molar basis. The reactivity weights for some different source classes

are shown in Table 11.7.

Now consider the 1974 SCAB emissions inventory, a summary version
of which is shown in Figure 11.8. Estimates of source class errors
derived from engineering analyses and personal interviews (Grisinger,
1981); Bradley, 1981) were used to derive the f fractioms. The error
in the total emissions were derived using equation (11.3). One of the
most striking results from Table 11.7 is the difference between class

rankings based on mass emissions and net chemical reactivity.

This section has introduced a technique for establishing overall
uncertainty limits on the emissions for a region such as the South
Coast Air Basin. For the particular case studied the calculations sug-
gest the following ranges: CO + 20%, NOX + 15%, Reactive Hydrocarbons #

25% and Total Hydrocarbons + 120%.

11.8 1Initial and Boundary Conditions for Model Evaluation

The initial concentration field was established using the pro-
cedures described in Goodin et al. (1979a, 1981). Hourly averaged data
from the monitoring sites (APCD, 1974) shown in Figure 11.9, were
interpolated to the computational grid. Since most of these monitoring
sites did not report ozone concentrations, but rather oxidant levels,
the air quality data were converted to the form required by the model

using: [03] = [ox] - 0.2[N02] + [SZ] (Eldon and Trijomnis, 1977). 1Im
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this expression [0X] is the oxidant concentration corrected for any
calibration errors. (0.8 for data outside of Los Angeles County). The
remaining terms in the conversion formula correct for the effects of
interferences. Because of the poor quality of most reactive hydrocar-
bon measurements, a set of splitting factors was developed for comvert-
ing total hydrocarbon readings into the components needed for the chem-
ical mechanism. These factors were derived from emissions data and
from the results of detailed field measurements reported in Altshuller
et al. (1974), Cavanagh et al. (1969), Kopczynski et al. (1972), Lamb
et al. (1980), Mayrsohn and Crabtree (1976), and Stephens and Burleson
(1969). Given a total hydrocarbon measurement, expressed in ppmC, the
factors shown in Table 11.8 enables the partitioning of this value into

the equivalent ppmv amounts needed for the reaction mechanism.

A three—-dimensional model requires initial and boundary concentra-
tions aloft. Unfortumately, few pollutant concentration measurements
have been taken above urban regions. One of the most comprehensive
measurement programs conducted over the Los Angeles basin was that per-
formed by Blumenthal et al., (1978). The results of that study indi-
cated that on days with light winds aloft, polluted air that has been
carried into the inversion layer can remain there overnight to be mixed
down the following day. Figure 11.10 shows the measured ozone comncen—
trations from Burbank and Mt. Lee, which are only 5 km apart but differ
in elevation by about 300 m. The ozone concentration at Mt. Lee
remains high during the night sine little of the NO released at the

surface is able to mix vertically under nighttime stable conditioms.



525

TABLE 11.8

Splitting Factors for Converting Total Hydrocarbon Measurements
into Hydrocarbon Classes for Chemical Mechanism¥*

CLASS URBAN CONDITIONS RURAL CONDITIONS
Ethylene 0.0247 0.0057
Paraffins 0.0419 0.00967
Olefins 0.0110 0.00253
Aromatics 0.0075 0.00173
Formaldehyde 0.0433 0.0100
Aldehydes 0.0118 0.00273

"ppmv of individual class = Splitting factor x THC in ppmC
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The maximum hourly averaged concentration at Burbank increased from
0.20 ppm to 0.37 ppm during the episode. This increase of about 0.10
ppm on successive days 1is approximately the same magnitude as the over-
night level at Mt. Lee, indicating that the downward mixing of polluted
air from the inversion layer could account in part for the increased

pollutant levels observed during this episode,

The procedure adopted in this study for constructing initial and
boundary concentrations aloft is to assume a uniform value within the
mixed layer using the surface concentration. The concentration then is
assumed to decrease linearly to the background value at the top of the
modeling region. Table 11.9 summarizes the results of a literature
survey carried out to establish background levels and it also presents
the values used in the present study. One of the major reasons for
carrying out multi-dav simulations was to minimize the influence
the second day, of assumptions about initial conditions on the first

day. The initial conditions for the second and subsequent days are

simply the model outputs from the preceding day.

11.9 Location of the Airshed Boundaries of the Modeling Region

When choosing the location of the boundary of a modeling region,
tradeoffs must be made among factors such as computer storage, computa-
tional costs and the accuracy of the results. Important physical
phenomena that occur near the edge of the current study region are the
land-sea breeze and mountain-valley flow regimes. Polluted air masses

carried out to sea by the night time land breeze often return the next
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day with the sea breeze as shown in Chapter 5. Upslope flows caused by
heating of mountain slopes can inject pollutant-laden air into the
inversion layer, to be subsequently fumigated down to the surface. At
night, downslope or drainage flows can bring contaminated air, which is
different from the surrounding surface air, into the basin. Since
Eulerian or fixed-grid numerical procedures do not follow material that
leaves the airshed, it is desirable to locate the grid boundary farther
from the main calculation area than the greatest extent of significant
return flows. 1In view of the importance of these flows, trajectory

studies were conducted to locate suitable boundaries for the airshed

model.

Numerical experiments were performed for 27 Jume 1974, in order to
choose the location of the boundary of a subgrid area to be analyzed
within the 400 x 150 km study area. Parcels of air leaving the coast
with the land breeze were followed to determine their seaward extent.
Figure 11.11 illustrates the problem in a simple manner. These trajec—
tory calculations were begun at 00:00 PST on 27 June, the approximate
start of the land breeze. The calculations were performed using the
surface wind fields generated from measured data. Six parcels were
tracked from coastal origins between Santa Barbara and San Juan Capis-
trano. The seaward extent of polluted air leaving the coastline on
this day ranged from 0 to 25 km. Thus, if a western boundary for a
subgrid region were to be stablished parallel to the coastline, it

should be set approximately 25 km offshore in order to avoid loss of

polluted air that might return following a flow reversal. Similar
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COMPUTATIONAL BOUNDARY/ |

FIGURE 11.11

Il1lustration of Procedure Used to Define Computational Region
that }Minimizes the Effects of Inflow Boundary Conditions
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calculations were performed to study inland flow patterns. Trajec—
tories were initiated at Newhall, San Bernardino, Pomona and Perris at
00:00 at 27 June 1974. These studies indicated that during the night,
air travels only a short distance (2 to 10 km) toward downtown Los
Angeles from these locations. The horizontal extent of the computa-

tional domain emploved is shown as the shaded region in Figure 11.12.

After an examination of mixing depth and vertical temperature
structure data for the 26-28 Jume 1974 episode, the height of the top
of the modeling region was set at 1525 m above the terrain. When a
mixed layer existed, it was less than 1100 m deep at all points in the
basin and so material trapped aloft could be satisfactorily tracked.
On those occasions when the mixed layer was destroyed by heating, its
depth was assumed to be 1100 m. After a series of detailed calcula-
tions the number of computational cells in the vertical direction was
set equal to 5, representing a compromise between computational cost

and the ability to resolve vertical concentration gradients.

11.10 Summary

Table 11.10 shows a summary of aerometric and emissions informa-

tion available for 26-28 June 1974 for the study regionm.

11.11 Predicted and Observed Concentrations for 26-27 June 1974

The model was applied to simulate the two-day period 26-27 June
1974 in the SCAB. The concentrations of 15 species (NO, N02, 04, €O,

PAN, HONO, RO,NO

,NO,, RONO, H,0,, C,H,, OLE, ALK, ARO, HCHO and RCHO) are

272°
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predicted in each of the grid cells as a function of time commencing at
0:00 hours 26 June. Of the 15 species calculated, two for which there
exist both monitoring data and National Ambient Air Quality Standards,
and the two that provide the most stringent test of a model to simulate

photochemical air pollution, are NO, and O3a Therefore, we confine our

2

attention here to these two species.

The computed concentration field may be presented in several ways:

1. One-hour—average ground-level concentration fields
at each hour

2. Isopleths (contour lines of constant concentrations)
at each hour

3. Concentrations as a function of time for various grid
cells, in particular those containing a monitoring stationm.

Each of these three ways of presenting predicted concentrations is use-

ful and informative. For economy of space and because we are espe-—

the temporal behavior of the concentrations in the grid cells contain-

ing monitoring stations.

Figures 11.13-11.17 show predicted and observed concentrations of
NO2 and O3 during 26-27 June 1974 at several monitoring statioms in the

SCAB. Results at all the monitoring sites are shown in Appendix C.

In the early morning both NO and reactive hydrocarbons peak due to
traffic emissions. The NO2 peak concentrations are delayed a few
hours, consistent with the time required to oxidize NO. Observed and
predicted ozone concentrations increase with distance toward the east.

Ozone concentrations gradually increase until the time of the peak



CONCENTRATION (PPHM)

CONCENTRATION (PPHM)

536

24:00

40 o3
LOS ANGELES-DOWNTOWN
30+ -
20+ -
10 -
[ W J e © °
Ol.ee, 7 .. 1, .1 Neesee??, | U XX)
0:00 4:00 8:00 12:00 16:00 20:00 24:00 4:00 8:00 2:00 16:00 20:00 24:00
26 JUNE 27 JUNE
TIME (PST)
(a)
40 NG2
LOS ANGELES-DOWNTOWN
30~
20
10
4
(¢ | ST SRS WS < B eS8 NS EET TR B
0:00 4:00 8:00 12:00 16:00 20:00 24:00 4:00 8:00 12:00 16:00 20:00
26 JUNE _ 27 JUNE
TIME (PST)

(b)

FIGURE 11.13

Predicted and Observed Concentrations of:
(a) Ozone and (b) Nitrogen Dioxide at Downtown Los Angeles

(- predicted, o observed)
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FIGURE 11.14

Predicted and Observed Concentrations of:
(a) Ozone and (b) Nitrogen Dioxide at Pasadena

(- predicted, o observed)
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FIGURE 11.15
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FIGURE 11.16

Predicted and Observed Concentrations of:
(2) Ozone and (b) Nitrogen Dioxide at Upland
(- predicted, o observed at CARB station,
® observed at APCD monitoring site located 400 meters away).
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FIGURE 11.17

Predicted and Observed Concentrations of:
(a) Ozome and Nitrogen Dioxide at Riverside
(- predicted, o observed at APCD station,
® observed at ARB monitoring site located 1200 meters away) .
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predicted concentration which usually occurs between 1300 and 1400 PST.
As air moves onshore and approaches the San Gabriel mountain range,
bifuration of the flow occurs. Some of the pollutants emitted in the
western and downtown portions of the Basin are carried northward into
the San Fernando Valley; other material is transported east to Azusa,
Upland and Riverside. In most cases the model accurately reproduced
both the magnitude and timing of the peak ozone concentration. Similar
behavior was also noted for nitrogen dioxide except that the model
tended to predict the peak values one to two hours earlier. The fact
that the model satisfactorily described the observed concentration
trends on the second day is particularly encouraging for control stra-
tegy calculations. The reason for this is that by running the model
for a period longer than the characteristic ventilation of the airshed
it is possible to minimize the influence of uncertainties in specifying
the initial conditions. This capability is important for those situa-
tions where it is not possible to derive starting conditions from

ambient monitoring data.

In summary, because the essential trends of the predictions and
observations are in agreement and because the model components
represent state-of-the—art knowledge of each aspect, we assume that the
basic model framework is a valid representation of atmospheric concen-

tration dynamics.
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11.12 Statistical Analysis of Results

In many respects a statistical analysis of the deviations between
predictions and observations is the heart of model performance evalua-
tion. Although raw statistical comparison of observed and predicted
values may not reveal the cause of discrepancies, it can tell much
about the nature of the mismatch. Considerable attention has been
given to statistical measures for comparing predicted and observed air
pollutant concentratioms. (Brier, 1975; Bowne, 1980; Fox, 1981; Ben-
cala and Seinfeld, 1979 and Rao and Visailli, 1981). Fox (1981) in
discussing the results of an American Meteorological Society workshop
identified three basic classes of performance measures.

1. Analyses based on observed and predicted concentration

field values paired for particular locations and times.

2. Examinations of the ability of the model to predict the peak
concentrations.

3. Frequency distributions of the updated (in time) observed
and predicted concentration values.

Bencala and Seinfeld (1979), for example, have discussed many of these
measures and have developed a general computer program for evaluating
them given a set of predicted and observed concentratlions. In the
present section this program has been applied to analyze the simulation
of 26-27 June 1974. The results of these calculations are summarized
in Table 11.11. While ideally an assessment of a model”s performance,
in reproducing observed concentration distributioms, should be based on
a comparison against recognized criteria no formal standards have as

yet been established. The results reported below are offered in the
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TABLE 11.11

Summary Statistics Determined Over ALl Times

and Locations for 26-27 June

1974 ()

(b)r

PERFORMANCE DEFINITION
MEASURE
Mean of Residuals 1 i il
YT S g
Roat Mcan Square Ervor /1 n m 5
(RMSE) Centored about RN b DD Dl (O C NP S
the Mean + "V fe R R

Correlation Coefficient

> ¥

i=1 k=1

L(xj.tk)ﬂi(xj~tk)

>
0
wi(hj,tk) seilx,e) - o
and
- 1 n o om
P D LR
j=l k=1 * Y
Linver Least Squares °
Curve Fit P = b.oeL + o,
i i i

where the slope &i is given by

l L 9 -
= j;l k; fp g N Gyuyd

m

>

2
v,
SIS

N by

Accuracy of Peak
Prediction

Timing of Peak
Concentration
Predictions

A, =
i

o _ P
t (xj) t (xj)

Error Bands % of residuals over all j,k

that satisfy fwi(xj,ck)]; bound

INTERPRETATION OF RESULTS OF TEST

EVALUATION OF MODEL

STATISTICAL TEST 0ZONE NITROGEN DIOXIDE PERFORMANCT
(03) (NOZ)
A measure of the average bias in 0.0019 ppm 0.0078 PP While the model exhibits a stighe
the predictions can be inferred tendency towards undevprediction,
from this test. The criterion lE%](C) [11%|(C) the bias s of the order of tvpica
indicates whether the model pre- monitoring instrumeat errors.
domirantly over-or-under-pradici:
the obscrved concentration.
This test measures the average 0.0382 Dpm 0.0348 ppm  These results provide a formil
spread of the residuals and, measure of the spread of Lhe
more importantly, it is inscnsitive residual histograms prescnred
to any bias in the predictioms. in Fipure 10.
The correlation cocfficient 0.89 0.67 Tor wzone {0.,) the predicted
measures the depree to which the perfornance Is excellent.  In
magnitude of the predictions in- the case of nitrosen dioxide (NUV)
crease linearly with the magnitude Tl 8 nol possible to ascergain &
of rhe obsevvations. From a whether the Tow value of ¢ is due
practical point of view it is to the model performmes or inter-
important to note that the coefficient lerence from HOND, and PAN in the
is insensitive to the extent of the measurement ol NUZ (Adema, 1979,
increase. Tor example, if the pre- Higuehi or al., 1976)
dictionsinecrease linearly at 1/10th
of the rate of the obscrvations then r
will still be one.
This performance measurc can slopes Both tho slopes and intercepts
be used to assess the average 0.851 0.709 for orzeme (04) and nitrogen
increase in the predictions as intercepts diowide (NOp) indicate that the
the observations are increased. 0.0115 ppm 0.0262 ppm model satisfactorily reproduces
The siope parameter ol che the cbserved concencracion
linear least squares curve fit is distributions.
this measure. If the slope is
nearly equal to one then the
intercept is an indication of the
bias.
Ratio of the maximum predicted 0.41 _ 0.80 0.31: 0.80 For both ovzone (0,) and
peak concentration tu the highest 0.51 a 0.36 ' nitrogen \lioxide ENOO) the
measured value. predicted highest concentra-
tions are within 20% c¢f the
observations.
. S . L) J(d) s {4 Table 9 t
Difference in timing of predicted O hrs -2 hrs As seen in Table 9 the pre-
and observed peaks at the monitor- dicted and observed ozone (0.)
ing site with the highest observed concentration peaks were coinci-
concentration. dent at most monitoring sites.
Differences of up to three
hours were noted in the predict-
ed tines of the NO2 peaks.
Thi . . 5 (@) ,(e) ; N
is measure gives the percentage 83.87% 88.9% Most of the residuals were

of predictions that fall within
a particular concentration bound.

within the

+ 0.05 ppm

concentration band.

Footnotes:

(a) In the statistical evaluation of model performance 1336 pairs of predictions aad observations were used in the analysis
of ozone (03) and 973 for nitrogen dioxide (NOZ).

(b)Y The resédual for species i at locations j=1,2,...m and times k=1,2,...,m are defined as w.(x.,tk) = c?(x.,tk) - c?(xA,tk)
where e and ¢y are respectively the observed and predicted concentrations of species i. 2 J

(c) The values in brackets express the residuals as a percentage of the observed mean concentration. For ozonc (0.) the obscrved
and predicted means were 0.0661 and 0.0641 ppm and for nitrogen dioxide (NOZ) 0.0709 and 0.0630 ppm respectively.

(d) The peak observed value of ozone (0,) = 0.51 ppm occurred at Upland at 14:00 PST and the highest nitrogen dioxide
(302) = 0.36 ppm at downtown Lous Angeles at 10:00 PST.

{e) Ccncentration bound set to + 0.05 ppm
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spirit of providing a reference level for performance evaluation of

photochemical air pollution models.

11.13 Distribution of Residuals

Figure 11.18 shows the frequency distributioms of the residuals,
i.e. observed minus predicted concentratioms, for NO, and O, for all
monitoring statioms cover the two day simulation. The distribution of
residuals as a function of observed concentration is shown in Figure
11.19 and, as a function of time, in Figure 11.20. The mean residuals
over all times and locations were 0.0078 ppm for NO, and 0.0020 for 03
indicating a slight trend towards under—prediction. The standard devi-
ation of the distributions shown in Figures 11.18-11.20 are within the
error bounds associated with the routine air quality measurements. As
noted by Fox (1981) analysis of paired data sets is one of the most
stringent tests of a model. For pollutants that have a pronounced
diurnal variation even a cone hour difference in timing of the predicted
maximum concentration can significantly change the results of some sta-—
tistical tests. Figure 11.21, for example, shows the effect on a
correlation plot of a one hour phase shift in the predicted concentra-

tion profile.

11.14 Predicted and Observed Concentration Maxima

An important criterion in evaluating an air pollution model is its
ability to predict the observed concentration maxima. Table 11.12
shows a comparison of the magnitudes of the predicted and observed 03

maxima for 27 June at those stations where the observed maxima exceeded
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FIGURE 11.18

Histograms of Concentrations Residuals (Observed-Predicted) Determined Over
All Times and Locations for the Two Day Period 26-27 June 1974:
(a) Ozone (b) Nitrogen Dioxide
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TABLE 11.12

Observed and Predicted Maximum l-hr Ozone Concentrations at
SCAB Stations Where [05] > 0.20 ppm and Timing of Ozone
Maxima, 27 June 1974

[03], ppm Time of maximum
Station Observed Predicted Observed Predicted
Anaheim 0.23 0.21 1600 1600
La Habra 0.31 0.27 1500 1500
Los Alamitos 0.24 0.22 1700 1600
Norco-Prado Park 0.24 0.21 1600 1600
Riverside-Rubidoux 0.30 0.24 1500 1500
Riverside-Magnolia Avenue 0.24 0.24 1500 1500
San Bernardino 0.32 0.23 1500 1500
Chino 0.27 0.25 1400 1400
Upland-Civic Center 0.51 0.41 1600 1500
Upland-ARB 0.46 0.41 1500 1500
Fontana 0.49 0.38 1300 1400
Azusa 0.35 0.29 1200 1200
Burbank 0.30 0.30 1400 1300
Pomona 0.35 0.32 1100 1200
Whittier 0.38 0.30 1300 1200
Pasadena 0.31 0.31 1200 1200
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0.20 ppm and a comparison of the predicted and observed hour of the 03
maximum at the same stations. The tendency toward under-prediction of
0

concentrations at high O, levels is summarized in Figure 11.19, in

3 3
which the residual 03 (observed minus predicted) concentrations are
shown as a function of observed 03 concentration for all monitoring
stations over the two days. This tendency toward underprediction at

high 0, levels was also exhibited by the Systems Applicatioms, Inc.

3
model in simulations of the same two day period (Seigneur et al.,
1981). The predicted times of occurrence of the 03 maxima agree
exactly or are at most hour hour removed from those observed. Because
the phasing of predicted 03 concentrations depends on virtually all the
physical and chemical processes involved, the close agreement between

observed and predicted temporal behavior suggests that these processes

are accurately portrayed relative to their temporal dynamics.

Figures 11.13-11.17 show what might be termed "point comparisoms.”
The observed values represent one-hour average concentrations measured
at a fixed monitoring site. The predictions, on the other hand,
represent averages over a computational grid volume 5 km by 5 km on a
side and typically 10 to 20 m high. If a particular monitoring site is
dominated by a local source, concentration measurements may not be
representative of the grid-cell average concentration. In so-called
grid models of air pollution there are, therefore, two inherent prob-
lems in comparing observed and predicted concentrations. On one hand,
due to computational costs, there is effectively a minimum grid cell

size that may be employed for a certain region. (There also exist
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inherent limitations on the spatial and temporal resolution of the
atmospheric diffusion equation (Lamb and Seinfeld, 1973).) On the other
hand, the spatial representativeness of the measurements at a monitor-
ing site is limited and may be influenced by local sources and flow
patterns. An indication of the effects of subgrid scale concentration

fluctuations can be seen in Figures 11.16 and 11.17.

11.15 Frequency Distributions

Figures 11.22a and 11.22b show the observed and predicted fre-
quency distributions of hourly-averaged O3 concentrations at Azusa and
Upland-ARB, respectively. Aside from the tendency toward under—
prediction at the highest concentrations, the agreement is good at both

stations. (Similar results, not shown, were obtained at other monitor-—

ing sites.)

11.16 Observation Accuracy

Although we have indicated all observed concentrations by data
points, suggesting exact values, the observed data have an associated
level of accuracy that should be indicated by error bounds on each data
point. Using the reported accuracy of the measuring instruments
employed in 1974 as a function of concentration level (Higuchi et al.,

1976; Higuchi, 1981), we replotted the observed and predicted 0. con-—

3
centration at Pasadena including the * 20 estimated error bounds on the
data. These results, shown in Figure 11.23, again indicate that the

model satisfactorily reproduces the ambient concentration dynamics.

The model performance as indicated by the magnitude of the
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concentration residuals compares quite well with the errors associated

with the measurements.
11,17 Conclusions

The major contribution of this research project has been the
development of a mathematical model that can be used to describe urban-
scale photochemical air pollution, Based on the species continuity
equation the model incorporates the combined influences of advective
transport, turbulent diffusion, chemical reaction, source emissiocons and
surface removal processes. Satisfactory performance of the model has
been demonstrated by comparing predicted and observed air quality over
the South Coast Air Basin for the two-day period 26-27 June 1974, The
calculated spatial and temporal trends of nitrogen dioxide (NOZ) and
ozone (03) agree quite closely with routine monitoring measurements.
These results and other tests indicate that the model can accurately
reproduce the important features of photochemical air poilution over a
major metropolitan region. While much of the testing has been per—
formed using data available in the South Coast Air Basin, there is no
reason why the model cannot be applied to evaluate air quality impacts

of control strategies in other locatioms.
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CHAPTER 12

DIRECTION FOR FUTURE RESEARCH

12.1 Introduction

Inevitably in the course of any research project, topics for
future investigation become apparent. The areas identified during this
project can be broadly classified into three categories: applications
of the modeling methodology, further basic research and additional
experimental measurements. This chapter presents a discussion of each
of these topics and develops some specific recommendations for further
work. Even though there is some scope for additiomal study this should
not be interpretedas a case for forestalling applications of the present
modeling system. The verification results for both the individual com-
ponents as well as the system as a whole indicate that the models can

satisfactorily predict the ambient concentration dynamics.

12 .2 Model Applications

A major focus of this work has been the development of mathemati-
cal models that can predict the air quality impacts of changes in
source emissions. Given this capability perhaps the most important
question to be addressed is: how can this analysis methodology be best
utilized in the design of control strategies that will achieve desired
air quality objectives in a cost effective and equitable manner? There

are three aspects of this question that need to be considered: the



w
wn
(o2

control strategy design, its economic optimization and the relationship

of the model predictions to the air quality standards.

Since the basic goal of most control programs is to achieve emis-
sions reductions from many different sources it is important to distin-
guish between tactics applied to particular sources and the overall
emission reduction strategy. An individual tactic Ti’ is a control
measure directed at a particular source or source class with the intent
of reducing the amount, location or timing of emissions. Some typical
control tactics might be the use of low excess air during combustion to
reduce emissions of nitrogen oxides, vapor recovery during the handling
of liquid hydrocarboms or catalytic reduction of vehicle exhaust gases.
A control strategy Sj’ on the other hand represents a composite set of
tactics that, when applied to the region as a whole, produces a large
reduction in emissions from many source classes. The distinction
between these two aspects is illustrated in Figure 12.1 where it can
easily seen that a particular control strategy is composed of many
individual tactics, each of which, are responsible for a small reduc-
tion in emissions. At present the most common utilization of air qual-
ity models is to simply test the air quality impact of different stra-
tegies. One area of research that has the potential for substantially

reducing the cost of air pollution control is to identify solutiomns

that are both feasible and optimal.
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The control strategy design problem can be compactly formulated as

a mathematical programming problem

select S(T) (12.1)
that minimizes C[S(T)] (12.2)
subject to 9 [E(x,t),z(x,t),M(x,t),P] < Q% (12.3)

This formulation is designed to select a control strategy S, composed
of tactics I = (Tl,Tz,...), that when applied to an emission pattern
E(x,t) minimizes the objective function G, subject to air quality Q at
all receptor points r(x,t) within the airshed domain remaining below
the desired air quality goal Q®. 1In most applications the objective
function C, represents the total cost of control, however there is no
reason why a number of different objectives cannot be addressed simul-
taneously. Both E = (El’EZ""’Em) and Q = (Ql,Qz,...,QP) have been
defined as vector quantities to encompass cases where there are m emis-
sion species and p different pollutants. The problem is complicated by
the fact that the air quality outcome Q is a function not only of emis-
sions but also of the meteorology M, and chemical reaction parameters,
P. Other comstraints, such as availability of clean fuels or techno-
logical limitatiomns of different control techniques may also be incor-

porated into the formulatiom.

When there is a linear relation between emissions and air quality
the system (12.1-12.3) can usually be stated as a set of linear equa-

tions and solved using standard linear or integer programming



techniques. Most of the applicable mathematical programming approaches
are summarized in Franklin (1980), Shapiro (1979) and Wismer and
Chattergy (1978). The inherently non-linear nature of oxidant forma-
tion does complicate the solution of the optimization problem. In fact
most of the reported applications of photochemical models have been
restricted to simply testing different emission patterns. Some pro-
cedures for estimating overall control requirements for oxidant abate-—
ment have been demonstrated using smog chamber data (Dimitriades,
1977), aerometric data analysis (Trijomis, 1974; Bilger, 15978; Post,
1979) and mathematical box models that incorporate an explicit photo-
chemical mechanism (Whitten and Hogo, 1978; Derwent and Hov, 1980).

The Trijonis study and its extension by Kyan and Seinfeld (1974) pro-
vide the only economically optimized control strategy design procedures
for photochemical smog demonstrated to date. Dynamic optimization
techniques that minimize the cost of attaining emission control objec-
tives over time also have been explored. Seinfeld and Kyan (1972) and
Kyan and Seinfeld (1974) have addressed the problem of attaining and
maintaining compliance with air quality standards over periods of suc-—
cessive years. The latter study employed dynamic programming together
with the empirical photochemical air quality model of Trijonis (1974).
A more detailed review of these studies is presented in Cass and McRae
(1981). At present there are no studies that combine the use of both

advanced air quality models and economic optimization.
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While air quality models are an integral element of the control
strategy design process there are other aspects that must be con-
sidered. Figure 12.2 presents in a highly simplified manner the steps
that need to be undertaken if an economically optimized set of emission
controls are to be identified. From an inspection of this diagram it
is clear that many different types of data are required. What is not
apparent, and frequently ignored in practice, is that the air quality
model serves as a focus for much of the data used in contrel strategy
analyses. From a practical point of view there is a critical need for
developing formal procedures and quality control checks that can be
used to collate the needed information at a consistent level of detail.
For example, simply assembling emissions data without giving any con-
sideration to the economics of the associated control technologies vir-

tually precludes identifying least cost strategies.

Most of the above discussion has focused on the use of models to
design control strategies that will achieve particular air quality
goals. Currently the planning efforts of regulatory agencies are
directed at satisfying statuatory requirements mandated by the Clean
Air Act. Most air quality standards are stated in the form of a par-
ticular air quality levels that are not to be exceeded, on an hourly
basis, more than once per year. At present the resources required to
use photochemical models are such that it is not feasible to model
every day of the year. A critical area for future research is to
determine 1f the current worst day design philosophy leads to stra-

tegies that will meet air quality objectives on all other days.
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12.3 Basic Research

During the course of this study many different research topics
were identified. Since most of the potential refinements to the
present modeling system have been discussed in previous chapters they
will not be repeated here. (A summary of some of the more important
issues is contained in Table 12.1.) Most of the current control pro-
grams are directed at reducing the concentration of those gas phase
species for which there are ambient air quality standards. Two addi-
tional topics that offer considerable scope for future research are
the incorporation of particulate formation processes into the model and
a study of currently unregulated pollutants. Technically the most
challenging is the implementation of the aerosol mechanics. The capa-
bility to predict the formation and growth of fine particulates will be
an integral element of any strategy directed at improving the visibil-

ity in urban areas.

In addition to the species of regulatory interest the airshed
model also predicts the concentration of many other pollutants that
have known or anticipated effects on health and welfare. For example,
gas phase nitric acid can react with ammonia to form particulate
ammonium nitrate that in turn can have a major influence on visibility
degradation. One area that deserves special attention is the feasibil-
ity of preferentially abating some of these pollutants as part of ongo-

ing oxidant and particulate control programs.

e
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TABLE 12.1

Summary of Areas and Ouestions for Additional Research

Turbulence Chapters 2,4,5,7
Entrainment Process at Inversion Base

Diffusive Transport Under Stable Conditiomns
Cost Effective Closure Models

Objective Analysis Procedures 3

Wind Field Generation in Remote Areas
Applications of Remote Sensing
A priori Generation of Mixing Heights

Surface Removal Processes 6

Characterization of Deposition for Different Stabilities
Surface Affinity Characterization

Point Source Treatment 7

Dispersion Coefficients
Procedures for Imbedding Plumes in Grid Model
Plume Rise Calculations in Arbitarily Stratified Environments

Chemistry 8

More Detailed Lumping Mechanism for Aromatics
Temperature Effects on Ozone Formation
Reactions Involving Natural Hydrocarbon Emissions

Numerical Analysis 9,10,11

Application of Higher Derivative Methods for Chemistry
Formulation of Filtering Schemes into Advection Algorithms
Theoretical Treatment of Boundary Conditions
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12.4 Field and Experimental Measurements

In many areas further model development is hampered more by the
paucity of measurements than by the understanding of the basic physics
and chemistry. Data deficiences occur in three areas: field measure-—
ments needed to verify a chemically resolved model, source test infor-
mation required for construction of emissions inventories, and experi-
mental determination of basic chemical data. These requirements are
detailed in Tables 12.2 - 12.3, While not strictly a part of a meas-
urement program one aspect that is often ignored is a thorough assess—
ment of the accuracy of the basic data. This consideration is particu-
larly relevant to the emissions information. Unless the emissions data
have been prepared at a level consistent with the desired accuracy of
the model predictions there is little point in using air quality
models. Consistency checks need to be applied to individual sources,
source classes, the region as a whole and should include fuel usage
patterns, operating conditions, pollutant ratios, exhaust composition
and control efficiencies. One useful approach is to compare the
results from top-down and bottom-up estimating procedures. These
methods can provide bounds on the accuracy of emissions inventories. A
formal methodology using weighted sensitivity analysis techniques 1is

described in Ditto et al. (1976)
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TABLE 12.2

SUMMARY OF METEOROLOGICAL MEASUREMENTS NEEDED FOR MODEL EVALUATION

Wind Measurements

Vertical Shear Distributions

Flow Patterns Close to Mountains (Upslope Flows)
Magnitudes of Nocturnal Drainage Flows

Quantitative Evaluation of Monitoring Site Exposure
Characterization of the Effects of Surface Roughness

Mixing Height Distribution

Increased Spatial and Temporal Resolution of Mixing Height
Effect Mixing Height Distributions Close to Mountains

Solar Radiation

Detailed Spatial and Temporal Measurements of uv Flux
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TABLE 12.3

SUMMARY OF NEEDED CHEMICAL MEASUREMENTS

Concentration Measurements — General Aspects

Quantitative Evaluation of Interference Effects

Detailed Characterization of Monmitoring Site Exposure

Establishment of Bounds on Measurements due to Errors and Averaging
Improved Resolution of Vertical Concentration Distributioms

Routine Measurements of Certain Non Criteria Pollutants

Hydrocarbon Measurements

Spatial and Temporal Variatiomns of Hydrocarbon Reactivities
Characterization of Aldehydes and Natural Hydrocarbons
Need for Imcreased Species Resolution Beyond THC—RHC—CH4

Background Air Quality

Values Away From Urban Region

Vertical Profiles of Ozone

Hydrocarbon Concentration and Compositiomn
Concentration of NO, NO, and O3

Source Profiles and Emilssion Factors

Detailed Emissions Distributions From Mobile Sources
Chemical Composition and Solvent Utilization by Industries
Extent and Magnitude of Emissions from Gasoline Evaporation
Industrial Fuel Usage Patterns

Improved Characterization of Emissioms from Area Sources
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12.5 Conclusions

In this chapter many suggestions have been made for future refine-
ments and the need for additional experimental measurements. Given the
present state of model development, perhaps the greatest need is not
for basic research, but rather for the application of these new tools

to the design of cost-effective and equitable control strategies.
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CHAPTER 13

SUMMARY AND CONCLUSIOQNS

The major contribution of this work has been the formulation and
computational implementation of a mathematical description of urban
scale photochemical air pollution. Based on the specles continuity
equation, the modeling system incorporates the combined influences of
advective transport, turbulent diffusion, chemical reactions, source
emissions and surface removal processes. Given the potential for
widespread utilization of these models careful attention has been given
to delineating the assumptions underlying the valid applications of:
three-dimensional, Lagrangian trajectory, vertically integrated and

single cell air quality models.

While the mathematical formulationm of the modeling system contains
no regional or area specific information performance, evaluation studies
were carried out using data measured in the South Coast Air Basin of
Southern California. Detailed emissions and meteorological information
were assembled for the period 26-28 June 1974. A comparison between
calculated and observed air quality indicates that the models can
satisfactorily describe urban scale atmospheric concentration dynamics.
The results of these and other tests indicate that the models are now
in a form that they can be used to predict the air quality impacts of

alternative contrel measures.



APPENDIX A

KINETIC RATE EQUATIONS AND STEADY STATE APPROXIMATIONS

This appendix documents the differential and algebraic forms of the
equations used to describe the kinetics of the chemical mechanism
presented in Chapter 8. The notation has been chosen to simplify the

implementation of the computational solution procedures. The forward

reaction rates T i=1,2,...,m for the interactions between the c.3

i=l,...,p species shown in Table 8.1 - 8.2 are given by
RI = K( 1)*NO2 R27 = K(27)*C2H4*0
R2 = K( 2)*0%02%M R28 = K(28)*0LE*0H
R3 = K( 3)*N0%*03 R29 = K(29)*0LE*0
R4 = R( 4)*N02*0 R30 = K(30)*03*0LE
R5 = K( 5)*N0*0 R31 = K(31)*ALK*0OH
R6 = K( 6)*N0O2%0 R32 = K(32)*ALK*0
R7 = K( 7)*N02*03 R33 = K(33)*AR0*0OH
R8 = K{ 8)*NO*NO3 R34 = X{34)*R0O
R9 = K( 9)*NO*0OH R35 = K(35)*RONO
R10 = KR(10)*HNO2 R36 = K(36)*NO*RO
R11 = K(11)*NO2*HO2 R37 = K(37)*N0O2*RO
R12 = K(12)*HNO2*%0H R38 = K(38)*NO2*R0O
R13 = K(13)*NO2*HO2 R39 = K(39)*N02*R0O2 (A.1)
R14 = R(14)*HNO4 R40 = K(40)*NO2*R02
R15 = K(15)*NO*HO2 R41 = K(41)*RNO&
R16 = K(16)*NO*RO2 R42 = K(42)*NO2*RCO3
R17 = K(17)*NO*RCO3 R43 = K(43)*PAN
R18 = K(18)*N0O2%0H R44 = K(44)*NO2*NO3
R19 = K(19)*0H*CO R45 = K(45)*N205
R20 = R(20)*03 " R46 = K(46)*N205%H20
R21 = K(21)*HCHO R47 = K(47)*03*0H
R22 = K(22)*HCHO R48 = K(48)*03*H02
R23 = KR(23)*HCHO*OH R49 = K(49)*03
R24 = K(24)*RCHO R50 = K(50)*H0O2%%2
R25 = K(25)*RCHO*0H R51 = K(51)*H202
R26 = K(26)*C2H4*0H R52 = K(52)*R02%%2

where K(i);i=l,...,m are the reaction rate constants.
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Using the procedures presented in Chapter 11 it is possible to parti-

tion the concentration vector ¢ into two components (cd[cs) where the

species ¢y are described by differential forms and ¢ by algebraic

equations. Given (A.l) the reaction set kinetics are of the form

d Sd = F(c

»C_) (A.2)
at - ~d’-s

The differential equations for the individual species are given by

F(NO) = +R1-R3+R4-R5-R8~R9+R10-R15~R16-R17+R35-R36 (A.3)
F(NO2) = -R1+R3-R4+R5-R6-R7+2*%R8-R11+R12~R13+R14+R15+R16 (A.4)
+R17-R18-R37-R38-R39-R&40+R41-R4&2+R43-RLL+RES
F(03) = +R2-R3-R7-R20-R30-R47-R48~R49 (A.5)
F(HCHO) = -R21-R22-R23+A2*R30+B2*R34 (A.6)
F(RCHO) = —-R24-R25+A1%*R30+R33+A3*R34+R38+R40 (A.7)
F(OLE) = -R28-R29-R30 (A.8)
F(AIK) = -R31-R32 (A.9)
F(ARO) = -R33 (A.10)
F(C2H4) = —R26-R27 (A.11)
F(CO) = —-R19+R21+R22+R23+R24 (A.12)
F(H202) = +R50-R51 (A.13)
F(PAN) = +R42-R43 (A.14)
F(HNO2) = +R9-R10+R11-R12+R38 (A.15)
F(RONO) = -R35+R36 (A.16)
F(RNO4) = +R39-R&41 (A.17)

The coefficients Al-A6, Bl-B3 are defined in Chapter 8.
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Some species react sufficiently fast enough that their production and
decay rates are approximately equal. Under these conditions it is pos-
sible to replace the differential equations by non-linear, implicit

algebraic expressions of the general form

Flegse) =0 (A.18)

The equations which arise for each species are given by

F(0) = 0 = +R1-R2-R4~R5-R6+R20-R27-R29-R32 (A.19)

F(RO) = 0 = +R16+A6*R30~R34+R35-R36-R37-R38+2%R52 (A.20)

F(OH) = 0 = -R9+R10-R12+R15-R18-R19-R23-R25-R26—-R28 (A,21)
+A5%R30-R31+R32-R33-R47+R48+2%R51

F(NO3) = 0 = +R6+R7-R8-R44L+RAS (A.22)

F(RO2) = 0 = -R16+R17+R24+R26+R27+R28+R29+A4*R30+R31 (A.23)
+R32+R33+(1-B1)*M*R34-R39~R40+R4&1~2*R52

F(HO2) = 0 = —-R11-R13+R14~R15+R19+42%R21+R23+R24 (A.24)
+R27+A3*R30+B1*R34+R47-R48-2%R50

F(RCC3) = 0 = -R17+R25+R29-R42+R43 (A.25)

F(N205) = 0 = +R44-R45-R46 (A.26)

F(HNO4) = 0 = +R13-Rl4 (A.27)

From a computational point of view it is desirable to avoid situations
which involve solutions of implicit non-linear systems. Under some

conditions it is possible to replace (A.18) by the explicit form

c = 6(c,) (A.28)

~S Sd

For the system (A.19 - A.27) a solution can be obtained from a series

of successive eliminations.
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Atomic oxygen can be determined directly from (A.19) as

+K(6)*NO2+K (27 ) *C2H4+K (29 ) *OLE+K(32)*ALK)

NO3 and N205 can be found from a simultaneous solution of the system

defined by (A.22) and (A.26) i.e.

Y1(NO3) + Y2(N205) = Y3 (A.30)
Y4(N03) + Y5(N205) = O (A.31)
where

Y1 = —(R(8)*NO+K(4&4)*NO2) (A.32)
Y2 = K(45) (A.33)
Y3 = —(K(6)*N02*0+K(7)*N02*03) (A.34)
Y4 =  K(44)*NO2 (A.35)
Y5 = =(K(45)+K(46)*H20) (A.36)

Given these coefficients the solutions for NO3 and N205 are

NO3 Y3%Y5/(Y1*5Y5~Y2%Y4) (A.37)

N205 = -Y4*N03/Y5 (A.38)

For the other species the algebraic expressioms can be written as

0 = X1 + X2(0H) + X3(RCO3) (A.39)
0 = X4 + [X5 + X6(R02)1(RO2) + X7(RO) (A.40)
0 = X8 + X9(0H) + X10(RO) + [X11 + X12(HO2)](HO2) (A.41)
0 = X13 + X14(H02) + X15(CH) (A.42)
0 = X16 + X17(RCO3) + X18(0H) + [X19 + X20(R02)1(R02) + X21(RO) (A.43)



The coefficients X1 - X21 in (A.39 - A.41) are given by

RCO3

RO

HO2

OH

RO2

X4

X5

X6

X7

X8

X9

X10

X11

X12

X13

X1l4

X15

X16

X17

1}

1

I

K(29)*0LE*0+K(43)*PAN
K(25)*RCHO

—(X{ITIXNOSR L 234N02)

AB¥K(30)*03*0LE+K(35)*RONO
K(16)*NO
2*%K(52)

~(K(34)+K(36)*NO+K(37)*N02+K(38)*N02)

2*%K(21)*HCHO+K ( 24 ) *RCHO+K ( 27 ) *C 2H4* 0+
A3*K(30)*03*0LE

K(19)*CO+K(23)*HCHO+K(47)*03
B1*K(34)
=(K(11)*N02+K(13)*NO2+K(15)*NO+K(48)*03) + K(13)*NO2

-2.0*K(50)

K(10)*HNO2+A5%K (30)*03%0LE+K(32)*ALK*0+2*K (51 )*H202
K(15)*NO+K(48)*03
—(K(9)*NO+K(12)*HNO2+K(18)*N02+K(19)*CO+

K(23)*HCHO+K(25)*RCHO+K ( 26 )*C2H4+K ( 28 ) *OLE+
R(31)*ALK+K(33)*AR0+K(47)%*03)

K(24)*RCHO+K(27)*C2H4*0+K (29)*OLE*0+
A4*K(30)*03*%0LE+K(32) *ALK*0+K (41 ) *RNO4

K(17)*NO

(A.44)
{(A.45)

(A.46)

(A.47)
(A.48)
(A.49)

(A.50)

(A.51)

(A.52)
(A.53)
(A.54)

(A.55)

(A.56)

(A.57)

(A.58)

(A.59)

(A.60)



574

X18 = K(26)*C2H4+K(28)*0LE+K(31)*ALK+K(33)*AR0 (A.61)
X19 = —(R(16)*NO+K(39)*N02+K(40)*N02) (A.62)
X20 = -2.0%*K(52) (A.63)
X21 = (1-B1)*M*K(34) (A.64)

After considerable algebraic manipulation it is possible to develop

a quadratic expression for HO2 of the form

D1¥HQ2%*%*2 + D2%¥HO2 + D3 = 0 (A.65)

where the coefficients D1-D3 are given by

D3 = X8+GG*X10-X9*X13/X15 (A.66)
D2 = X11+EE*X10%X14/X15-X9%X14/X15 (A.67)
Dl = X12 (A.68)

and the intermediate terms by

DD = 1.0/(X7%X19-X5%X21) (A.69)
FF = DD*(X5%X16-X4*X19-X1*X5%X17/X3) (A.70)
EE = DD*(X2*X5%X17/X3-X5%X18) (A.71)
GG = FF + EE*X13/X15 (A.72)

The solution of the quadratic is given by
HOZ = (-D2-SQRT(D2%D2-4*D1%*D3))/(2*D1) (A.73)
Once HO? is available then the other steady state species are given by

-(X13+X14%H02) /X15 (A.74)

OH =

RCO3 = —(X1+X2%0H)/X3 (A.75)
RO = —(X8+X9%0H+(X11+X12%¥H02)*H02)/X10 (A.76)
RO2 = —(X&+X7*R0)/X5 (A.77)



HNO4 = K(13)*NO2¥H02/K(14) (A.78)
In some case there may be no NOX present in the system, when this

occurs the following reduced set of steady state expressions can be

applied
O = -X13/X15 (A.79)
RO2 = SQRT(-(X16+X18%*0H)/X20) (A.80)
RO = —(X4+X6*R02*R02)/X7 (A.81)
HO2 = SQRT(-(X8+X9*0OH+X10%R0)/X12) (A.82)
NO3 = ©N205 = RCO3 = HNO4 = 0 (A.83)

Considerable care must be exercised during the computational implemen—
tation of the above expressions because various terms involve small
differences between large quantities. The remaining species {02,H20,M}
are treated as being comstant during a time step and are supplied

externally.
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APPENDIX B

A LINEAR FINITE ELEMENT SOLUTICH OF THE
CONSERVATIVE FORM OF THE ADVECTION EQUATION

B.1l Introduction

Finite element methods, as a class, are an increasingly popular
approach for numerical solutiom of fluid flow problems. They are par-
ticularly attractive because of their high accuracy and, more impor—
tantly, the ease with which boundary conditions can be handled. This
appendix is devoted to a detailed derivation of the finite element
algorithm employed in Chapter 10 where, as part of the splitting
sequence, it was necessary to solve the first order hyperbolic problem

(B.1).

_a_E+ Lu = 0] (B.l)
ot

Specifically in atmospheric flows (B.1) is associated with the scalar

advection equation which is given by

Jc Juc

—a?‘l' = = 0 (B.Z)

In (B.2) c(x,t) is the non-negative concentration field and u(x,t) the
advective velocity. This appendix extends the recent work of Pepper et
al. (1979) which presents a finite element model for the more restric-

tive nonconservative form of (B.2).
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B.2 Galerkin Formulation

A common approach to solve the hyperbolic problem (B.l) is to

form the Galerkin equation using finite elements in space (Strang and

Fix, 1973; Finlayson, 1972).

With this technique approximations to

the concentration and velocity fields C(x,t), U(x,t) are expressed in

terms of time varying coefficients

ous basis function ¢i(x), i.e.

a:(t), Bj(t) and piecewise continu-

n
c{x,t) = C(x,t) = z a, () ¢, (x)
. + + (B.3)
i=1
n
ulx,t) = U(x,t) = Z B, () ¢ (x) (B.4)
4 i i
i=1
where
XX
i-1
(%, x P O
i+1” ¥ <y <
_ PV — 5 X, X .
¢i(X) = < X417y i—*2%4n (B.5)
O .
5 X <X 1 or X > Xi+l
\

Equation (B.5) describes a set of linear basis function which are

sometimes called Chapeau functions

hatlike shapes. The form of these

Other basis functions which vanish

because of their similarity to

functions is illustrated in Figure B.l.

]

outside the interval [x. ,,x
1-1°"x+1

are described in Strang and Fix (1973), Connor and Brebbia (1977).
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i+l

I'.-Axi "}'_Axm_"

Figure B.1l

Linear Basis Functions for Galerkin
Finite Element Model
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Using the functions described by (B.3) and (B.4) the Galerkin

method requires that for all b;

9.0, 3 1
<¢i’ _7%?1. +oos (Bk¢kuj¢j) } > =0 (B.6)

Galerkins”s method is a particular weighted residual scheme in which
the weighting functions are the same as the trial functions (Finlayson,
1972). By expanding the inner product (B.6) the following set of ordi-
nary differential equations in the dependent variabletﬁ(t) can be

derived

3 - B.7)
M. . e + Bk(t)Nijk cxj(t) 0 (

where

M= [4,000, ax

3 (B.8)
8¢k(X) 3¢, (%)
Nijk = /Ebi(ij(}:) et ¢i(X) ¢>k(><) —Jax—]dx (B.9)

Since ¢i(x) vanishes outside the interval [Xi—l’ Xi+1] there will be

three integrals associated with Mij and nine with Ni. for a typical

1k

set of points i-1, i and i+l, i.e.
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Mioi-1 M5 M i+l
i,i-1,i-1 N i-1,i NS i-1,i+1
i,i,i-1 Nili Nii,i+l

Nii+1,i-1 Ni i+l Nj i+1,i+1

The integrations are quite straightforward and to illustrate the pro-

cess consider some typical terms, for example Mi i+l
3

1 (B.10)
Moarn T j- ¢; G 0y, (0dx :
X,
i-1
x5 i1
- +
f¢i¢i+ldx f 9595495
Xi_l Xi (B.ll)
Since ¢i+1(x) =0 for x < X (B.11) can be written in the form
i+ . o y .
- J' i i+1 i i+l % (5.12)
1,1+l Z = = ——= B.
o R I B B Rt 6
1

Similarly Ni,i i is given by

3

X
i+l 56, (x)
_ 2
Yoot [ w0 —— a0 =0 (5.13)

ox

After all the terms have been evaluated the governing set of ordimary

differential equations is given by



Ya. - (2B

Bi-17% i-1

+ + -
T8y eI T By
Various simplifications are possible; consider for example the case of
constant grid spacing in which 2Ax = Xipp T X T X~ X,

.+ For this
-1

situation (B.14) reduces to

a 1 }
at [}‘iﬂ+ hog ot ui"l] T [(261+1 TEPog gt (BBl )0y
(B.15)
(26, + i)ai—l] 0

If the velocity u(x,t) is uniform, then (B.15) simplifies still further

to

4 o + 4o, + q + 3u =
dt i+l i i-1 Ax {O‘iﬂ - O‘i_l-l =0 (B.16)

Time integration of the difference - differential equations can
be accomplished by standard methods. For example, the classic Crank-

Nicholson O(At2) scheme when applied to (B.15) gives

1 k+1 k k+1 k k+1 k
AL [%ai+l -~ ai+l) + 4(ai - ui) + (ui—l - ai—l)] =

(B.17)

1 k+1 . k
1 N K+l
2h% [(Bi 2B (e + %) F B -8 ) (o

k
i-1 + ai) - (Bl + 281_ )

1
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This system of tridiagonal equations can be readily solved using
the Thomas algorithm (Roache, 1976). A discussion of the stability and
convergence of the finite element approximation is contained in Chapter

10 and for this reason will not be repeated here.
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APPENDIX C

GRAPHICAL DISPLAY OF OBSERVED AND PREDICTED AIR QUALITY
FOR THE TWO-DAY PERIOD 26-27 JUNE 1974

This appendix presents the calculated and observed levels of
ozone (03) and nitrogen dioxide (NOZ) at monitoring sites within the
South Coast Air Basin. The spatial distribution of measurement stations
is shown in Figure C.l. Within the computational region defined by
Figure C.2 each station can be located by using the coordinates presented
in Table C.l1. The station names, codes and locations correspond to

those used by local air pollution agencies in June 1974.
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MODELING REGION BOUNDARY OF SOUTH COAST AIR BASIN
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TABLE C.1

Air Quality Monitoring Sites Used in Statistical
Analiysis of Model Results for 26-27 June 1974

STATION<a) MONITORING STATION GRID COORDINATES
CODE (x,7)
30176 Anaheim 51.0 12.5
30177 La Habra 50.4 14.8
30190 Los Alamitos-Orangewood Ave 48.8 12.1
33140 Norco-Prado Park 56.8 14.7
33144 Riverside-Rubidoux 60.1 16.5
33146 Riverside-Magnolia Ave 60.4 15.3
36151 San Bernardino 62.6 18.8
36173 Chino-Riverside Ave 56.3 15.8
36174 Upland-Civic Center 56.1 18.7
36175 Upland ARB 56.5 18.8
36176 Fontana-Foothill Blvd 59.8 18.5
36191 Camp Paivika-USFS 62.5 21.9
56408 Camarillo-Palm 30.6 21.6
56409 Point Mugu 28.7 19.6
56412 Port Hueneme 27.6 20.1
56413 Simi Valley 37.2 22.6
56414 Ventura-Telegraph Rd 26.6 22.8
56415 Thousand Oaks-Windsor Dr 34.0 20.7
70001 Los Angeles-Downtown 45.0 17.4
70060 Azusa 51.4 19.6
70069 Burbank 43.9 20.6
70071 West Los Angeles 41.5 17.5
70072 Long Beach 46.0 12.6
70075 Pomona 54.0 18.0
70076 Lennox 42.6 15.0
70078 Redondo Beach 42.4 13.2
70080 Whittier 48.7 15.0
70083 Pasadena-Walnut St 47.2 19.7
70084 Lynwood 45.6 14.8
70406 Mt Lee Dy-Mobile Van 43.3 19.5
70585 Vanl-105 Frwy (Prop) 47.6 14.6

Notes:

(a) California Air Resources Board Code Number
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Measured (o) and Predicted (-) Ozone and Nitrogen Dioxide
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Measured (o) and Predicted (-) Ozone and Nitrogen Dioxide
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Air Quality at Simi Valley



CONCENTRATION C(PPHM)D

CONCENTRATION C(PPHM)>

603

40
03
VENTURA-TELEGRAPH RD
30 -
20+ 4
101 -
§, ey PR BN N v o S Sy NI S B o~ oS U
0 8 12 16 20 24 ! 8 12 16 20 24
26 JUNE 27 JUNE
TIME (PST)
40
NOB2
VENTURR-TELEGRAPH RD
30K -
20 -
10 -
o[ P B s e voril SRR SRS SRS (SIS U T v i B R
0 8 12 16 20 24 U 8 12 16 20 24
26 JUNE 27 JUNE
TIME (PST)D

FIGURE C.20

Measured (o) and Predicted (-) Ozone and Nitrogen Dioxide

Air Quality at Ventura-Telegraph Rd
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FIGURE C.21

Measured (o) and Predicted (-) Ozone and Nitrogen Dioxide
Air Quality at Thousand Oaks-Windsor Dr
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FIGURE C.22

Measured (o) and Predicted (-) Ozone and Nitrogen Dioxide
Air Quality at Los Angeles-Downtown
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Air Quality at Azusa
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FIGURE C.26

Measured (o) and Predicted (-) Ozone and Nitrogen Dioxide
Air Quality at Long Beach
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Measured (o) and Predicted (-) Ozone and Nitrogen Dioxide
Air Quality at Pomona
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