APPENDIX D

METALS AND OTHER ELEMENTS, MERCEDES

Table	D-1	Minimum Detectable Emissions
	D-2	Baseline with Trap
	D-3	Baseline without Trap
	D-4	Baseline with Replacement Trap, FTP Tests
	D-5	With and without Trap and with Low Aromatic Fuel
	D-6	Loaded Trap and Regeneration Tests, Baseline
		and Low Aromatic Fuels
	D-7	With Worn Injectors and Trap
	D-8	With Retarded Timing and Trap
	D-9	With Retarded Timing and without Trap
	D-10	With Retarded Timing, with and without Trap,
		and with Low Aromatic Fuel
	D-11	Background Results for Trace Metals and Other Elements

TABLE D-1. MINIMUM DETECTABLE EMISSIONS FOR METALS AND OTHER ELEMENTS^a

	Emissions in mg/mi			
	\mathtt{FTPb}	HFET	NYCC	
Sodium ^C	0.10	0.07	0.60	
Magnesium	0.01	0.01	0.04	
Aluminum	0.01	0.01	0.08	
Silicon	0.01	0.01	0.08	
Phosphorus	0.01	0.01	0.05	
Sulfur	0.01	0.01	0.05	
Chlorine	0.01	0.01	0.04	
Potassium	0.01	0.01	0.02	
Calcium	0.01	0.01	0.05	
Titanium	0.01	0.01	0.06	
Vanadium	0.05	0.03	0.28	
Chromium	0.10	0.08	0.63	
Managanasa	0.08	0.06	0.48	
Manganese Iron	0.03	0.05	0.41	
Cobalt	0.06	0.05	0.40	
Nickel	0.06	0.04	0.37	
Copper	0.07	0.05	0.44	
Zinc	0.07	0.05	0.44	
Arsenic	0.10	0.08	0.64	
Selenium	0.12	0.09	0.73	
Bromine	0.20	0.15	1.40	
Strontium	0.50	0.36	3.50	
Molybdenum	1.60	1.20	9.80	
Cadnium	0.01	0.01	0.04	
Tin	0.05	0.04	0.30	
Antimony	0.02	0.02	0.14	
Iodine	0.03	0.02	0.17	
Cesium	0.03	0.02	0.19	
Barium	0.03	0.02	0.20	
Platinum ^C	0.25	0.19	1.50	
Mercury ^C	0.25	0.20	1.70	
Lead	0.75	0.55	4.80	

aThe following are the minimum detectable emission levels for each element and driving cycle, however, the emissions have not been quantified in the following tables unless the emissions are 3 times or greater than the detection limit. Emissions greater than the detection limit but less than three times the detection limit have been designated as trace levels T.

bThe FTP detection limits are for a 23-minute UDDS cycle of the FTP (i.e., the 505 second cold/hot-start segment plus the 867 stabilize segment). Reported FTP emission rates may be lower than the apparent level of quantification if an element was detected during only one of the two UDDS cycles.

CUncorrectable systematic biases were suspected during many of the analyses for these elements.

TABLE D-2. TRACE METALS AND OTHER ELEMENTS, MERCEDES BASELINE WITH TRAP

Emissions in mg/mi FTP NYCC HFET Test 1-1 Test 1-3 Test 1-2 Test 1-2 Test 1-1 Test 1-2 Sodium Magnesium Aluminum T \mathbf{T} Silicon Т Phosphorus Т Sulfur 0.26 0.22 0.14 0.12 0.34 0.25 Т Chlorine 0.04 Т Potassium 0.01 Calcium 0.23 0.05 0.06 T 0.16 0.46 Titanium T Т Vanadium Т Т Chromium Т Т 3.39 Т Manganese Т Iron 1.50 1.39 0.69 0.40 3.30 2.94 Cobalt 0.20 0.20 Nickel 0.15 Т Т Copper Т Т Т Т Т Т Т Zinc Т T Т Arsenic Т Selenium Т Т Т Bromine Strontium Molybdenum Cadmium Tin Antimony Iodine Cesium Barium Т Platinum Т Т Mercury T Lead Т T

Blank space signifies that the emission rate of the element was below the detection limit for the procedure.

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-3. TRACE METALS AND OTHER ELEMENTS, MERCEDES BASELINE WITHOUT TRAP

Emissions in mg/mi FTP NYCC **HFET** Test 2-2 Test 2-2 Test 2-1 Test 2-1 Test 2-1 Test 2-2 Sodium 0.04 Magnesium 0.05 0.03 Т Т Aluminum Т 0.12 0.10 Silicon Phosphorus 0.14 0.16 0.08 0.07 0.23 0.23 1.78 Sulfur 1.76 0.90 0.82 3.08 2.52 0.03 Chlorine Τ Potassium 0.01 0.08 T Т Calcium 0.11 0.10 0.040.04 0.24 0.20 Titanium Т T Т Vanadium Chromium 0.28 0.23 Т 0.19 1.63 Т Т Manganese 0.10 Iron 4.90 3.30 0.69 0.50 5.74 3.69 Cobalt 0.26 Nickel 0.74 0.22 0.16 1.71 1.30 Т Copper T Т Τ Τ Zinc 0.12 0.12 0.14 Т Т Т T T Arsenic Т Т Selenium Т Т Т Bromine Strontium T Molvbdenum Т Т Т Т Cadmium Tin T Antimony Т Iodine Т Cesium Т Barium Т Platinum Т Т Т Т Т T Mercury Т Ţ Т Т Lead Т Т

Blank space signifies that the emission rate of the element was below the detection limit for the procedure.

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-4. TRACE METALS AND OTHER ELEMENTS, MERCEDES BASELINE WITH REPLACEMENT TRAP, FTP TESTS

	Emissions in mg/mi			
		TP		
	Test 11-1	Test 11-2		
		_		
Sodium	_	T		
Magnesium	T	T		
Aluminum	0.05	0.02		
Silicon	0.05	0.04		
Phosphorus	Ť	0.01		
Sulfur	0.33	0.24		
Chlorine	0.03	Т		
Potassium	0.01	T		
Calcium	0.12	0.04		
Titanium	T	T		
Vanadium				
Chromium	T	0.12		
Manganese	T	T		
Iron	4.04	1.29		
Cobalt	Т			
Nickel	0.27	T		
Copper	0.22	0.10		
Zinc		T		
Arsenic		0.16		
Selenium		0.24		
Bromine				
Strontium	T	T		
Molybdenum	T			
Cadmium				
Tin				
Antimony	Т			
Iodine				
Cesium				
Barium				
Platinum				
		_		
Mercury		T		
Lead				

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-5. TRACE METALS AND OTHER ELEMENTS, MERCEDES WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL, FTP TESTS

Emissions in mg/mi FTP, with trap FTP, without trap Test 13-1 Test 13-2 Average Test 4-1 Test 4-2 Average Sodium T 0.03 Т 0.02 0.04 0.01 Magnesium 0.03 0.03 0.02 0.08 Aluminum 0.01 0.02 0.05 Silicon 0.04 0.02 0.03 0.17 0.05 0.11 Phosphorus 0.01 0.01 0.01 0.16 0.10 0.13 Sulfur 0.12 0.29 0.21 1.49 0.81 1.15 Т 0.01 Chlorine 0.01 0.11 0.07 0.09 Potassium 0.01 0.01 0.01 Т T Calcium 0.07 0.05 0.06 0.09 0.05 0.07 Titanium Τ Т Т Т Vanadium Chromium 0.16 0.09 0.13 0.37 T 0.19 Т Manganese Т 1.53 Iron 0.89 2.16 5.42 1.48 3.45 Cobalt T Ţ Nickel Т 0.12 0.06 0.91 0.26 0.59 Copper 0.140.10 0.12 0.13 Т 0.07 Zinc 0.09 0.10 0.10 Т Т Arsenic Т Т Т Т Selenium Т Bromine Strontium 0.83 0.42 Molybdenum Cadmium Т Т Tin Antimony Т Т Iodine Cesium Barium Platinum Т T Т Mercury Т Т Т Т Lead Т

Blank space signifies that the emission rate of the element was below the detection limit for the procedure.

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-6. TRACE METALS AND OTHER ELEMENTS, MERCEDES LOADED TRAP (BASELINE FUEL) AND REGENERATION TESTS (BASELINE AND LOW AROMATIC)

	Emission in mg/mi						
	Loaded Trap			eration	HFET		
	NYCC	Baseli	ne Fuel		Low Aromatic Fu		
	Baseline Fuel	R-1	R-2	R-1	R-2	R-3	
Sodium				Т	Т	0.33	
Magnesium		0.04	T		T		
Aluminum		T		T	T	T	
Silicon		0.20			T		
Phosphorus		T		T	0.09	T	
Sulfur	0.96	1.35	0.34	0.75	0.69	0.25	
Chlorine		0.17	Т				
Potassium				Т	T	Т	
Calcium	0.19	0.05	0.02	0.05	0.07	0.36	
Titanium	T	T	T				
Vanadium		0.10	0.08				
Chromium	T	0.29	T	0.18	T	0.19	
Manganese		Т	Т			Т	
Iron	12.5	12.6	2.24	0.53	0.56	0.54	
Cobalt							
Nickel	2.47	1.92	0.48			T	
Copper		0.30	0.12	0.15	T	0.16	
Zinc		T		T			
Arsenic				Т			
Selenium	T		T	T			
Bromine	T	T	T				
Strontium	T	T	T	T			
Molybdenum		T	T				
Cadmium							
Tin							
Antimony							
Iodine							
Cesium							
Barium	_				T		
Platinum	Т		Т				
Mercury	1.4.7						
Lead	14.6	1.73	1.75				

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-7. TRACE METALS AND OTHER ELEMENTS, MERCEDES WITH WORN INJECTORS AND TRAP

	Emissions in mg/mi				
	FTP	HFET	NYCC		
	Test 15-1	Test 15-1	Test 15-1		
Sodium	Т	T	3.48		
Magnesium	T				
Aluminum	0.02	T			
Silicon	T				
Phosphorus	0.01				
Sulfur	0.31	0.24	T		
Chlorine	T				
Potassium	T				
Calcium	0.06	T	1.26		
Titanium	T	T			
Vanadium		T			
Chromium	0.14	T			
Manganese	Т		Т		
Iron	0.52	0.50	2.69		
Cobalt	0.52	0.30	2.07		
Nickel	Т		Т		
Copper	Ť	0.16	T		
Zinc	1	0.10	1		
Arsenic					
Selenium					
Bromine					
Strontium	T	T			
Molybdenum					
Cadmium					
Tin					
Antimony					
Iodine					
Cesium					
Barium					
Platinum					
Mercury					
Lead					

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-8. TRACE METALS AND OTHER ELEMENTS, MERCEDES WITH RETARDED TIMING AND TRAP

	Emissions in mg/mi					
	FTP		HFET		NYCC	
	Test 17-1	Test 17-2	Test 17-1	Test 17-2	Test 17-1	Test 17-2
Sodium						
Magnesium	T	T				
Aluminum	T					
Silicon	T	0.01				
Phosphorus						
Sulfur	0.17	0.18	0.18	0.17	T	0.14
Chlorine						
Potassium	Т	0.02				Т
Calcium	0.08	0.12	T	Т	T	Ť
Titanium	0.04	T				_
Vanadium						
Chromium	0.17	0.08	T	T	1.21	T
Manganese	Т	Т				
Iron	0.38	0.44	0.14	T	Т	
Cobalt						
Nickel	T	T				
Copper						
Zinc	Т	T				
Arsenic						
Selenium						
Bromine						
Strontium		T				
Molybdenum						
Cadmium						
Tin						
Antimony						
Iodine						
Cesium						
Barium						
Platinum						
Mercury						
Lead						

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-9. TRACE METALS AND OTHER ELEMENTS, MERCEDES WITH RETARDED TIMING AND WITHOUT TRAP

	Emissions in mg/mi						
		TP	H	ET	NYCC		
	Test 8-1	Test 8-2	Test 8-1	Test 8-2	Test 8-1	Test 8-2	
Sodium							
Magnesium	0.04	0.04	0.02	0.02	T	T	
Aluminum	0.02	0.03	Т				
Silicon	0.03	0.06	T	Т			
Phosphorus	0.08	0.11	0.04	0.05	0.14	0.11	
Sulfur	1.31	1.73	1.04	1.22	1.43	1.73	
Chlorine		T					
Potassium		T	Т		0.26		
Calcium	0.06	0.07	0.04	0.03	0.44	T	
Titanium						_	
Vanadium							
Chromium	T	T	0.16	T	T	1.41	
Manganese	T	Т					
Iron	1.34	1.43	0.13	0.31	T		
Cobalt							
Nickel	0.19	0.22	T	T	T		
Copper							
Zinc	T	0.11	T	T		T	
Arsenic	Т						
Selenium							
Bromine							
Strontium	T						
Molybdenum							
Cadmium						T	
Tin							
Antimony							
Iodine							
Cesium							
Barium							
Platinum							
Mercury							
Lead	T			T			

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-10. TRACE METALS AND OTHER ELEMENTS, MERCEDES WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL

	Emissions in mg/mi			
	FTP, with trap	FTP, without trap		
	Test 19-1	Test 10-1		
G 11	_			
Sodium	<u>T</u>			
Magnesium	T	0.03		
Aluminum		0.02		
Silicon		0.02		
Phosphorus		0.08		
Sulfur	0.05	0.80		
Chlorine		Т		
Potassium		Т		
Calcium	0.01	0.05		
Titanium				
Vanadium				
Chromium	Т	T		
Manganese		T		
Iron	0.10	0.90		
Cobalt		****		
Nickel		0.12		
Copper		****		
Zinc		T		
Arsenic	Т			
Selenium	Ť			
Bromine	•			
Strontium	Т	Т		
Molybdenum	•	1		
Cadmium				
Tin				
Antimony Iodine				
Cesium				
Barium				
Platinum				
2 Autinum				
Mercury				
Lead				

T signifies that the element was detected, but below the limit of quantitation.

TABLE D-11. BACKGROUND RESULTS FOR TRACE METALS AND OTHER ELEMENTS

	Weight of Filter I	Element on Filter 2	Filter, μg Filter 3	Comparable Filter 1	E Level for F Filter 2	TP, mg/mi ^a Filter 3
Sodium Magnesium Aluminum Silicon Phosphorus Sulfur	Ь	T ^C T T	τ		т т т	Т
Chlorine Potassium Calcium Titanium Vanadium Chromium		T 0.9	T 0.8 T		T 0.12 0.21	т 0.10 т
Manganese Iron Cobalt Nickel Copper Zinc		т	T T		Т	T T
Arsenic Selenium Bromine Strontium Molybdenum Cadmium			2.6 4.8 T			0.35 0.64 T
Tin Antimony Iodine Cesium Barium Platinum						
Mercury Lead			12.3			1.65

aCalculated as a comparison value only from average FTP test parameters and weight of element on filter. Value has no meaning other than to present the background data in a form that can be compared to the vehicle data. bBlank space signifies that the emission rate of the element was below the detection limit for the procedure.

CT signifies that the element was detected, but below the limit of quantification.

APPENDIX E

METALS AND OTHER ELEMENTS, VOLKSWAGEN

Table	E-1	Minimum Detectable Emissions
	E-2	Baseline with Trap
	E-3	Baseline without Trap
	E-4	With and without Trap and with Low Aromatic Fuel
	E-5	Regeneration Tests with Low Aromatic Fuel
	E-6	With Failed Injectors and Trap
	E-7	With Failed Injectors and without Trap
	E-8	With Retarded Timing and Trap

- E-9
- With Retarded Timing and Trap
 With Retarded Timing and without Trap
 With Retarded Timing, with and without Trap,
 and with Low Aromatic Fuel E-10
- E-11 Background Results for Trace Metals and Other Elements

TABLE E-1. MINIMUM DETECTABLE EMISSIONS FOR METALS AND OTHER ELEMENTS^a

	Emissions in mg/mi				
	\mathtt{FTP}^b	HFET	NYCC		
					
Sodium ^C	0.10	0.07	0.60		
Magnesium	0.01	0.01	0.04		
Aluminum	0.01	0.01	0.08		
Silicon	0.01	0.01	0.08		
Phosphorus	0.01	0.01	0.05		
Sulfur	0.01	0.01	0.05		
Chlorine	0.01	0.01	0.04		
Potassium	0.01	0.01	0.02		
Calcium	0.01	0.01	0.05		
Titanium	0.01	0.01	0.06		
Vanadium	0.05	0.03	0.28		
Chromium	0.10	0.08	0.63		
Manganese	0.08	0.06	0.48		
Iron	0.07	0.05	0.41		
Cobalt	0.06	0.05	0.40		
Nickel	0.06	0.04	0.37		
Copper	0.07	0.05	0.44		
Zinc	0.07	0.05	0.44		
	-				
Arsenic	0.10	0.08	0.64		
Selenium	0.12	0.09	0.73		
Bromine	0.20	0.15	1.40		
Strontium	0.50	0.36	3.50		
Molybdenum	1.60	1.20	9.80		
Cadnium	0.01	0.01	0.04		
Tin	0.05	0.04	0.30		
Antimony	0.02	0.02	0.14		
Iodine	0.03	0.02	0.17		
Cesium	0.03	0.02	0.19		
Barium	0.03	0.02	0.20		
Platinum ^C	0.25	0.19	1.50		
	. – -	•			
Mercury ^C	0.25	0.20	1.70		
Lead	0.75	0.55	4.80		
2044	0.15	0.33			

^aThe following are the minimum detectable emission levels for each element and driving cycle, however, the emissions have not been quantified in the following tables unless the emissions are 3 times or greater than the detection limit. Emissions greater than the detection limit but less than three times the detection limit have been designated as trace levels T.

bThe FTP detection limits are for a 23-minute UDDS cycle of the FTP (i.e., the 505 second cold/hot-start segment plus the 867 stabilize segment). Reported FTP emission rates may be lower than the apparent level of quantification if an element was detected during only one of the two UDDS cycles.

CUncorrectable systematic biases were suspected during many of the analyses for these elements.

TABLE E-2. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN BASELINE WITH TRAP

Emissions in mg/mi FTP HFET NYCC Test 1-1 Test 1-2 Test 1-1 Test 1-2 Test 1-1 Test 1-2 Т Т Т Sodium Magnesium Aluminum 0.01 Т Т Т Silicon 0.02 Т T Phosphorus Sulfur 0.14 0.08 0.07 0.04 0.22 Т Chlorine Т 0.01 0.02 Т Т Potassium T Calcium 0.02 0.04 0.02 Т Т T Titanium T Т Т Vanadium Chromium 0.11 Т Т 0.20 Т 2.61 Manganese T Iron 1.08 0.72 0.60 0.45 3.83 2.54 Cobalt Т Т Nickel T Т Т Т 1.01 Copper Т Т T Zinc 0.14 Arsenic Т Т Selenium Т Т Bromine Т Strontium Molybdenum Т Cadmium Tin Antimony Iodine Cesium Barium Т Platinum Т Т Т Т T Mercury Т Lead

Blank space signifies that the emission rate of the element was below the detection limit for the procedure.

T signifies that the element was detected, but below the limit of quantitation.

TABLE E-3. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN BASELINE WITHOUT TRAP

Emissions in mg/mi FTP NYCC **HFET** Test 2-1 Test 2-2 Test 2-1 Test 2-2 Test 2-1 Test 2-2 Sodium T Т 0.01 Т Magnesium Т T Aluminum 0.01 0.01 Silicon Т T Т 0.05 0.05 0.03 0.02 Phosphorus Т Т Sulfur 0.79 0.64 0.55 0.48 1.07 0.99 0.02 0.01 Т Ţ Chlorine Т Potassium Т Calcium 0.07 0.08 0.03 0.04 Т 0.18 Titanium T Vanadium Chromium Т Т Т Т Т Т Т Т Manganese Т Т Т Iron 1.25 0.94 0.54 0.46 2.64 2.60 Cobalt Nickel T 0.07 Т T Т Т Copper Т T Т Т Zinc Т Т Т Т Т Arsenic Т Т Selenium Т T T Bromine Strontium Molybdenum Т Cadmium Tin Antimony Iodine Т Cesium Barium Platinum Т T T Т Т Т Mercury Т

Blank space signifies that the emission rate of the element was below the detection limit for the procedure.

Т

Т

T signifies that the element was detected, but below the limit of quantitation.

Lead

TABLE E-4. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL, FTP TESTS

	Emissions in mg/mi					
	I	TP, with tra			P, without to	ap
	Test 3-1	Test 3-2	Average	Test 4-1	Test 4-2	Average
Sodium						
Magnesium				Т	Т	Т
Aluminum	0.05	0.02	0.04	0.04	0.03	0.04
Silicon	T	T	T	0.02	0.01	0.04
Phosphorus	Ť	Ť	Ť	0.03	0.04	0.04
Sulfur	0.16	0.06	0.11	0.04	0.36	0.20
Chlorine	T	0.01	0.01	Т	0.01	0.01
Potassium	T	0.01	0.01	0.01	Т	0.01
Calcium	0.08	0.11	0.10	0.10	0.08	0.09
Titanium	T	T	Т			
Vanadium						
Chromium	0.10	Т	0.05	T	0.12	0.06
Manganese	Т	Т	T	Т	Т	T
Iron Cobalt	1.23	0.57	0.90	0.76	0.62	0.69
Nickel	Т		т			
Copper	0.08	0.12	0.10	Т	т	Т
Zinc	T	0.15	T	T	T	T
Line	÷		•	•	*	1
Arsenic	Т	Т	Т		Т	Т
Selenium	$ar{ extbf{T}}$	T	T	Т	T	T
Bromine			_	-	-	•
Strontium		T	T			
Molybdenum						
Cadmium						
Tin	Т	T	Т			
Antimony Iodine						
Cesium						
Barium					т	Т
Platinum					1	Ţ
Mercury						

T signifies that the element was detected, but below the limit of quantitation.

Lead

TABLE E-5. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN REGENERATION HFET TESTS WITH LOW AROMATIC FUEL

		Emissions in mg/mi Regeneration HFET						
	Test R-1	Test R-2	Average					
Sodium	т	0.40 T	0.20 T					
Magnesium Aluminum	0.06	0.05	0.06					
Silicon	0.03	0.03	0.03					
Phosphorus	T	0.01	0.01					
Sulfur	0.23	0.26	0.25					
Chlorine	T	Т	Т					
Potassium	T	T	T					
Calcium	0.14	0.07	0.11					
Titanium Vanadium	T		T					
Chromium	Т	Т	Т					
Manganese		Т	Т					
Iron	0.99	1.09	1.04					
Cobalt								
Nickel	Т		T					
Copper Zinc	0.19	0.16	0.18					
Arsenic Selenium Bromine Strontium Molybdenum Cadmium	Т		Т					
Tin Antimony Iodine Cesium Barium Platinum	т		Т					
	_		•					
Mercury Lead	Т		Т					

T signifies that the element was detected, but below the limit of quantitation.

TABLE E-6. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN WITH FAILED INJECTORS AND TRAP

	Emissions in mg/mi						
		ΓP	HF	ET	NYCC		
	Test 5-3	Test 5-2	Test 5-1	Test 5-2	Test 5-1	Test 5-2	
Sodium			Т		T		
Magnesium							
Aluminum	T	0.01	T	T	T		
Silicon	T	0.01					
Phosphorus	T	T	T				
Sulfur	0.03	0.04	0.04	0.02			
Chlorine		Т					
Potassium	0.01	0.06					
Calcium	0.06	0.10	0.02	0.01	T	Т	
Titanium		0.01	****	****	-	•	
Vanadium							
Chromium	0.14	0.13	T	T	T	Т	
Manganese	Т	Т	Т				
Iron	0.45	0.48	0.36	0.30	1.54	1.89	
Cobalt	0.13	T	0.50	T	1.54	1.09	
Nickel	Т	•		1			
Copper	0.11	0.10	0.15	Т	1.33	1.16	
Zinc	T	0.10	0.13	1	1.55	1.10	
Arsenic Selenium Bromine					·		
Strontium Molybdenum Cadmium		Т		Т			
Tin Antimony Iodine Cesium Barium Platinum		Т		T			
Mercury Lead							

T signifies that the element was detected, but below the limit of quantitation.

TABLE E-7. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN WITH FAILED INJECTORS AND WITHOUT TRAP

Emissions in mg/mi FTP NYCC **HFET** Test 6-1 Test 6-2 Test 6-1 Test 6-2 Test 6-1 Test 6-2 Sodium Т Magnesium Т Т Т Aluminum 0.02 0.02 Т Т T Т 0.02 Т 0.38 Silicon 0.02 0.04Phosphorus 0.04 0.03 0.02 0.03 0.08 0.07 Sulfur 0.56 0.51 0.35 0.41 0.79 0.75 0.02 0.02 Т Т Chlorine Т Т Potassium Т Т T Т T Т 0.07 Calcium 0.17 0.17 0.02 0.37 1.08 Titanium Т T Т Т Т Vanadium Chromium 0.11 0.22 Т 0.15 T Т Manganese Т Т Т T Iron 0.92 0.82 0.43 0.52 3.16 2.31 Cobalt T Т Nickel Т Т Т Copper 0.23 0.21 Т 0.15 1.32 Т Zinc Т Т T T Arsenic Т Selenium Т Т Bromine Т Т Strontium Т T T Т Molybdenum Cadmium Tin Antimony Iodine Cesium T Barium Т Т Platinum Mercury Lead Т

Blank space signifies that the emission rate of the element was below the detection limit for the procedure.

T signifies that the element was detected, but below the limit of quantitation.

TABLE E-8. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN WITH RETARDED TIMING AND TRAP

	Emissions in mg/mi						
	F'	ГР	HF	ET	NY	CC	
	Test 7-1	Test 7-2	Test 7-1	Test 7-2	Test 7-1	Test 7-2	
Sodium							
Magnesium	Т	Т			T		
Aluminum	T	T					
Silicon	T						
Phosphorus	Т						
Sulfur	0.03	0.01	0.02				
Chlorine							
Potassium	T	Т				Т	
Calcium	0.04	0.03		T	0.11	_	
Titanium	Т						
Vanadium							
Chromium	T	T	T	Т	T	T	
Manganese		Т	Т				
Iron	0.13	0.11	$\overline{\mathbf{T}}$	0.10			
Cobalt							
Nickel							
Copper							
Zinc			T				
Arsenic					Т		
Selenium	T				•		
Bromine							
Strontium				T			
Molybdenum				T			
Cadmium							
Tin						Т	
Antimony						T	
Iodine							
Cesium							
Barium							
Platinum							
Mercury							
Lead				Т		T	

T signifies that the element was detected, but below the limit of quantitation.

TABLE E-9. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN WITH RETARDED TIMING AND WITHOUT TRAP

	Emissions in mg/mi						
		ΓP	HF	ET	NYCC		
	Test 8-1	Test 8-2	Test 8-1	Test 8-2	Test 8-1	Test 8-2	
Sodium							
Magnesium	0.01	0.01	T	T	T	T	
Aluminum	0.01	T					
Silicon	0.09	0.06	0.02		T	T	
Phosphorus	0.04	0.02	0.02	0.02	T		
Sulfur	0.40	0.34	0.24	0.28	0.44	0.31	
Chlorine	0.01						
Potassium	T	T	${f T}$			Т	
Calcium	0.10	0.03	0.02	0.02	0.13		
Titanium						Т	
Vanadium							
Chromium	T	0.13	T	T	T	T	
Manganese	Т						
Iron	0.58	0.28	0.19	0.19	Т		
Cobalt					-		
Nickel							
Copper							
Zinc	T		T		Т	Т	
					_	_	
Arsenic							
Selenium							
Bromine							
Strontium		T				Т	
Molybdenum						_	
Cadmium							
Tin	T .						
Antimony							
Iodine							
Cesium							
Barium					T		
Platinum					-		
Mercury			Т				
Lead		T					

T signifies that the element was detected, but below the limit of quantitation.

TABLE E-10. TRACE METALS AND OTHER ELEMENTS, VOLKSWAGEN WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL, FTP TESTS

	Emission	ns in mg/mi
	FTP, with trap	FTP, without trap
	Test 9-1	Test 10-1
Sodium		
Magnesium	T	0.01
Aluminum	T	0.01
Silicon		T
Phosphorus		0.04
Sulfur	0.03	0.36
Chlorine		
Potassium	T	T
Calcium	T	0.07
Titanium		
Vanadium		
Chromium	T	0.11
Manganese		
Iron	T	0.23
Cobalt		
Nickel		
Copper		
Zinc		T
Arsenic		
Selenium	T	T
Bromine		
Strontium		
Molybdenum		
Cadmium		
Tin		
Antimony		
Iodine		
Cesium		
Barium		
Platinum		
Mercury		
Lead		

T signifies that the element was detected, but below the limit of quantitation.

TABLE E-11. BACKGROUND RESULTS FOR TRACE METALS AND OTHER ELEMENTS

	Weight of Filter 1	Element on Filter 2	Filter, µg Filter 3	Comparable Filter 1	E Level for F Filter 2	TP, mg/mi ^e Filter 3
Sodium Magnesium Aluminum Silicon Phosphorus Sulfur	b	T ^C T T	τ		т т т	т
Chlorine Potassium Calcium Titanium Vanadium		T 0.9	T 0.8		T 0.12	T 0.10
Chromium		1.6	Т		0.21	T
Manganese Iron Cobalt Nickel		т	T T		τ	T T
Copper Zinc			τ			Т
Arsenic Selenium Bromine Strontium Molybdenum Cadmium			2.6 4.8 T			0.35 0.64 T
Tin Antimony Iodine Cesium Barium Platinum						
Mercury Lead			12.3			1.65

aCalculated as a comparison value only from average FTP test parameters and weight of element on filter. Value has no meaning other than to present the background data in a form that can be compared to the vehicle data.

bBlank space signifies that the emission rate of the element was below the detection

limit for the procedure.

^CT signifies that the element was detected, but below the limit of quantification.

APPENDIX F

ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES

Table	F-I	Baseline with Trap
	F-2	Baseline without Trap
	F-3	Baseline with Replacement Trap, FTP Tests
	F-4	With and without Trap and with Low Aromatic Fuel
	F-5	Loaded Trap and Regeneration Tests, Baseline and Low
		Aromatic Fuels
	F-6	With Worn Injectors and Trap
	F-7	With Retarded Timing and Trap
	F-8	With Retarded Timing and without Trap
	F-9	With Retarded Timing, with and without Trap, and with
		Low Aromatic Fuel

TABLE F-1. ALDEHYDES AND KETONES, SULFATE, AND PATICULATE SOLUBLE ORGANIC FRACTION, MERCEDES BASELINE WITH TRAP

Emissions in mg/mi, except as noted FTP HFET NYCC Test Test Test Test Test Test 1-3 1-2 1-1 1-2 1-1 1-2 Avg Avg Avg 10.7 6.8 Formaldehyde 11.2 10.1 6.9 6.9 26.1 64.0 45.1 Acetaldehyde 8.0 7.4 7.7 5.6 5.1 5.4 13.8 24.0 18.9 3.0 3.2 3.1 ND 2.1 ND 3.7 Acrolein 1.1 7.4 0.1 ND 0.1 ND 0.2 0.1 ND ND ND Propionaldehyde 2.4 Acetone 1.9 4.2 3.1 2.4 2.4 12.6 6.8 9.7 NDaCrotonaldehyde 0.2 0.1 ND ND ND ND 6.5 3.3 0.9 Isobutyraldehyde/MEK 0.8 0.9 0.2 ND 0.1 5.8 9.4 7.6 Benzaldehyde 0.2 2.2 1.2 ND 0.8 0.4 2.4 ND 1.2 Hexanaldehyde NDND ND ND ND ND ND ND ND Total Aldehydes and Ketones 25.2 28.2 26.9 16.4 60.7 15.1 17.4 118.1 89.5 Sulfate 0.3 1.2 0.8 0.2 ND 0.1 0.6 ND 0.3 Particulate Soluble 19.6 6.5 9.9 13.1 11.6 10.8 7.0 8.7 7.9 Organic Fraction, Percent

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

TABLE F-2. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES BASELINE WITHOUT TRAP

Emissions in mg/mi, except as noted FTP HFET NYCC Test Test Test Test Test Test 2-1 2-2 2-1 2-2 2-1 2-2 Avg Avg Avg 20.2 21.4 20.8 17.8 15.6 Formaldehyde 13.4 43.6 44.1 43.9 Acetaldehyde 7.4 6.3 6.9 6.0 4.5 5.3 16.5 3.1 9.8 Acrolein NDa2.5 1.2 ND 2.2 1.1 ND 11.5 5.8 Propionaldehyde NDNDND ND ND ND ND ND ND NAbNΑ NA NA Acetone NA NA NA NA NACrotonaldehyde 1.2 0.6 0.9 0.6 0.5 0.6 2.3 ND 1.1 Isobutyraldehyde/MEK 2.7 2.5 2.6 2.3 2.4 2.3 4.6 4.9 4.8 Benzaldehyde 1.3 0.4 0.8 0.9 1.5 1.2 2.1 ND1.1 Hexanaldehyde ND 0.2 0.1 NDNDNDND ND ND Total Aldehydes and Ketones 32.8 33.9 33.4 27.6 24.5 26.1 69.1 63.6 66.4 Sulfate 2.7 7.8 4.5 6.1 3.0 2.8 16.8 10.5 13.7 Particulate Soluble 7.5 8.5 8.0 12.3 12.7 12.5 7.6 8.9 8.2 Organic Fraction, Percent

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi. bNA - Results not available.

TABLE F-3. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES BASELINE WITH REPLACEMENT TRAP, FTP TESTS

	Emissions in mg/mi, except as notes						
	FTP						
	Test 11-1	Test 11-2	Avg.				
Formaldehyde	21.7	22.8	22.3				
Acetaldehyde	6.2	5.7	6.0				
Acrolein	NDa	1.4	0.7				
Propionaldehyde	ND	ND	ND				
Acetone	4.7	3.5	4.1				
Crotonaldehyde	ND	ND	ND				
Isobutyraldehyde/MEK	1.0	0.3	0.7				
Benzaldehyde	0.7	ND	0.4				
Hexanaldehyde	0.5	ND	0.3				
Total Aldehydes							
and Ketones	34.8	33.7	34.3				
Sulfate	2.4	1.3	1.9				
Particulate Soluble Organic Fraction, Percent	7.2	16.3	11.8				

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

TABLE F-4. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL, FTP TESTS

	Emissions in mg/mi, except as noted						
		P, with t	rap	FTP, without trap			
	Test	Test		Test	Test		
·	<u>13-1</u>	<u>13-2</u>	Avg.	4-1	4-2	Avg.	
Formaldehyde	12.7	17.7	15.2	23.8	16.0	19.9	
Acetaldehyde	4.7	5.2	5.0	6.9	3.8	5.4	
Acrolein	2.2	ND	1.1	ND	ND	ND	
Propionaldehyde	NDa	ND	ND	ND	ND	ND	
Acetone	1.5	3.2	2.4	5.4	2.8	4.1	
Crotonaldehyde	0.1	1.0	0.6	ND	0.4	0.2	
Isobutyraldehyde/MEK	0.5	0.8	0.7	0.8	ND	0.4	
Benzaldehyde	ND	ND	ND	0.2	ND	0.1	
Hexanaldehyde	ND	0.3	0.2	ND	ND	ND	
Total Aldehydes and Ketones	21.7	28.2	25.0	37.1	23.0	30.1	
Sulfate	1.1	1.2	1.2	4.6	3.5	4.1	
Particulate Soluble Organic Fraction, Percent	16.4	6.8	11.6	7.5	7.9	7.7	

and - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

TABLE F-5. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE SOLUBLE ORGANIC FRACTION, MERCEDES LOADED TRAP (BASELINE FUEL) AND REGENERATION TESTS (BASELINE AND LOW AROMATIC FUELS)

	Emissions in mg/mi, except as noted							
	Loaded Trap	Regeneration HFET						
	NYCC	Baselir	ie Fuel	Low A	Fuel			
	Baseline Fuel	R-1	R-2	R-1	<u>R-2</u>	<u>R-3</u>		
Formaldehyde	41.7	13.5	13.4	16.1	13.2	8.1		
Acetaldehyde	11.2	3.9	3.4	8.3	6.0	4.9		
Acrolein	NDa	ND	ND	ND	ND	ND		
Propionaldehyde	ND	ND	ND	ND	ND	ND		
Acetone	12.7	ND	1.6	4.6	2.6	2.1		
Crotonaldehyde	ND	ND	0.2	2.4	ND	ND		
Isobutyraldehyde/MEK	1.6	ND	ND	0.5	0.8	ND		
Benzaldehyde	2.8	0.3	ND	ND	0.7	0.2		
Hexanaldehyde	ND	ND	ND	ND	0.5	ND		
Total Aldehydes and Ketones	70.0	17.7	19.6	31.9	23.8	15.3		
Sulfate	$_{\mathrm{NA}^{\mathrm{b}}}$	NA	NA	3.8	4.0	2.2		
Particulate Soluble Organic Fraction, Percent	6.9	5.5	NA	19.7	, 19.2	24.2		

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi. bNA - Results not available.

TABLE F-6. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES WITH WORN INJECTORS AND TRAP

	Emissions in mg/mi, except as noted					
	FTP	HFET	NYCC			
	Test 15-1	Test 15.1	Test 15.1			
Formaldehyde	19.2	9.7	64.6			
Acetaldehyde	5.5	2.4	21.7			
Acrolein	ND^a	ND	ND			
Propionaldehyde	ND	ND	ND			
Acetone	6.2	1.7	21.9			
Crotonaldehyde	0.2	0.2	10.6			
Isobutyraldehyde/MEK	ND	ND	ND			
Benzaldehyde	ND	ND	ND			
Hexanaldehyde	0.1	ND	ND			
Total Aldehydes and Ketones	31.2	14.0	118.8			
Sulfate	1.6	1.1	2.1			
Particulate Soluble Organic Fraction, Percent	14.8	NA_p	80.8			

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

bNA - Results not available.

TABLE F-7. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES WITH RETARDED TIMING AND TRAP

Emissions in mg/mi, except as noted FTP NYCC **HFET** Test Test Test Test Test Test 17-2 17-1 17-1 17-1 17-2 17-2 Avg. Avg. Avg. 39.2 Formaldehyde 37.0 38.1 21.0 17.9 19.5 65.2 63.0 64.1 Acetaldehyde 13.0 9.2 11.1 6.2 3.6 4.9 16.5 12.8 14.7 Acroleina 9.8* 18.0* 13.9* 2.6* 6.2* 11.3* 27.0* 19.2* 4.4 Propionaldehyde^a Acetonea __ Crotonaldehyde 0.6 1.6 1.1 ND 0.1 0.1 ND 1.0 0.5 Isobutyraldehyde/MEK 6.2 2.3 4.3 2.9 0.4 1.7 2.9 1.6 2.3 Benzaldehyde 4.0 2.3 3.2 ND 3.0 1.5 0.2 12.5 6.4 ИDр Hexanaldehyde 1.9 1.0 0.4 ND 0.2 NDNDND Total Aldehydes 72.8 72.3 72.6 33.1 31.2 32.2 96.3 107.9 102.1 and Ketones Sulfate 2.4 2.0 2.2 2.9 2.8 2.9 6.7 6.6 6.7 Particulate Soluble 40.0 34.6 37.3 33.5 32.0 32.8 41.5 23.7 32.6 Organic Fraction, Percent

aC3 aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone.

bND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

TABLE F-8. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES WITH RETARDED TIMING AND WITHOUT TRAP

	Emissions in mg/mi, except as noted								
		FTP			HFET		NYCC		
	Test 8-1	Test 8-2	Avg.	Test 8-1	Test 8-2	Avg.	Test 8-1	Test 8-2	Avg.
Formaldehyde Acetaldehyde Acrolein ^a	28.3 6.7	28.3	28.3	14.4 3.5	15.2 3.8	14.8 3.7	55.4 9.2	47.7 1.9	51.6 5.6
Propionaldehyde ^a Acetone ^a	4.1*	7.6*	5.9* 	2.0*	2.0*	2.0*	11.6*	3.3*	7.5*
Crotonaldehyde Isobutyraldehyde/MEK Benzaldehyde Hexanaldehyde	1.4 3.1 1.0 0.7	NDb 0.7 1.5 0.3	0.7 1.9 1.3 0.5	0.9 1.9 0.6 ND	ND 1.5 0.2 0.4	0.5 1.7 0.4 0.2	2.5 10.4 4.5 ND	ND 3.5 ND ND	1.3 7.0 2.3 ND
Total Aldehydes and Ketones	45.3	46.1	45.7	23.3	23.1	23.2	93.8	56.4	75.1
Sulfate	3.6	4.3	4.0	2.4	4.7	3.6	8.0	7.3	7.7
Particulate Soluble Organic Fraction, Percent	16.3	1.4	15.4	15.3	14.2	14.8	15.6	16.2	15.9

aC₃ aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone.
bND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1

mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

TABLE F-9. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL

	Emissions in mg/mi, except as noted	
	FTP, with trap	FTP, without trap
	Test	Test
	19-1	10-1
Formaldehyde	26.2	21.2
Acetaldehyde	5.9	5.2
Acrolein ^a		
Propionaldehyde ^a	1.9	6.1 *
Acetonea		
		2.2
Crotonaldehyde	0.9	3.2
Isobutyraldehyde/MEK	1.8	5.1
Benzaldehyde	0.4	2.2
Hexanaldehyde	ND_p	2.2
Total Aldehydes and Ketones	37.1	45.2
Sulfate	1.3	2.4
Particulate Soluble Organic Fraction, Percent	37.1	13.5

^aC₃ aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone.

propionaldehyde, and acetone.

bND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

APPENDIX G

ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN

Table G-1		Baseline with Trap
	G-2	Baseline without Trap
	G-3	With and without Trap and with Low Aromatic Fuel
	G-4	Loaded Trap and Regeneration Tests, Baseline and Low
		Aromatic Fuels
	G-5	With Failed Injectors and Trap
	G-6	With Failed Injectors and without Trap
	G-7	With Retarded Timing and Trap
	G-8	With Retarded Timing, and without Trap
	G-9	With Retarded Timing, with and without Trap, and with
		Low Aromatic Fuel

TABLE G-1. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN BASELINE WITH TRAP

Emissions in mg/mi, except as noted FTP NYCC **HFET** Test Test Test Test Test Test 1-1 1-2 1-1 1-2 1-1 1-2 Avg Avg Avg 34.5 33.5 Formaldehyde 32.4 16.4 16.1 16.3 86.6 86.3 86.5 Acetaldehyde 10.1 10.6 11.1 6.0 5.0 5.5 28.3 21.2 24.8 Acrolein NDa ND ND ND ND ND ND NDNDPropionaldehyde ND ND ND ND ND ND ND ND NDAcetone 7.8 8.1 8.0 3.9 2.8 6.7 16.5 14.4 18.6 Crotonaldehyde ND ND ND ND ND ND ND ND ND Isobutyraldehyde/MEK ND ND ND ND ND ND ND ND ND Benzaldehyde 1.0 2.1 1.6 1.0 ND 0.5 ND 2.3 1.2 Hexanaldehyde 0.5 0.5 0.5 ND ND ND ND ND ND Total Aldehydes 54.9 53.2 54.1 27.3 23.9 25.6 129.3 128.4 128.9 and Ketones Sulfate 1.4 1.2 1.3 1.9 1.4 1.7 6.8 4.9 5.9 Particulate Soluble 43.1 48.7 45.9 46.5 49.4 48.0 24.1b 90.1b 57.1 Organic Fraction, Percent

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET, 0.1 mg/mi, NYCC, 0.5 mg/mi.

bVariability due in part to very small particulate and soluble organic weights for the NYCC cycle.

TABLE G-2. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN BASELINE WITHOUT TRAP

Emissions in mg/mi, except as noted FTP **HFET** NYCC Test Test Test Test Test Test 2-2 2-1 2-2 2-1 2-1 2-2 Avg Avg Avg 31.4 12.0 Formaldehyde 34.5 28.2 12.3 11.7 73.9 72.8 73.4 10.3 7.5 3.9 Acetaldehyde 8.9 4.3 3.4 22.4 18.1 20.3 Acrolein NDaND ND ND ND NDND ND NDPropionaldehyde ND ND ND ND ND ND ND ND ND Acetone 9.0 6.4 7.7 3.7 2.3 3.0 19.9 13.2 16.6 0.2 Crotonaldehyde 0.4 ND ND ND ND ND NDND Isobutyraldehyde/MEK ND0.2 ND NDNDND ND NDND Benzaldehyde 1.6 0.6 1.1 0.7 ND0.4 ND ND NDHexanaldehyde 0.3 ND 0.2 ND ND ND NDND NDTotal Aldehydes 56.1 42.7 49.4 21.0 17.4 19.2 116.2 104.1 110.2 and Ketones Sulfate 3.4 3.0 3.2 2.9 2.7 2.8 7.1 28.6 17.9 Particulate Soluble 22.9 22.6 22.6 23.4 21.9 22.7 19.5 19.2 19.5 Organic Fraction, Percent

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET, 0.1 mg/mi, NYCC, 0.5 mg/mi.

TABLE G-3. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL

	Emissions in mg/mi, except as noted							
	FTI	, with t	rap	HFET	HFET, without trap			
	Test	Test		Test	st Test			
	3-1	3-2	Avg.	4-1	4-2	Avg.		
Formaldehyde	21.1	21.1	21.1	18.2	21.0	19.6		
Acetaldehyde	7.4	7.2	7.3	5.6	6.9	6.3		
Acrolein	NDa	ND	ND	ND	ND	ND		
Propionaldehyde	ND	ND	ND	ND	ND	ND		
Acetone	6.2	5.8	6.0	5.0	5.0	5.0		
Crotonaldehyde	3.4	1.0	2.2	0.6	0.7	0.7		
Isobutyraldehyde/MEK	ND	ND	ND	ND	ND	ND		
Benzaldehyde	ND	ND	ND	ND	ND	ND		
Hexanaldehyde	ND	ND	ND	ND	ИD	ND		
Total Aldehydes and Ketones	38.1	35.1	36.6	29.4	33.6	31.5		
Sulfate	NAp	NA	NA	2.0	0.7	1.4		
Particulate Soluble Organic Fraction, Percent	34.1	56.5	45.3	24.0	25.2	24.6		

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi. bNA - Results not available.

TABLE G-4. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN LOADED TRAP (BASELINE FUEL) AND REGENERATION TESTS (BASELINE AND LOW AROMATIC FUELS)

	Emissions in mg/mi, except as noted								
	Loaded Trap		Regeneration HFET						
	NYCC	Baseli	ne Fuel	Low A	Fuel				
	Baseline Fuel	R-1	R-2	R-1	R-2	R-3			
Formaldehyde	84.1	16.3	17.9	14.6	15.3	13.0			
Acetaldehyde	22.6	6.2	6.3	6.0	8.3	5.3			
Acrolein	NDa	ND	ND	ND	ND	ND			
Propionaldehyde	ND	ND	ND	ND	ND	ND			
Acetone	19.0	3.5	3.4	4.3	7.0	3.4			
Crotonaldehyde	ND	ND	ND	ND	ND	0.4			
Isobutyraldehyde/MEK	6.6	ND	1.2	ND	2.1	1.7			
Benzaldehyde	ND	ND	ND	0.4	2.2	0.8			
Hexanaldehyde	ND	ND	ND	ND	ND	0.6			
Total Aldehydes and Ketones	132.3	26.0	29.8	25.3	34.9	25.2			
Sulfate	11.7	3.9	NA^b	2.2	4.3	2.3			
Particulate Soluble Organic Fraction, Percent	42.4	40.0	NAp	38.2	31.7	28.8			

aND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi. bNA - Results not available.

TABLE G-5. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN WITH FAILED INJECTORS AND TRAP

Emissions in mg/mi, except as noted FTP NYCC **HFET** Test Test Test Test Test Test 5-3 5-2 5-1 5-2 5-1 5-2 Avg. Avg. Avg. Formaldehyde 29.8 34.8 32.3 18.5 18.7 18.6 86.4 103.4 94.9 Acetaldehyde 12.2 11.6 11.0 6.6 6.0 6.3 30.6 27.5 29.1 Acroleina 10.4* 10.4* 4.0* 4.5* 10.4* 4.9* 43.3* 32.0* 37.7* Propionaldehydea Acetonea ---Crotonaldehyde 0.3 1.7 1.0 ИБр ND ND 17.8 ND 8.9 Isobutyraldehyde/MEK 4.8 6.2 5.5 2.6 ND 1.3 59.6 23.7 41.7 Benzaldehyde 1.3 1.6 1.8 1.2 0.7 1.0 19.5 5.4 12.5 Hexanaldehyde ND 0.1 0.1 ND 0.1 0.1 12.4 ND 6.2 Total Aldehydes 57.6 67.2 62.4 33.8 29.5 31.7 269.6 192.0 230.8 and Ketones Sulfate 0.8 0.7 0.8 NA^{C} 0.7 0.7 4.7 NA 4.7 Particulate Soluble 67.1 72.7 69.9 ~100d ~100d ~100d 54.0 76.9 65.5 Organic Fraction, Percent

aC3 aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone.

bND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

CNA - Results not available.

dValues difficult to determine due to very small particulate and soluble organic weights for the NYCC cycle.

TABLE G-6. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN WITH FAILED INJECTORS AND WITHOUT TRAP

	Emissions in mg/mi, except as noted									
		FTP			HFET		NYCC			
	Test 6-1	Test 6-2	Avg.	Test 6-1	Test 6-2	Avg.	Test 6-1	Test 6-2	Avg.	
Formaldehyde Acetaldehyde Acrolein ^a	28.5 7.3	29.8 10.7	29.2 9.0	11.9 3.0	15.1 4.8	13.5 3.9	63.0 15.2	74.0 12.2	68.5 13.7	
Propionaldehydea Acetonea	4.3*	1.1*	2.7*	1.4*	ND *	0.7*	8.1*	40.0*	24.1*	
Crotonaldehyde Isobutyraldehyde/MEK Benzaldehyde Hexanaldehyde	2.0 1.3 0.6 0.6	1.4 7.0 1.8 1.1	1.7 4.2 1.2 0.9	0.6 1.4 ND ^b 0.2	0.6 2.4 1.3 0.6	0.6 1.9 0.7 0.4	3.9 10.1 ND 1.2	ND ND 1.7 2.2	2.0 5.1 0.9 1.7	
Total Aldehydes and Ketones	44.6	52.9	48.8	18.5	24.8	21.7	101.5	130.1	115.8	
Sulfate	1.7	2.5	2.1	1.6	1.6	1.6	6.8	4.1	5.5	
Particulate Soluble Organic Fraction, Percent	16.8	18.4	17.6	22.2	23.7	23.0	17.8	19.0	18.4	

aC₃ aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone.
bND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi;

HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

TABLE G-7. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN WITH RETARDED TIMING AND TRAP

	Emissions in mg/mi, except as noted									
	FTP				HFET			NYCC		
	Test 7-1	Test 7-2	Avg.	Test 7-1	Test 7-2	Avg.	Test 7-1	Test 7-2	Avg.	
Formaldehyde Acetaldehyde Acrolein ^a	41.7 11.8	38.4 11.3	40.1 11.6	18.2 5.5	19.7 6.4	19.0 6.0	109.9 25.3	97.2 25.4	103.6 25.4	
Propionaldehydea Acetonea	9.0* 	12.1*	10.6*	2.8*	5.5* 	4.2*	23.3*	29.2*	26.3*	
Crotonaldehyde Isobutyraldehyde/MEK Benzaldehyde Hexanaldehyde	1.5 4.2 1.1 0.6	2.5 4.6 1.0 1.2	2.0 4.4 1.1 0.9	NDb 0.6 0.4 0.4	0.7 1.1 0.3 0.2	0.4 0.9 0.4 0.3	3.2 ND ND 5.4	5.6 ND 3.2 3.7	4.4 ND 1.6 4.6	
Total Aldehydes and Ketones	69.9	71.1	70.5	27.9	33.9	30.9	167.1	164.3	165.7	
Sulfate	1.0	1.3	1.2	1.6	1.6	1.6	5.2	14.3	9.8	
Particulate Soluble Organic Fraction, Percent	66.8	72.4	69.2	61.5	67.8	64.7	72.7	95.3	84.0	

aC3 aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone.

bND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

TABLE G-8. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN WITH RETARDED TIMING AND WITHOUT TRAP

	Emissions in mg/mi, except as noted								
		FTP			HFET			NYCC	
	Test	Test		Test	Test	Test		Test Test	
	8-1	8-2	Avg.	8-1	8-2	Avg.	8-1	8-2	Avg.
Formaldehyde Acetaldehyde Acrolein ^a Propionaldehyde ^a Acetone ^a									
Crotonaldehyde Isobutyraldehyde/MEK Benzaldehyde Hexanaldehyde									
Total Aldehydes and Ketones									
Sulfate	3.0	2.1	2.6	2.1	2.9	2.5	7.1	7.1	7.1
Particulate Soluble Organic Fraction, Percent	32.5	28.7	30.6	25.7	24.8	25.3	28.6	24.6	26.6

and - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1

mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi. bC3 aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone.

TABLE G-9. ALDEHYDES AND KETONES, SULFATE, AND PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL

	Emissions in mg/mi, except as noted					
	FTP, with trap	FTP, without trap				
	Test 9-1	Test 10-1				
Formaldehyde Acetaldehyde Acrolein ^a Propionaldehyde ^a Acetone ^a	29.3 10.9 7.1*	25.6 8.9 5.9*				
Crotonaldehyde Isobutyraldehyde/MEK Benzaldehyde Hexanaldehyde	0.7 2.8 3.8 0.5	2.1 ND ND 0.7				
Total Aldehydes and Ketones	55.1	43.2				
Sulfate	0.9	1.6				
Particulate Soluble Organic Fraction, Percent	40.6	22.6				

^aC₃ aldehydes and ketones were not separated during analyses. Value marked with an asterisk is the sum of acrolein, propionaldehyde, and acetone. bND - none detected, detection limits for aldehydes and ketones and

ND - none detected, detection limits for aldehydes and ketones and sulfate are FTP, 0.1 mg/mi; HFET 0.1 mg/min; and NYCC, 0.5 mg/mi.

APPENDIX H

GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES

Table	H-1	Compounds Analyzed							
	H-2	Baseline with Trap							
	H-3	aseline without Trap							
	H-4	aseline with Replacement Trap, FTP Tests							
	H-5	Vith and without Trap and with Low Aromatic Fuel							
	H-6	Loaded Trap and Regeneration Tests, Baseline and Low							
		Aromatic Fuels							
	H-7	With Worn Injectors and Trap							
	H-8	With Retarded Timing and Trap							
	H-9	With Retarded Timing and without Trap							
	H-10	With Retarded Timing, with and without Trap, and with							

Low Aromatic Fuel

TABLE H-1. GAS PHASE SEMIVOLATILE ORGANICS, LIST OF COMPOUNDS ANALYZED

POLYNUCLEAR AROMATICS

Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthenea Dibenzofuran Fluorenea Phenanthrene Anthracenea Fluoranthenea Pyrenea Benzo(a) anthracenea Chrysenea Benzo(b)fluoranthenea Benzo(k)fluoranthenea Benzo(a)pyrenea Indeno(1,2,3-cd)pyrenea Dibenz(a,h)anthracenea Benzo(g,h,i)perylenea

NITRATED POLYNUCLEAR AROMATICS

9-Nitroanthracene^a
9-Methyl-10-nitroanthracene^a,^b
7-Nitrobenz(a)anthracene^a,^b
6-Nitro-benzo(a)pyrene^a
6-Nitrochrysene^a
3-Nitrofluoranthrene^a
2-Nitrofluorene^a
1-Nitropyrene^a
1,3-Dinitropyrene^a
1,6-Dinitropyrene^a
1,8-Dinitropyrene^a

OTHER TARGET COMPOUNDS

Phenol
2-Methylphenol
3-Methylphenol
4-Methylphenol
N-Nitrosodimethylamine^a
N-nitroso-dipropylamine^a
N-nitroso-diphenylamine^d
Nitrobenzene^a

aNot detected in any samples during the program and therefore not listed in subsequent tables. Detection limits are 40-380 μ g/mi for the FTP, 30-280 μ g/mi for the HFET, and 250 to 2,400 μ g/mi for the NYCC.

bSearched for by extracted ion chromatograph profile, no standard available.

CUsed response factor of 4-methylphenol to quantitate.

dDetected in 3 Mercedes samples: Mercedes HFET cycle without trap, none detected and 550 μ g/mi; Mercedes regeneration with baseline fuel, 660 and 360 μ g/mi.

TABLE H-2. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES BASELINE WITH TRAP

	Emissions in μ g/mi							
	FI	P	HF	EΤ	NY	CC		
	Test 1-3	Test 1-2	Test 1-1	Test 1-2	Test 1-1	Test 1-2		
Naphthalene 2-Methylnaphthalene Acenaphthylene Dibenzofuran Phenanthrene	4800	4400	2800	2200				
Phenol 4-Methylphenol 3-Methylphenol								
Minimum Detection Limit, all compounds, $\mu g/mi$	380	380	280	280	2400	2400		

Blank indicates none detected.

TABLE H-3. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES BASELINE WITHOUT TRAP

	Emissions in μ_g/mi							
	FTP		FTP		HFET		NYCC	
	Test 2-1	Test 2-2	Test 2-1	Test 2-2	Test 2-1	Test 2-2		
Naphthalene 2-Methylnaphthalene Acenaphthylene Dibenzofuran Phenanthrene	2300 1100 380	3200 1300 380	1200 550	1700 830 280		4 800		
Phenol 4-Methylphenol 3-Methylphenol								
Minimum Detection Limit, all compounds, μ_g/mi	380	380	280	280	2400	2400		

TABLE H-4. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES BASELINE WITH REPLACEMENT TRAP

		Emissions in μg/mi FTP				
	Test 11-1	Test 11-2				
Naphthalene 2-Methylnaphthalene Acenaphthylene Dibenzofuran Phenanthrene	1400 150	1200 75				
Phenol 4-Methylphenol 3-Methylphenol	40					
Minimum Detection Limit, all compounds, μ g/mi	40	40				

Blank indicates none detected.

TABLE H-5. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL

	Emissions in $\mu g/mi$						
	FTP, with trap			FTP	, without trap		
	Test 13-1	Test 13-2	Δ ν α	Test 4-1	Test 4-2	Ανισ	
	13-1	13-2	Avg.	4-1	4-6	Avg.	
Naphthalene	320	300	310	270	1200	740	
2-Methylnaphthalene		40	20	130	440	290	
Acenaphthylene				60		30	
Dibenzofuran		40	20				
Phenanthrene		40	20				
Phenol							
4-Methylphenol							
3-Methylphenol							
M. January Data at the Martin	40	40		40	40		
Minimum Detection Limit, all compounds, μg/mi	40	40		40	40		

TABLE H-6. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES LOADED TRAP AND REGENERATION TESTS (BASELINE AND LOW AROMATIC FUEL)

	Emissions, μ_g/mi								
	Loaded Trap	Regeneration, HFET							
	NYCC	Baselin		Low Aromatic Fuel					
	Baseline Fuel	<u>R-1</u>	R-2	R-1	R-2	R-3			
Naphthalene			550	550	190	190			
2-Methylnaphthalene Acenaphthylene				110					
Dibenzofuran				30					
Phenanthrene				55	55	30			
Phenol 4-Methylphenol 3-Methylphenol									
Minimum Detection Limit, all compounds, μg/mi	2400	28	280	30	30	30			

TABLE H-7. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES WITH WORN INJECTORS AND TRAP

		Emissions in $\mu g/m^2$	İ
_	FTP	HFET	NYCC
-	Test 15-1	Test 15-1	Test 15-1
Naphthalene	400	190	960
2-Methylnaphthalene Acenaphthylene	40		
Dibenzofuran	40		
Phenanthrene	55		
Phenol 4-Methylphenol 3-Methylphenol			
Minimum Detection Limit, all compounds, μ g/mi	40	30	250
Blank indicates none detected.			

TABLE H-8. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES WITH RETARDED TIMING AND TRAP

Emissions in µg/mi NYCC FTP HFET Test Test Test Test 17-1 17-1,2 17-1,2 17-2 2900 1100 1200 550 Naphthalene 2-Methylnaphthalene 950 720 180 950 290 55 Acenaphthylene 320 85 Dibenzofuran 210 190 Phenanthrene 190 380 180 360 Phenol 190 130 4-Methylphenol 40 60 3-Methylphenol 40 30 250 Minimum Detection Limit, 40 all compounds, $\mu g/mi$

Blank indicates none detected.

TABLE H-9. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES WITH RETARDED TIMING AND WITHOUT TRAP

	Emissions in μ_g/mi				
	FTP		HFET	NYCC	
	Test 8-1	Test 8-2	Test 8-1,2	Test 8-1,2	
Naphthalene	340	550	550	2400	
2-Methylnaphthalene	320	530	370	1400	
Acenaphthylene	110	210	110	480	
Dibenzofuran	60	95	55		
Phenanthrene	130	210	150	480	
Phenol	60	110	70		
4-Methylphenol 3-Methylphenol		60	30		
Minimum Detection Limit, all compounds, μg/mi	40	40	30	250	

TABLE H-10. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL

Emissions in µg/mi FTP, with trap FTP, without trap Test 19-1 Test 10-1 Naphthalene 290 460 2-Methylnaphthalene 60 360 Acenaphthylene 130 Dibenzofuran 40 Phenanthrene 170 Phenol 95 4-Methylphenol 3-Methylphenol Minimum Detection Limit, 40 40 all compounds, $\mu g/mi$

APPENDIX I

GAS PHASE SEMIVOLATILE ORGANICS, VOLKSWAGEN

Table	I-1	Compounds Analyzed
	I-2	Baseline with Trap
	I-3	Baseline without Trap
	I-4	With and without Trap and with Low Aromatic Fuel
	I-5	Loaded Trap and Regeneration Tests, Baseline and Low
		Aromatic Fuels
	I-6	With Failed Injectors and Trap
	I-7	With Failed Injectors and without Trap
	I-8	With Retarded Timing and Trap
	I-9	With Retarded Timing and without Trap
	I-10	With Retarded Timing, with and without Trap, and with
		Low Aromatic Fuel

TABLE I-1. GAS PHASE SEMIVOLATILE ORGANICS, LIST OF COMPOUNDS ANALYZED

POLYNUCLEAR AROMATICS

Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthenea Dibenzofuran Fluorenea Phenanthrene Anthracene^a Fluoranthenea Pyrenea Benzo(a) anthracenea Chrysenea Benzo(b) fluoranthenea Benzo(k) fluoranthenea Benzo(a)pyrenea Indeno(1,2,3-cd)pyrenea Dibenz(a,h)anthracenea Benzo(g,h,i)perylenea

NITRATED POLYNUCLEAR AROMATICS

9-Nitroanthracene^a
9-Methyl-10-nitroanthracene^a,^b
7-Nitrobenz(a)anthracene^a,^b
6-Nitro-benzo(a)pyrene^a
6-Nitrochrysene^a
3-Nitrofluoranthrene^a
2-Nitrofluorene^a
1-Nitropyrene^a
1,3-Dinitropyrene^a
1,6-Dinitropyrene^a
1,8-Dinitropyrene^a

OTHER TARGET COMPOUNDS

Phenol
2-Methylphenol
3-Methylphenol
4-Methylphenol
N-Nitrosodimethylamine^a
N-nitroso-dipropylamine^a
N-nitroso-diphenylamine^d
Nitrobenzene^a

aNot detected in any samples during the program and therefore not listed in subsequent tables. Detection limits are 40-80 μ g/mi for the FTP, 30-60 μ g/mi for the HFET, and 250 to 480 μ g/mi for the NYCC.

bSearched for by extracted ion chromatograph profile, no standard available.

CUsed response factor of 4-methylphenol to quantitate.

^dDetected in 6 Volkswagen samples: Volkswagen baseline with trap, 390 μ g/mi and not detected for HFET; and Volkswagen baseline without trap, 1,000 and 420 μ g/mi for FTP, not detected and 470 μ g/mi for HFET, and 2,900 and 6,200 μ g/mi for NYCC.

TABLE I-2. GAS PHASE VOLATILE ORGANICS, VOLKSWAGEN BASELINE WITH TRAP

Emissions in µg/mi NYCC FTP HFET Test Test Test Test Test Test 1-2 1-1 1-1 1-2 1-1 1-2 1300 1200 3100 2900 Naphthalene 610 440 2-Methylnaphthalene 190 1700 930 360 330 Acenaphthylene Dibenzofuran Phenanthrene Phenol 4-Methylphenol 3-Methylphenol Minimum Detection Limit, 80 80 60 60 480 480 all compounds, μg/mi

Blank indicates none detected.

TABLE 1-3. GAS PHASE SEMIVOLATILE ORGANICS, MERCEDES BASELINE WITHOUT TRAP

	Emissions in μ_g/mi					
	FT		HF		NY	CC
	Test	Test 2-2	Test 2-1	Test 2-2	Test 2-1	Test 2-2
Naphthalene 2-Methylnaphthalene Acenaphthylene Dibenzofuran Phenanthrene	1140 760	1250 870 130	660 41 0	550 300	2900 1400	43 00 2200
Phenol 4-Methylphenol 3-Methylphenol						
Minimum Detection Limit, all compounds, $\mu g/mi$	80	80	60	60	480	480

TABLE I-4. GAS PHASE VOLATILE ORGANICS, VOLKSWAGEN WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL

]	Emissions	in µg/mi		
	FT	P, with ti	ар	FTP, without trap		
	Test 3-1	Test 3-2	Avg.	Test 4-1	Test 4-2	Avg.
Naphthalene 2-Methylnaphthalene Acenaphthylene Dibenzofuran Phenanthrene	760 380	760 380	760 380	760 380	950 760	860 570
Phenol 4-Methylphenol 3-Methylphenol						
Minimum Detection Limit, all compounds, μg/mi	40	40		40	40	

Blank indicates none detected.

TABLE I-5. GAS PHASE SEMIVOLATILE ORGANICS, VOLKSWAGEN LOADED TRAP AND REGENERATION TESTS, BASELINE AND LOW AROMATIC FUELS

	Emissions in μg/mi						
	Loaded Trap		Regene	ration, HFE	T		
	NYCC	Baselin	e Fuel	Low Aron	atic Fuel		
	Baseline Fuel	R-1	R-3	R-1	R-2		
Naphthalene	3600	165	550	470	330		
2-Methylnaphthalene Acenaphthylene	2200	85	280	190	140		
Dibenzofuran				30			
Phenanthrene			85	140	85		
Phenol 4-Methylphenol 3-Methylphenol							
Minimum Detection Limit, all compounds, $\mu g/mi$	480	60	60	30	30		

TABLE I-6. GAS PHASE SEMIVOLATILE ORGANICS, VOLKSWAGEN WITH FAILED INJEJCTORS AND TRAP

Emissions in µg/mi FTP HFET NYCC Test Test Test Test 5-1 5-2 5-1,2 5-1,2 350 650 1400 610 Naphthalene 650 550 180 600 2-Methylnaphthalene 75 75 Acenaphthylene 55 55 Dibenzofuran 85 150 150 Phenanthrene Phenol 75 75 4-Methylphenol 3-Methylphenol **4**0 40 30 250 Minimum Detection Limit, all compounds, $\mu g/mi$

Blank indicates none detected.

TABLE I-7. GAS PHASE SEMIVOLATILE ORGANICS, VOLKSWAGEN WITH FAILED INJEJCTORS AND WITHOUT TRAP

	Emissions in μ_g/mi			
	FTP		HFET	NYCC
	Test	Test	Test	Test
	6-1	6-2	6-1,2	6-1,2
Naphthalene	530	490	370	1900
2-Methylnaphthalene	610	550	320	1300
Acenaphthylene	170	170	85	360
Dibenzofuran	60	60	30	
Phenanthrene	210	150	95	240
Phenol	95	110	55	
4-Methylphenol 3-Methylphenol	60	60		
Minimum Detection Limit, all compounds, $\mu g/mi$	40	40	30	250

TABLE I-8. GAS PHASE SEMIVOLATILE ORGANICS, VOLKSWAGEN WITH RETARDED TIMING AND TRAP

Emissions in µg/mi FTP NYCC HFET Test Test Test Test 7-1,2 7-1 7-2 7-1,2 Naphthalene 610 680 470 2900 820 950 350 2500 2-Methylnaphthalene 360 Acenaphthylene 190 170 70 Dibenzofuran 95 95 40 250 250 120 480 Phenanthrene 190 40 150 360 Phenol 4-Methylphenol 130 110 1100 3-Methylphenol 55 40 Minimum Detection Limit, 40 40 30 250 all compounds, µg/mi

Blank indicates none detected

TABLE I-9. GAS PHASE SEMIVOLATILE ORGANICS, VOLKSWAGEN WITH RETARDED TIMING AND WITHOUT TRAP

	Emissions in μ g/mi				
	FTP		HFET	NYCC	
	Test	Test	Test	Test	
	8-1_	_8-2_	8-1,2	8-1,2	
Naphthalene	740	720	470	2400	
2-Methylnaphthalene	970	930	440	2200	
Acenaphthylene	230	230	95	360	
Dibenzofuran	- 95	110	40		
Phenanthrene	250	270	140	480	
Phenol	210	250	85	480	
4-Methylphenol	150	170	40	240	
3-Methylphenol	57	76			
Minimum Detection Limit, all compounds, $\mu g/mi$	40	40	30	250	

TABLE I-10. GAS PHASE SEMIVOLATILE ORGANICS, VOLKSWAGEN WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL

	Emissions in μg/mi				
	FTP, with trap	FTP, without trap			
	<u>Test 9-1</u>	Test 10-1			
Naphthalene	460	630			
2-Methylnaphthalene	610	890			
Acenaphthylene	95	210			
Dibenzofuran	60	75			
Phenanthrene	170	290			
Phenol	95	150			
4-Methylphenol		95			
3-Methylphenol					
Minimum Detection Limit, all compounds, μ g/mi	40	40			

APPENDIX J

PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, MERCEDES

Table	J-1	List of Compounds Analyzed	
		Baseline with Trap	

- J-3 Baseline without Trap
- J-4
- Loaded Trap and Regeneration Tests, Baseline Fuel
 With and without Trap and with Low Aromatic Fuel, FTP J-5 Tests
- Retarded Timing with and without Trap, FTP Tests J-6

TABLE J-1. PARTICULATE ASSOCIATED SEMIVOLATIVE ORGANICS, LIST OF COMPOUNDS ANALYZED

POLYNUCLEAR AROMATICS

Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthenea Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracenea Benzo(g,h,i)perylene

NITRATED POLYNUCLEAR AROMATICS

9-Nitroanthracene^a
9-Methyl-10-nitroanthracene^a,b
7-Nitrobenz(a)anthracene^a,b
6-Nitro-benzo(a)pyrene^a
6-Nitrochrysene^a
3-Nitrofluoranthrene^a
2-Nitrofluorene^a
1-Nitropyrene^a
1,3-Dinitropyrene^a
1,6-Dinitropyrene^a
1,8-Dinitropyrene^a

OTHER TARGET COMPOUNDS

Phenol^a
2-Methylphenol^a
3-Methylphenol^a,c
4-Methylphenol^a
N-Nitrosodimethylamine^a
N-nitroso-dipropylamine^a
N-nitroso-diphenylamine^a
Nitrobenzene^a

aNot detected in any samples during the program and therefore not listed in subsequent tables. Detection limits are < 0.6 μ g/mi for the FTP, < 0.4 μ g/mi for HFET, and < 3.8 μ g/mi for the NYCC in the Mercedes baseline with trap and < 1.1 μ g/mi for the FTP, < 0.8 μ g/mi for the HFET, and < 6.7 μ g/mi for the NYCC is all other tests.

bSearched for by extracted ion chromatogram profile, no standard available. cUsed response factor of 4-methylphenol to quantitate.

TABLE J-2. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, MERCEDES BASELINE WITH TRAP

	Emissions, μ_g/mi					
	FTP		HFET		NYCC	
	Test	Test	Test	Test	Test	Test
	1-3_	1-2	1-1	1-2	1-1	1-2
Naphthalene	ND^a	ND	ND	ND	ND	ND
2-Methylnaphthalene	ND	ND	ND	ИD	ND	ND
Acenaphthylene	ND	ND	ИD	ND	ND	ND
Dibenzofuran	0.5	ND	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND	ND	ND
Phenanthrene	5.6	8.1	2.6	2.4	19.7	21.7
Anthracene	ND	ND	ND	ND	ND	ND
Fluoranthene	16.4	14.2	7.9	8.0	23.6	28.9
Pyrene	9.8	12.4	6.2	8.0	27.6	28.9
Benzo(a)anthracene	ND	0.6	0.9	ND	ND	ND
Chrysene	2.8	1.7	3.1	0.8	ND	7.2
Benzofluoranthene	1.5	2.0	2.2	2.4	ND	ND
Benzo(a)pyrene	1.1	1.3	1.8	1.6	ND	ND
Indeno(1,2,3-cd)pyrene	ND	ND	ND	ND	ND	ND
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND

 $[\]overline{a_{
m ND}}$ - none detected, <0.6 $\mu g/mi$ FTP, <0.4 $\mu g/mi$ HFET, <3.8 $\mu g/mi$ NYCC

TABLE J-3. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, MERCEDES BASELINE WITHOUT TRAP

	Emissions, μg/mi						
	FTP		HFET		NYCC		
	Test	Test	Test	Test	Test	Test	
	2-1	2-2	2-1	2-2	2-1	2-2	
Naphthalene	$_{ m ND}^{ m a}$	ND	ND	ND	ND	ND	
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	
Acenaphthylene	ND	ND	ИD	ND	ND	ND	
Dibenzofuran	ND	ND	ND	ND	ND	ND	
Fluorene	ND	ND	ND	ND	ND	ND	
Phenanthrene	104.3	111.4	39.5	38.0	196.2	181.3	
Anthracene	6.9	4.9	ND	ND	20.3	13.5	
Fluoranthene	46.2	53.8	36.4	38.8	88.0	74.2	
Pyrene	62.8	70.0	45.7	46.7	128.6	94.4	
Benzo(a)anthracene	ND	ND	ND	ИD	ND	ИD	
Chrysene	6.5	5.0	4.7	4.8	13.5	ND	
Benzofluoranthene	ИD	ND	ND	ND	ND	ND	
Benzo(a)pyrene	ND	ND	ИD	ND	ND	ND	
Indeno(1,2,3-cd)pyrene	ND	ND	ИD	ND	ND	ND	
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	

 $[\]overline{a}$ ND - none detected, <1.1 μ g/mi FTP, <0.8 μ g/mi HFET, <6.7 μ g/mi NYCC.

TABLE J-4. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, MERCEDES LOADED TRAP AND REGENERATION, BASELINE FUEL

Emissions, $\mu_{\rm g}/{\rm mi}$						
Loaded Trap	Regenerat	ion, HFET				
NYCC	R-1	R-2				
ND	ND	ND				
ND	ND	ND				
ND	ND	ND				
ND	0.9	0.8				
ND	ND	ND				
33.8	7.3	6.7				
ND	ND	ND				
11.7	5.7	2.8				
9.0	5.3	2.5				
ND	ND	ND				
ND	ND	ND				
ND	ND	ND				
ND	ND	ND				
ND	ND	ND				
ND	ND	ND				
ND	ND	ND				
	NYCC ND ND ND ND ND S3.8 ND 11.7 9.0 ND	Loaded Trap Regenerat NYCC R-1 ND ND ND ND ND ND ND ND ND ND ND ND 33.8 7.3 ND ND 11.7 5.7 9.0 5.3 ND ND ND ND				

 $[\]overline{a_{\rm ND}}$ - none detected, <1.1 $\mu g/mi$ FTP, <0.8 $\mu g/mi$ HFET, <6.7 $\mu g/mi$ NYCC.

TABLE J-5. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, MERCEDES WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL

Emissions in $\mu g/mi$ FTP, with trap FTP, without trap Test Test Test 4-2 13-1,2 4-1 Naphthalene ND 0.6 0.5 2-Methylnaphthalene ND 0.5 ND Acenaphthylene ND 0.7 ND Dibenzofuran ND1.7 1.3 Fluorene ND 1.8 1.4 Phenanthrene 5.9 139 118 Anthracene NDND ND Fluoranthene 4.3 34.7 31.2 Pyrene 2.2 45.7 43.6 Benzo(a) anthracene ND ND0.6 Chrysene ND 4.1 4.2 Benzo(b)fluoranthene ND 1.8 .0.6 Benzo(k)fluoranthene ND ND ND Benzo(a)pyrene ND 1.6 NDIndeno(1,2,3-cd)pyrene ND ND ND Benzo(g,h,i)perylene NDND ND

 $[\]overline{\text{aND}}$ - none detected, <1.1 μ g/mi FTP, <0.8 μ g/mi HFET, <6.7 μ g/mi NYCC.

TABLE J-6. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, MERCEDES WITH RETARDED TIMING AND WITH AND WITHOUT TRAP, FTP TESTS

Emissions in µg/mi FTP, with trap FTP, without trap Test Test 17-2 8-2 NDND Naphthalene 2-Methylnaphthalene ND ND Acenaphthylene ND ND Dibenzofuran ND ND ND Fluorene ND Phenanthrene 3.8 25.8 Anthracene ND ND 7.5 Fluoranthene 46.2 10.2 Pyrene 39.3 Benzo(a)anthracene 1.6 7.5 5.4 Chrysene 10.8 Benzo(b) fluoranthene 4.3 9.7 Benzo(k) fluoranthene 1.1 NDBenzo(a)pyrene 2.7 2.7 Indeno(1,2,3-cd)pyrene ND ND Benzo(g,h,i)perylene ND ND

aND - none detected, <1.1 μg/mi FTP, <0.8 μg/mi HFET, <6.7 μg/mi NYCC.

APPENDIX K

PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, VOLKSWAGEN

Table	K-1	List of Compounds Analyzed
	K-2	Baseline with Trap
	K-3	Baseline without Trap
	T.C. A	December 20 Mark and December 20 1 MRRT Total

- K-4 Regeneration Test with Baseline Fuel, HFET Test
 K-5 With and without Trap and with Low Aromatic Fuel, FTP Tests
- K-6 Retarded Timing with and without Trap

TABLE K-1. PARTICULATE ASSOCIATED SEMIVOLATIVE ORGANICS, LIST OF COMPOUNDS ANALYZED

POLYNUCLEAR AROMATICS

Naphthalene 2-Methylnaphthalene Acenaphthylene Acenaphthenea Dibenzofuran Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a) anthracene Chrysene Benzo(b) fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenz(a,h)anthracenea Benzo(g,h,i)perylene

NITRATED POLYNUCLEAR AROMATICS

9-Nitroanthracene^a
9-Methyl-10-nitroanthracene^a,b
7-Nitrobenz(a)anthracene^a,b
6-Nitro-benzo(a)pyrene^a
6-Nitrochrysene^a
3-Nitrofluoranthrene^a
2-Nitrofluorene^a
1-Nitropyrene^a
1,3-Dinitropyrene^a
1,6-Dinitropyrene^a
1,8-Dinitropyrene^a

OTHER TARGET COMPOUNDS

Phenol^a
2-Methylphenol^a
3-Methylphenol^a,c
4-Methylphenol^a
N-Nitrosodimethylamine^a
N-nitroso-dipropylamine^a
N-nitroso-diphenylamine^a
Nitrobenzene^a

aNot detected in any samples during the program and therefore not listed in subsequent tables. Detection limits are <1.1 μ g/mi for the FTP, <0.8 μ g/mi for HFET, and <6.7 μ g/mi for the NYCC.

bSearched for by extracted ion chromatogram profile, no standard available.

CUsed response factor of 4-methylphenol to quantitate.

TABLE K-2. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, VOLKSWAGEN BASELINE WITH TRAP

	Emissions, μg/mi						
	FTP		HFET		NYCC		
	Test	Test	Test	Test	Test	Test	
	1-1	1-2	<u>1-1</u>	1-2	1-1	1-2	
Naphthalene	ND	ND	ND	ND	ND	ND	
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND	
Acenaphthylene	ND	ND	ND	ND	ND	ND	
Dibenzofuran	ND	ND	ND	ND	ND	ND	
Fluorene	ND	ND	ND	ND	ND	ND	
Phenanthrene	0.6	ND	0.9	ND	6.9	ND	
Anthracene	ND	ND	ND	ND	ND	ND	
Fluoranthene	2.1	0.7	1.5	ND	ND	ND	
Pyrene	6.4	2.8	3.4	1.1	9.7	ND	
Benzo(a)anthracene	1.6	ND	1.5	ND	ND	ND	
Chrysene	3.5	1.8	3.7	3.2	ND	ND	
Benzo(b) fluoranthene	1.9	ND	2.0	1.0	ND	ND	
Benzo(k) fluoranthene	ND	ND	ND	ND	ND	ND	
Benzo(a)pyrene	ND	ND	ND	ND	ND	ND	
Indeno(1,2,3-cd)pyrene	ND ·	ND	ND	ND	ND	ND	
Benzo(g,h,i)perylene	ND	ND	ND	ND	ND	ND	

 $[\]overline{a_{\rm ND}}$ - none detected, <1.1 μ g/mi FTP, <0.8 μ g/mi HFET, <6.7 μ g/mi NYCC.

TABLE K-3. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, VOLKSWAGEN BASELINE WITHOUT TRAP

	Emissions, μg/mi					
	FTP		HFET		NYCC	
	Test	Test	Test	Test	Test	Test
	2-1	2-2	2-1	2-2	2-1	2-2
Naphthalene	ND	ND	ND	ND	ND	ND
2-Methylnaphthalene	ND	ND	ND	ND	ND	ND
Acenaphthylene	ND	ND	ND	ND	ND	ND
Dibenzofuran	ND	ND	ND	ND	ND	ND
Fluorene	ND	ND	ND	ND	ND	ND
Phenanthrene	10.2	12.8	3.8	4.0	18.6	20.0
Anthracene	ND	ND	ND	ND	ND	ND
Fluoranthene	18.7	21.9	10.1	9.4	51.1	44.9
Pyrene	46.6	49.6	21.8	22.6	96.6	82.8
Benzo(a)anthracene	4.7	4.5	3.1	3.4	9.7	7.6
Chrysene	ND	6.9	ND	5.6	12.4	9.7
Benzo(b) fluoranthene	3.8	5.2	4.3	4.7	17.3	11.7
Benzo(k) fluoranthene	ND	ND	ND	ND	10.4	ND
Benzo(a)pyrene	3.5	3.0	1.5	3.3	ND	8.3
Indeno(11,2,3-cd)pyrene	ND	0.8	0.9	1.0	ND	ND
Benzo(g,h,i)perylene	2.4	2.6	1.8	2.1	13.8	11.0

 $[\]overline{^{a}\text{ND}}$ - none detected, <1.1 μ g/mi FTP, <0.8 μ g/mi HFET, <6.7 μ g/mi NYCC.

TABLE K-4. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, VOLKSWAGEN REGENERATION, HFET

	Emissions in μg/mi
	<u>R-2</u>
Naphthalene	ND
2-Methylnaphthalene	ND
Acenaphthylene	ND
Dibenzofuran	ND
Fluorene	ND
Phenanthrene	ND
Anthracene	ND
Fluoranthene	1.6
Pyrene	2.3
Benzo(a)anthracene	2.3
Chrysene	5 <u>.</u> 5
Benzo(b)fluoranthene	4.7
Benzo(k)fluoranthene	ND
Benzo(a)pyrene	3.9
Indeno(1,2,3-cd)pyrene	ND
Benzo(g,h,i)perylene	ND

 $[\]overline{a_{
m ND}}$ - none detected, <1.1 $\mu g/mi$ FTP, <0.8 $\mu g/mi$ HFET, <6.7 $\mu g/mi$ NYCC.

TABLE K-5. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, VOLKSWAGEN WITH AND WITHOUT TRAP AND LOW AROMATIC FUEL

Emissions in µg/mi FTP, with trap FTP, without trap Test Test 3-2 4-2 NDND Naphthalene 2-Methylnaphthalene ND ND Acenaphthylene ND ND Dibenzofuran ND ND Fluorene NDND Phenanthrene ND11.9 NDAnthracene ND Fluoranthene ND 20.0 Pyrene ND 20.0 Benzo(a)anthracene ND2.2 Chrysene ND 3.2 Benzo(b) fluoranthene ND 2.7 Benzo(k) fluoranthene ND ND Benzo(a)pyrene ND 2.2 Indeno(1,2,3-cd)pyrene ND ND Benzo(g,h,i)perylene ND ND

and - none detected, <1.1 μ g/mi FTP, <0.8 μ g/mi HFET, <6.7 μ g/mi NYCC.

TABLE K-6. PARTICULATE ASSOCIATED SEMIVOLATILE ORGANICS, VOLKSWAGEN WITH RETARDED TIMING AND WITH AND WITHOUT TRAP, FTP TESTS

Emissions in µg/mi FTP, with trap FTP, without trap Test Test 7-2 8-2 ND NDNaphthalene ND ND 2-Methylnaphthalene Acenaphthylene ND ND Dibenzofuran ND ND ND Fluorene ND2.2 Phenanthrene 17.2 Anthracene ND ND Fluoranthene 4.3 31.7 Pyrene 8.1 9.7 Benzo(a)anthracene 2.7 12.4 3.8 Chrysene 15.1 Benzo(b) fluoranthene 2.2 19.4 Benzo(k) fluoranthene NDNDBenzo(a)pyrene ND 6.5 Indeno(1,2,3-cd)pyrene ND ND Benzo(g,h,i)perylene ND 8.6

 $[\]overline{a}$ ND - none detected, <1.1 μ g/mi FTP, <0.8 μ g/mi HFET, <6.7 μ g/mi NYCC.

APPENDIX L

1,3-BUTADIENE, MERCEDES AND VOLKSWAGEN

Table	L-1	Mercedes Baseline with and without Trap, FTP Tests
	L-2	Mercedes with Retarded Timing, with and without Trap,
		and with Low Aromatic Fuel, FTP Tests
	L-3	Volkswagen Baseline with and without Trap, FTP Tests
	L-4	Volkswagen with Failed Injectors and with and without
		Trap; FTP, HFET, and NYCC Tests
	L-5	Volkswagen with Retarded Timing and with and withou Trap; FTP, HFET, and NYCC Tests

TABLE L-1. 1,3-BUTADIENE, MERCEDES BASELINE WITHOUT TRAP, FTP TESTS

	FTP Emissions in mg/mi, except as noted			
	With trap Without Trap		ıt Trap	
	Test	Test	Test	
	11-4	2-4	2-5	
Total Hydrocarbons	270	230	190	
1,3 Butadiene	3.6	3.4	3.7	
1,3-Butadiene Percent of Total hydrocarbons	1.3	1.5	1.9	
Other C ₄ Hydrocarbons				
Isobutylene	1.0	0.4	1.0	
1-Butene	2.5	2.3	2.7	
Detection Limits for 1,3-Butadiene	0.5	0.5	0.5	

TABLE L-2. 1,3-BUTADIENE, MERCEDES WITH RETARDED TIMING, WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL, FTP TESTS

	FTP Emissions in mg/mi, except as noted		
	With Trap	Without Trap	
	Test	Test	
	<u>19-1</u>	<u>10-1</u>	
Total Hydrocarbons	250	260	
1,3 Butadiene	7.7	5.9	
1,3-Butadiene Percent of Total Hydrocarbons	3.1	2.3	
Other C ₄ Hydrocarbons			
Isobutylene	1.4	1.2	
1-Butene	4.5	3.5	
Detection Limits for 1,3-Butadiene	0.5	0.5	

TABLE L-3. 1,3-BUTADIENE, VOLKSWAGEN BASELINE WITH AND WITHOUT TRAP, FTP TESTS

FTP Emissions in mg/mi, except as noted Without trap With trap Test Test Test Test 1-5 1-7 2-4 2-6 140 200 300 290 Total Hydrocarbons 1.5 4.5 4.4 4.3 1,3-Butadiene 1.1 2.3 1.5 1.5 1,3 Butadiene Percent of Total Hydrocarbons Other C4 Hydrocarbons 0.6 1.2 1.1 1.5 Isobutylene 1-Butene 2.1 2.6 3.0 3.4 0.5 0.5 0.5 0.5 Detection Limits for 1,3 Butadiene

TABLE L-4. 1,3-BUTADIENE, VOLKSWAGEN WITH FAILED INJECTORS AND WITH AND WITHOUT TRAP; FTP, HFET, AND NYCC TESTS

	Emissions in mg/mi, except as noted					
	F	TP	H	HFET		YCC
	With	Without	With Without		With	Without
	<u>Trap</u> a	Trap	<u>Trap</u>	<u>Trap</u>	<u>Trap</u>	Trap
	Test	Test	Test	Test	Test	Test
	5-2,3	6-2	5-1	6-2	<u>5-1</u>	6-2
Total Hydrocarbons	250	360	100	150	410	560
1,3-Butadiene	4.9	7.6	2.1	1.4	11.7	ND_p
1,3 Butadiene Percent of Total Hydrocarbons	2.0	2.1	2.1	0.9	2.9	<0.3
Other C ₄ Hydrocarbons						
Isobutylene	1.6	1.6	NDc	0.7	ND	ND
1-Butene	3.7	2.3	1.4	1.6	7.5	6.9
Detection Limits for 1,3 Butadiene	0.5	0.5	0.2	0.2	1.7	1.7

aAverage of two tests.

bNA - not available.

CND - none detected.

TABLE L-5. 1,3-BUTADIENE, VOLKSWAGEN WITH RETARDED TIMING AND WITH AND WITHOUT TRAP; FTP, HFET, AND NYCC TESTS

Emissions in mg/mi, except as noted FTP NYCC HFET With Without With Without With Without Trap Trapa Trap^a Trapa Trap Trap Test Test Test Test Test Test 7-2 8-1,2 7-2 8-1,2 8-1,2 Total Hydrocarbons 560 620 180 220 1490 1,3-Butadiene 10.2 3.5 NA^{b} 23.6 9.1 4.8 1.6 1.6 2.7 1.6 1,3 Butadiene Percent 1.6 of Total Hydrocarbons Other C4 Hydrocarbons Isobutylene 2.6 2.3 1.0 1.0 6.1 1-Butene 6.5 2.5 6.9 2.4 15.5 **Detection Limits for** 0.5 0.5 0.2 0.2 0.2 1.7

1,3 Butadiene

a Average of two tests.

bNA - not available.

APPENDIX M

GASEOUS VOLATILE ORGANICS, MERCEDES

Table	M-1	List of Compounds Analyzed
	M-2	Baseline with Trap
	M-3	Baseline without Trap
	M-4	Baseline with Replacement Trap
	M-5	With and without Trap and with Low-Aromatic Fuel
	M-6	Loaded Trap and Regeneration Tests, Baseline and Low
		Aromatic Fuel
	M-7	With Worn Injectors and Trap
	M-8	With Retarded Timing and Trap
	M-9	With Retarded Timing and without Trap
	M-10	With Retarded Timing, with and without Trap, and with
		Low Aromatic Fuel

TABLE M-1. GASEOUS VOLATILE ORGANICS, LIST OF COMPOUNDS ANALYZED

INITIAL ANALYSES ONLY

Methylene chloride Acetone Carbon disulfide 1,1-Dichloroethene 1,1-Dichloroethane trans-1,2-Dichloroethene 1,2-Dichloroethane Acrolein Acrylonitrile 2-Butanone 1,1,1-Trichloroethane Carbon tetrachloride Vinyl acetate Bromodichloromethane 1,2-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane cis-1,3-Dichloropropene 2-Chloroethyl vinyl ether Bromoform 2-Hexanone 4-Methyl-2-pentanone Tetrachloroethene Chlorobenzene Ethylbenzene Styrene

ALL ANALYSES

Benzene Toluene Total Xylenes 1,3-Butadiene Chloroform 1,4-Dioxane Phosgene

TABLE M-2. GASEOUS VOLATILE ORGANICS, MERCEDES BASELINE WITH TRAP

Emissions, mg/mi FTP NYCC HFET Test Test Test Test Test Test 1-1 1-3 1-2 1-2 1-1 1-2 NDa 1.1 ND ND ND ND Methylene chloride 0.4 1.0 0.3 0.3 7.0 2.5 Acetone ND ND ND NDND ND Carbon disulfide ND ND ND ND ND 1.1-Dichloroethene NDNDND ND NDND ND 1,1-Dichloroethane trans-1,2-Dichloroethene ND ND ND NDND ND ND ND1,2-Dichloroethane NDNDND ND Acrolein 0.1 ND NDNDND NDND ND ND ND ND ND Acrylonitrile ND ND ND ND ND ND 2-Butanone *b 1,1,1-Trichloroethane * * C * * ND ND Carbon Tetrachloride NDND ND 0.1 ND Vinyl acetate ND ND ND NDND ND Bromodichloromethane ND NDND ND NDNDND ND ND 1,2-Dichloropropane Trans-1,3-Dichloropropene NDND NDND NDND Trichloroethene ND ND ND NDND ND ND Dibromochloromethane ND NDNDND ND ND NDNDND ND 1,1,2-Trichloroethane NDcis-1,3-Dichloropropene ND ND NDND ND ND 2-Chloroethyl vinyl ether ND ND NDND ND ND ND ND ND ND ND ND Bromoform 2-Hexanone 0.1 0.1 ND ND NDND 4-Methyl-2-pentanone ND ND ND ND ND NDTetrachloroethene ND ND ND ND ND ND ND 1,1,2,2-Tetrachloroethane ND ND ND ND NDND ND ND Chlorobenzene ND ND ND Ethylbenzene 0.5 0.2 0.2 0.3 ND 1.4 Styrene 0.2 0.2 0.1 0.1 ND 0.6 Tetrahydrofuran ND ND NDND ND NDBenzene ND 5.3 8.3 0.8 2.7 3.3 Toluene NAe3.4 NANA4.8 3.0 Total Xylenes 2.0 0.9 0.4 0.9 ND 5.3 1,3-Butadiened ND ND ND ND ND NDChloroformd ND ND NDNDND ND 1,4-Dioxaned ND ND ND ND ND ND Phosgened ND ND ND ND ND ND

aND-none detected, detection limits are <0.1 mg/mi FTP, <0.1 mg/mi HFET, <0.5 mg/mi NYCC.

b*-Found on Blank Pallflex Filters.

C**-Higher levels of 1,1,1-Trichloroethane interfered with analysis of carbon tetrachloride.

dDetection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <1.1 mg/mi NYCC.

eNA-Results not available.

TABLE M-3. GASEOUS VOLATILE ORGANICS, MERCEDES BASELINE WITHOUT TRAP

Emissions, mg/mi NYCC FTP **HFET** Test Test Test Test Test Test 2-1 2-2 2-1 2-2 2-1 2-2 0.2 0.1 0.2 0.2 1.2 ND Methylene chloride * Acetonea ND ND ND Carbon disulfide NDND NDND ND ND ND ND ND 1,1-Dichloroethene ND ND ND ND NDND 1,1-Dichloroethane ND ND trans-1,2-Dichloroethene ND ND ND ND1,2-Dichloroethane NDND ND ND ND ND ND ND ND ND ND Acrolein NDAcrylonitrile ND ND ND ND ND ND 0.9 2-Butanone 0.4 0.2 0.1 0.1 1.7 1.1.1-Trichloroethanea ND ND ND ND ND ND Carbon Tetrachloride ND Vinyl acetate ND ND ND ND ND Bromodichloromethane ND ND ND ND ND ND 1,2-Dichloropropane ND ND ND ND ND ND trans-1,3-Dichloropropene ND ND ND NDND ND Trichloroethene ND ND ND NDND NDDibromochloromethane ND ND ND ND ND ND 1,1,2-Trichloroethane ND ND ND NDND ND cis-1,3-Dichloropropene ND ND ND ND ND ND 2-Chloroethyl vinyl ether ND ND NDND ND NDBromoform ND ND ND ND ND ND 2-Hexanone ND 0.4 ND 0.2 1.6 2.4 4-Methyl-2-pentanone 0.3 0.4 0.2 0.4 1.6 2.1 Tetrachloroethene ND ND ND ND ND NDChlorobenzene NDNDND ND NDND Ethylbenzene 0.8 0.5 0.1 0.3 1.9 2.2 Styrene 0.8 0.3 NDND 1.5 1.5 Benzene 9.8 4.5 0.3 0.8 20.6 18.5 15.7 12.8 Toluene 3.0 8.3 44.9 38.0 Total Xylenes 3.1 2.5 0.6 2.2 8.5 12.1 1,3-ButadieneC ND ND ND ND ND ND ChloroformC ND ND ND ND ND ND 1,4-Dioxane^C ND ND ND ND ND ND Phosgenec ND ND ND ND ND ND

a*-Found on blank filter and/or in background sample.

bND-None detected - Detection limits are <0.1 mg/mi FTP, <0.1 mg/mi HFET, and <0.5 mg/mi NYCC.

CDetection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, and <1.1 mg/mi NYCC.

TABLE M-4. GASEOUS VOLATILE ORGANICS, MERCEDES LOADED TRAP AND REGENERATION TESTS, BASELINE AND LOW AROMATIC FUELS

Emissions in mg/mi Loaded Trap Regeneration, HFET NYCC Baseline Fuel Low Aromatic Fuel Baseline Fuel R-1 R-2 R-1 R-2 R-3 NAb 3.6 11.3 4.2 3.6 3.1 Benzene 1.2 NA 20.9 1.0 1.0 0.1 Toluene NA0.2 ND 0.1 1.1 2.0 Total Xylenes 1,3-Butadiene NDaNAND NDNDNDNAND ND ND NDChloroform ND ND NA ND NDNDND 1,4-Dioxane NANDND ND NDNDPhosgene

TABLE M-5. GASEOUS VOLATILE ORGANICS, MERCEDES WITH WORN INJECTORS AND TRAP

	Emissions in mg/mi			
	FTP	HFET	NYCC	
	Test	Test	Test	
	15-1	15-1	15-1	
Benzene	13.5	5.6	26.4	
Toluene	5.1	1.4	13.2	
Total Xylenes	1.4	0.3	13.2	
1,3-Butadiene	${ t ND^{f a}}$	ND	ND	
Chloroform	ND	ND	ND	
1,4-Dioxane	ND	ND	ND	
Phosgene	ND	ND	ND	

aND-None detected, detection limits are < 0.2 mg/mi FTP, < 0.1 mg/mi HFET, < 1.1 mg/mi NYCC.

aND-None detected, detection limits are < 0.2 mg/mi FTP, < 0.1 mg/mi HFET, < 1.1 mg/mi NYCC.

bNA-Data not available.

TABLE M-6. GASEOUS VOLATILE ORGANICS, MERCEDES BASELINE WITH REPLACEMENT TRAP

	Emissions	in mg/mi	
	FI	P	
	Test	Test	
	11-1	11-2	
Benzene	15.0	12.7	
Toluene	6.1	6.5	
Total Xylenes	1.7	1.2	
1,3-Butadiene	NDa	ND	
Chloroform	ND	ND	
1,4-Dioxane	ND	ND	
Phosgene	ND	ND	

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <1.1 mg/mi NYCC.

TABLE M-7. GASEOUS VOLATILE ORGANICS, MERCEDES WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL

	Emissions in mg/mi			
	FTP, w	ith trap	FTP, with	thout trap
	Test	Test	Test	Test
	13-1	13-2	4-1	4-2
Benzene	5.8	5.2	4.5	8.4
Toluene	1.0	2.0	5.7	9.1
Total Xylenes	$_{ m ND}$ a	0.4	2.5	4.0
1,3-Butadiene	ND	ND	ND	ИD
Chloroform	ND	ND	ND	ND
1,4-Dioxane	ND	ND	ND	ND
Phosgene	ND	ND	ND	ND

aND-None detected, detection limits are < 0.2 mg/mi FTP, < 0.1 mg/mi HFET, < 1.1 mg/mi NYCC

TABLE M-8. GASEOUS VOLATILE ORGANICS, MERCEDES WITH RETARDED TIMING AND TRAP

Emissions in mg/mi FTP HFET NYCC Test Test Test Test 17-2 17-1 17-1,-2 17-1,-2 12.1 13.9 24.3 Benzene 6.5 1.9 5.2 5.3 13.7 Toluene 0.4 Total Xylenes 2.0 1.9 6.1 $ND^{\mathbf{a}}$ 1,3-Butadiene ND NDND ND Chloroform ND. ND ND 1,4-Dioxane NDNDND NDPhosgene NDNDNDND

TABLE M-9. GASEOUS VOLATILE ORGANICS, MERCEDES WITH RETARDED TIMING AND WITHOUT TRAP

	Emissions in mg/mi			
	FTP		HFET	NYCC.
	Test	Test	Test	Test
	8-1	8-2	8-1,-2	8-1,-2
Benzene	5.9	6.3	3.9	14.8
Toluene	3.0	3.8	1.9	8.9
Total Xylenes	1.1	1.5	0.7	2.9
1,3-Butadiene	ND^{a}	ND	ND	ND
Chloroform	ND	ND	ND	ND
1,4-Dioxane	ND	ND	ИD	ND
Phosgene	ND	ИD	ИD	ND

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <0.5 mg/mi NYCC.

aND-None detected, detection limits are < 0.2 mg/mi FTP, < 0.1 mg/mi HFET, < 0.5 mg/mi NYCC.

TABLE M-10. GASEOUS VOLATILE ORGANICS, MERCEDES WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL

	Emissions in mg/mi			
	FTP, with trap FTP, withou			
	Test	Test		
	19-1	10-1		
_				
Benzene	12.0	7.8		
Toluene	4.2	5.8		
Total Xylenes	1.2	1.6		
1,3-Butadiene	$_{ m ND}$ a	ND		
Chloroform	ND	ND		
1,4-Dioxane	ND	ND		
Phosgene	ND	ND		

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <1.1 mg/mi NYCC.

APPENDIX N

GASEOUS VOLATILE ORGANICS, VOLKSWAGEN

Table	N-1	List of Compounds Analyzed
	N-2	Baseline with Trap
	N-3	Baseline without Trap
	N-4	With and without Trap and with Low-Aromatic Fuel
	N-5	Loaded Trap and Regeneration Tests, Baseline and Low
		Aromatic Fuel
	N-6	Failed Injectors with Trap
	N-7	Failed Injectors without Trap
	N-8	Retarded Timing with Trap
	N-9	Retarded Timing without Trap
	N-10	Retarded Timing, with and without Trap, and with Low
		Aromatic Fuel

TABLE N-1. GASEOUS VOLATILE ORGANICS, LIST OF COMPOUNDS ANALYZED

COMPOUNDS ALL ANALYSES

Benzene
Toluene
Total Xylenes
1,3-Butadiene
Chloroform
1,4-Dioxane
Phosgene

TABLE N-2. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN BASELINE WITH TRAP

	Emissions, mg/mi					
	F	ſΡ	HF	HFET		CC
	Test 1-1	Test 1-2	Test 1-1	Test 1-2	Test 1-1	Test 1-2
Benzene	7.3	7.5	3.5	3.3	19.5	16.4
Toluene	8.2	6.6	2.7	2.6	19.5	16.9
Total Xylenes	5.3	4.9	2.1	1.3	14.8	14.8
1,3-Butadiene	ND^a	ND	ND.	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND
1,4-Dioxane	ND	ND	ND	ND	ND	ND
Phosgene	ND	ND	ND	ND	ND	ND

aND-None detected, detection limits are < 0.2 mg/mi FTP, < 0.1 mg/mi HFET, < 1.1 mg/mi NYCC.

TABLE N-3. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN BASELINE WITHOUT TRAP

	Emissions, mg/mi						
	FI	P.	HF	HFET		NYCC	
	Test	Test	Test	Test Test		Test	
	2-1	2-2	2-1	2-2	2-1	_2-2_	
Benzene	4.9	6.3	2.8	2.8	17.4	2.9	
Toluene	5.4	7.5	2.4	3.6	16.9	4.9	
Total Xylenes	3.4	4.2	1.8	2.1	11.6	ND	
1,3-Butadiene	ND^a	ND	ND	ND	ND	ND	
Chloroform	ND	ND	ИD	ND	ND	ND	
1,4-Dioxane	ND	ND	ND	ND	ND	ND	
Phosgene	ND	ИD	ND	ND	ND	ND	

aND-None detected, detection limits are < 0.2 mg/mi FTP, < 0.1 mg/mi HFET, < 1.1 mg/mi NYCC.

TABLE N-4. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN WITH AND WITHOUT TRAP AND WITH LOW AROMATIC FUEL

Emissions in mg/mi FTP, with trap FTP, without trap Test Test Test Test 3-1 3-2 4-1 4-2 0.3 0.8 2.9 ND Benzene 7.1 4.1 1.9 2.2 Toluene Total Xylenes 8.6 4.2 0.5 0.7 NDaND ND ND 1,3-Butadiene NDNDNDChloroform ND1,4-Dioxane NDNDND ND Phosgene ND ND ND ND

TABLE N-5. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN LOADED TRAP AND REGENERATION TESTS, BASELINE AND LOW AROMATIC FUELS

	Emissions in mg/mi					
	Loaded Trap	Regeneration, HFET				
	NYCC	В	aseline Fu	el	Low Aron	natic Fuel
	Baseline Fuel	R-1	R-2	R-3	R-1	R-2
Benzene	15.3	1.2	NAb	2.8	4.8	2.3
Toluene	10.6	1.9	NA	2.1	2.6	1.6
Total Xylenes	ND^a	NA	NA	0.7	0.4	0.6
1,3-Butadiene	ND	ND	NA	ND	ND	ND
Chloroform	ND	ND	NA	ND	ND	ND
1,4-Dioxane	ND	ND	NA	ND	ND	ND
Phosgene	ND	ND	NA	ND	ND	ND

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <1.1 mg/mi NYCC.

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <1.1 mg/mi NYCC.

bNA-Data not available.

TABLE N-6. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN WITH FAILED INJECTORS AND TRAP

Emissions in mg/mi FTP NYCC HFET Test Test Test Test 5-1,-2 5-3 5-2 5-1,-2 6.0 6.0 2.9 15.8 Benzene 4.3 1.9 14.3 Toluene 4.1 2.0 Total Xylenes 1.4 0.4 4.0 1,3-Butadiene NDaND ND ND ND ND ND Chloroform ND1,4-Dioxane ND ND ND ND ND ND ND NDPhosgene

TABLE N-7. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN WITH FAILED INJECTORS AND WITHOUT TRAP

Emissions in mg/mi FTP HFET NYCC Test Test Test Test <u>6-</u>2 6-1 6-1,-2 6-1,-2 Benzene 5.5 5.6 2.2 11.6 Toluene 4.2 8.0 2.0 12.7 Total Xylenes 1.0 2.0 0.5 3.4 1,3-Butadiene ND^a ND ND ND ND Chloroform ND ND ND 1,4-Dioxane ND ND ND ND Phosgene ND ND ND ND

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <0.5 mg/mi NYCC.

aND-None detected, detection limits are < 0.2 mg/mi FTP, < 0.1 mg/mi HFET, < 0.5 mg/mi NYCC.

TABLE N-8. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN WITH RETARDED TIMING AND WITH TRAP

Emissions in mg/mi FTP HFET NYCC Test Test Test Test 7-1,-2 7-1,-2 7-1 7-2 7.7 Benzene 8.6 4.1 17.7 Toluene 5.7 6.7 2.6 15.3 Total Xylenes 2.4 3.1 1.1 7.1 ND^{a} ND1,3-Butadiene ND ND Chloroform ND ND ND ND NDND ND ND 1,4-Dioxane Phosgene NDDNDND

TABLE N-9. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN WITH RETARDED TIMING AND WITHOUT TRAP

Emissions in mg/mi FTP HFET NYCC Test Test Test Test 8-1,-2 8-1 8-2 8-1,-2 20.6 Benzene 9.0 7.8 3.0 Toluene 5.2 4.6 1.9 14.5 Total Xylenes 2.7 2.1 6.6 0.9 1,3-Butadiene ND^a NDND ND Chloroform ND ND NDND 1,4-Dioxane ND ND ND ND Phosgene ND ND ND ND

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <0.5 mg/mi NYCC.

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <0.5 mg/mi NYCC.

TABLE N-10. GASEOUS VOLATILE ORGANICS, VOLKSWAGEN WITH RETARDED TIMING, WITH AND WITHOUT TRAP, AND WITH LOW AROMATIC FUEL

	Emissions in mg/mi				
	FTP, with trap	FTP, without trap			
	Test	Test			
	9-1	10-1			
Benzene	5.4	6.1			
Toluene	4.7	4.8			
Total Xylenes	1.7	1.8			
1,3-Butadiene	$ND^{\mathbf{a}}$	ND			
Chloroform	ND	ND			
1,4-Dioxane	ND	ND			
Phosgene	ND	ND			

aND-None detected, detection limits are <0.2 mg/mi FTP, <0.1 mg/mi HFET, <1.1 mg/mi NYCC.

APPENDIX O

PARTICULATE ASSOCIATED VOLATILE ORGANICS

Table O-1 Mercedes Baseline with Trap
O-2 Mercedes Baseline without Trap

TABLE O-1. PARTICULATE ASSOCIATED VOLATILE ORGANICS, MERCEDES BASELINE WITH TRAP

Particulate Associated Volatile Organics, µg/g Particulate Test Test Test Test Test Test 1-2 1-3 1-1 1-1 1-2 1-2 FTP HFET NYCC FTP HFET NYCC ND^a ND ND ND ND ND Chloromethane ND ND ND ND ND ND Bromomethane ND ND ND ND ND ND Vinyl chloride ND ND ND NDND ND Chloroethane ND ND ND ND ND ND Methylene chloride Acetone 8 ND 89 ND ND ND NDND ND ND ND ND Carbon disulfide ND ND ND ND ND ND 1,1-Dichloroethene ND ND 1.1-Dichloroethane ND ND ND ND trans-1,2-Dichloroethene ND ND ND ND ND ND ND Chloroform ND ND ND ND ND ND1,2-Dichloroethane NDND ND ND ND Acrolein ND NDND ND ND NDAcrylonitrile ND ND ND ND ND ND 2-Butanone ND ND ND NDND ND *b * 1,1,1-Trichloroethane * * C ** ND ND ND Carbon Tetrachloride ND ND Vinyl acetate ND ND ND ND ND ND ND ND Bromodichloromethane ND ND ND 1,2-Dichloropropane ND ND ND ND NDNDTrans-1,3-Dichloropropene ND ND ND ND ND ND Trichloroethene ND ND ND ND ND NDND ND ND Dibromochloromethane ND ND ND ND 1,1,2-Trichloroethane ND ND ND ND ND Benzene ND ND ND ND ND ND ND cis-1,3-Dichloropropene ND ND ND ND ND ND ND ND 2-Chloroethyl vinyl ether ND ND ND Bromoform ND ND ND ND ND ND 2-Hexanone ND ND ND ND ND ND ND ND 4-Methyl-2-pentanone ND NDND ND ND ND ND ND ND Tetrachloroethene ND ND ND 1,1,2,2-Tetrachloroethane ND NDND ND Toluene 3 ND Chlorobenzene ND Ethylbenzene ND ND NDND NDNDND ND ND ND ND Styrene NDND Total Xylenes ND NDND NDNDTetrahydrofuran ND ND ND ND ND ND 1,3-Butadiene ND ND ND ND ND ND

 $a_{\rm ND}$ -none detected - Detection limit 5 $\mu g/g$ particulate for the FTP and HFET tests, and 10 $\mu g/g$ particulate for the NYCC tests.

b*Found on blank Pallflex filters.

C**Higher levels of 1,1,1-Trichloroethane were found to interfere with the analysis of carbon tetrochloride.

TABLE O-2. PARTICULATE ASSOCIATED VOLATILE ORGANICS, MERCEDES BASELINE WITHOUT TRAP

Partic	culate A	Associat	ed Volati	le Organ	ics, $\mu_{\rm g/s}$	g Particulate
	Test	Test	Test	Test	Test	Test
	2-1	2-1	2-1	2-2	2-2	2-2
	FTP	HFET	NYCC	FTP	HFET	NYCC
Chloromethane	ND^{a}	ND	ND	ND	ND	ND
Bromomethane	ND	ND	ИD	ND	ND	ND
Vinyl chloride	ND	ND	ND	ND	ND	ND
Chloroethane	ND	ND	ND	ND	ND	ND
Methylene chloride	ND	ИD	ND	ND	ND	5
Acetone	ND	6	ND	ND	ND	ND
Carbon disulfide	ND	ИD	ND	ND	ND	ND
1,1-Dichloroethene	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	ИD	ND	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	ND	ND	ND
Acrolein	ND	ND	ND	ND	ND	ND
Acrylonitrile	ND	ND	ND	ND	ND	ND
2-Butanone	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	ND	ND	ND	ND	ND	ND
Carbon Tetrachloride	ND	ND	ND	ND	ND	ND
Vinyl acetate	ND	ND	ND	ND	ND	ND
Bromodichloromethane	ИD	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	ND	ND	ND	ND
Trans-1,3-Dichloropropene	ND	ND	ND	ND	ND	ND
Trichloroethene	ND	ИD	ND	ND	ND	ND
Dibromochloromethane	ND	ND	ND	ND	ИD	ND
1,1,2-Trichloroethane	ND	ND	ИD	ND	ND	ND
Benzene	ИD	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	ND	ND	ИD	ND	ND	ND
2-Chloroethyl vinyl ether	ND	ND	ND	ND	ND	ND
Bromoform	ND	ND	ND	ND	ND	ND
2-Hexanone	ИD	ИD	ND	ND	ND	ND
4-Methyl-2-pentanone	ND	ND	ND	ND	ND	ND
Tetrachloroethene	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND
Toluene	ND	ND	ND	ND	ND	ND
Chlorobenzene	ND	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	ND	ND	ND	ND
Styrene	ND	ND	ND	ND	ND	ND
Total Xylenes	ИD	ND	ND	ND	ИD	ND
1,3-Butadieņe	ND	ND	ИD	ND	ND	ND
1,4-Dioxaneb	ND	ND	ND	ND	ND	ND
Phosgene ^b	ИD	ND	ND	ND	ND	ND

and - none detected - Detection limit 1 μ g/g particulate for the FTP and HFET tests, and 3 μ g/g particulate for the NYCC tests. bDetection limit for 1,4-dioxane and phosgene is 2 μ g/g particulate for the FTP and HFET tests, and 6 μ g/g for the NYCC tests.

APPENDIX P

MUTAGENIC ACTIVITY RESULTS

Data tables are taken directly from CARB Final Report A-5-130-33 "Genotoxicity of Diesel Exhaust Particles and Vapors Collected from Engines with and without Particulate Trap Oxidizers" by Dr. Ronald Rasmussen of The University of California, Irvine

- Table P-1 Mercedes with trap, Revertants/microgram (rev/μg)
 - P-2 Mercedes without trap, rev/μg
 - P-3 Mercedes with and without trap, Revertants/mile (rev/mi)
 - P-4 Volkswagen with and without trap, $rev/\mu g$
 - P-5 Volkswagen with and without trap, rev/mi
 - P-6 Mercedes with loaded trap, $rev/\mu g$ and rev/mi
 - P-7 Mercedes Regeneration, rev/µg and rev/mi
 - P-8 Mercedes without trap and with Low Aromatic Fuel, rev/ μ g and rev/mi
 - P-9 Volkswagen with loaded trap, rev/µg and rev/mi
 - P-10 Volkswagen Regeneration, rev/µg and rev/mi
 - P-11 Volkswagen with trap and Low Aromatic Fuel, rev/ μ g and rev/mi
 - P-12 Volkswagen without trap and with Low Aromatic Fuel, rev/ μ g and rev/mi

TABLE P-1. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES WITH TRAP

TABLE 14. Mutagenic Activity in DCM Extracts of Exhaust Particles Collected from Mercedes Benz Auto With an Oxidizer Exhaust Trap Expressed as Revertants per Microgram of Extracted Material.

The values for mutagenic activity are revertants/microgram of extract ± one standard deviation, determined from dose-response curves as described in the Experimental section. The concentrations used for determination of the dose-response were 0, 10, 25, 50, and 75 micrograms/plate, with 3 plates at each concentration. The values for "n" represent the number of plates used to define the linear portion of the dose-response curves, and also indicate the concentration range involved. Thus, an "n" of 6 indicates 0-10 micrograms; "n" of 9 indicates 0-25 micrograms; "n" of 12 indicates 0-50 micrograms; and "n" of 15 indicates 0-75 micrograms.

	Revertants per TA98 + S9 (n)	r <u>Microgram*</u> TA98 <u>-</u> S9 (n)
With Trap		
6/HFTP 22/ "	18.9 ± 2.57 (6) 4.53 ± 0.95 (6)	17.9 ± 1.75 (6) 7.32 ± 1.37 (9)
10/HFET 26/ "	9.03 \pm 1.16 (9) 16.6 \pm 1.35 (9)	
14/NYCC 30/ "	4.43 ± 1.65 (6) 15.4 \pm 0.71 (9)	3.77 ± 0.99 (6) 32.3 ± 0.70 (6)
18/CFTP 34/ "	$5.55 \pm 1.31 (9)$ 14.9 $\pm 2.41 (12)$	$5.97 \pm 1.05 (9)$ $37.5 \pm 2.42 (6)$
	TA100 + S9 (n)	TA100 - S9 (n)
6/HFTP 22/ "	16.1 ± 8.16 (6) 2.25 ± 2.62 (9)	15.9 ± 3.28 (6) 3.53 ± 5.60 (6)
10/HFET 26/ "	13.0 ± 2.90 (6) 15.0 ± 2.19 (6)	12.4 ± 1.19 (6) 15.0 ± 4.26 (6)
14/NYCC 30/ "	4.10 ± 2.97 (6) 12.7 ± 3.02 (6)	3.13 ± 3.55 (6) 11.2 ± 3.74 (6)
18/CFTP 34/ "	5.44 ± 1.12 (9) 11.6 ± 2.16 (6)	6.03 ± 2.33 (6) 4.84 ± 2.56 (9)

TABLE P-2. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION, MERCEDES WITHOUT TRAP

TABLE 15. Mutagenic Activity in DCM Extracts of Exhaust Particles Collected from a Mercedes Benz Auto Without an Oxidizer Trap, Expressed as Revertants per Microgram of Extracted Material.

	Reverta TA98 ± S9	nts per (n)	<u>Microgram*</u> TA98 - S9	<u>(n)</u>
42/HFTP 58/ "	$\begin{array}{c} 10.2 \pm 1.44 \\ 9.46 \pm 0.88 \end{array}$	(6) (9)	8.80 ± 1.18 12.6 ± 2.29	
46/HFET 62/ "	$\begin{array}{c} 22.2 \pm 4.49 \\ 10.3 \pm 1.91 \end{array}$	(9) (15)	23.2 ± 3.85 16.1 ± 5.17	
50/NYCC 66/ "	$\begin{array}{c} 9.20 \pm 1.38 \\ 7.57 \pm 1.13 \end{array}$	(9) (6)	$\begin{array}{c} 9.97 \pm 2.28 \\ 10.4 \pm 2.00 \end{array}$	(9) (6)
	34.8 ± 4.51 13.5 ± 1.91		$\begin{array}{c} 36.7 \pm 6.42 \\ 12.8 \pm 4.63 \end{array}$	
Blank Filter	0.13 ± 0.23	(15)	-0.30 ± 0.26	5 (15)
	<u>TA100 + S9</u>	<u>(n)</u>	<u>TA100 - 59</u>	<u>(n)</u>
42/HFTP 58/ "	$\begin{array}{c} 12.9 \pm 3.97 \\ 17.2 \pm 3.34 \end{array}$	(6) (6)	4.00 ± 1.14 4.01 ± 0.57	(15) (12)
46/HFET 62/ "	9.97 ± 5.19 14.1 ± 3.67	(9) (6)	7.76 ± 4.31 14.5 ± 3.04	
50/NYCC 66/ "	3.98 ± 1.86 7.57 ± 3.66	(12) (6)	No Data 12.0 ± 2.91	(6)
38/CFTP 54/ "	21.1 ± 2.97 13.1 ± 8.59			
Blank Filter	-1.44 ± 0.86	(15)	-0.57 ± 0.62	(15)

^{*}There were no statistically significant differences between the average mutagenic activities when samples collected during the same test cycle, with and without trap, were compared.

TABLE P-3. MUTAGENIC ACTIVITY IN REVERTANTS PER MILE, MERCEDES WITH AND WITHOUT TRAP

TABLE 16. Mutagenic Activity in DCM Extracts of Exhaust Particles Collected from a Mercedes Benz Auto With and Without an Oxidizer Trap Expressed as Revertants/mile of Travel.

Values were calculated using data for miles traveled supplied by SwRI and determinations of extractable material and mutagenic activity at UCI.

Sample No.	Revert TA98 + S9 TA	ants/Mile	$\frac{10^{-3} \pm 5.0}{14100 \pm 59}$	TA100 - 59
With Trap*				
6/HFTP 22/ "			$\begin{array}{c} 42.9 \pm 21.7 \\ 6.97 \pm 8.12 \end{array}$	
10/HFET 26/ "		0.1 ± 8.23 67 ± 5.72	$\begin{array}{c} 29.7 \pm 6.64 \\ 36.4 \pm 5.31 \end{array}$	
14/NYCC 30/ "	36.1 ± 13.4 30 137 ± 6.32 28		33.2 ± 24.0 113 ± 26.9	
18/CFTP 34/ "		6.9 ± 2.80 11 ± 13.0	14.6 ± 3.01 62.5 ± 11.6	$\begin{array}{c} 16.1 \pm 6.22 \\ 26.0 \pm 13.8 \end{array}$
Without Trap	*			
42/HFTP 58/ "	323 <u>+</u> 45.6 229 255 <u>+</u> 23.8 338		336 ± 103 464 ± 89.9	104 ± 29.6 108 ± 15.4
46/HFET 62/ "	$480 \pm 97.1 501$ 260 $\pm 48.1 406$		215 ± 112 355 ± 92.4	168 ± 93.3 366 ± 76.7
50/NYCC 66/ "	$464 \pm 69.6 503$ 371 $\pm 55.4 510$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	No Data 587 <u>+</u> 142
38/CFTP 54/ "	1038 ± 135 1095 454 ± 64.2 431		630 <u>+</u> 88.7 441 <u>+</u> 289	617 ± 38.4 189 ± 105

^{*}All values without trap are significantly greater than corresponding values with trap; p<0.0005.

TABLE P-4. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION, VOLKSWAGEN WITH AND WITHOUT TRAP

TABLE 23. Mutagenic Activity of DCM Extracts of Volkswagen Diesel Exhaust Particles Expressed as Revertants per Microgram of Extracted Material ± 1 S.D.

		Revertants p	er Microgram	
Sample No.	<u>TA98 + 59</u>	<u>TA98 - S9</u>	<u>TA100 + 59</u>	<u>TA100 - 59</u>
With Trap				
98/CFTP 114/ "	$\begin{array}{c} 10.5 \pm 1.82 \\ 5.33 \pm 1.52 \end{array}$	$\begin{array}{c} 14.7 \pm 1.20 \\ 7.07 \pm 1.19 \end{array}$		8.49 ± 3.00 5.22 ± 1.87
102/HFTP 118/ "	8.24 ± 1.57 9.88 ± 2.22	$\begin{array}{c} 15.4 \pm 1.62 \\ 12.7 \pm 2.69 \end{array}$		13.9 ± 4.05 9.67 ± 2.99
106/HFET 122/ "	$\begin{array}{c} 19.3 \pm 4.20 \\ 13.3 \pm 1.44 \end{array}$	$15.9 \pm 3.08 \\ 18.5 \pm 2.54$		14.1 ± 5.10 11.8 ± 4.20
110/NYCC 126/ "	3.76 ± 1.39 2.01 ± 1.40	4.08 ± 1.87 3.21 ± 1.34		5.33 ± 2.80 1.96 ± 2.71
Without Trap				
130/CFTP 146/ "	$\begin{array}{c} 19.3 \pm 5.81 \\ 9.36 \pm 2.01 \end{array}$	$18.1 \pm 2.30 \\ 14.1 \pm 3.17$	$16.8 \pm 8.74 \\ 12.9 \pm 2.93$	14.2 ± 2.19 11.5 ± 4.57
134/HFTP 150/ "	7.30 ± 2.08 8.46 ± 2.14	8.02 ± 1.91 13.4 ± 2.69	9.89 ± 2.75 11.1 ± 3.43	7.91 ± 3.46 9.74 ± 3.87
138/HFET 154/ "	$\begin{array}{c} 11.3 \pm 1.54 \\ 16.7 \pm 2.08 \end{array}$	$\begin{array}{c} 19.0 \pm 3.34 \\ 17.6 \pm 2.31 \end{array}$	$\begin{array}{c} 14.2 \pm 3.25 \\ 13.7 \pm 3.87 \end{array}$	$\begin{array}{c} 14.8 \pm 3.77 \\ 11.7 \pm 3.27 \end{array}$
142/NYCC 158/ "	$\begin{array}{c} 11.0 \pm 3.62 \\ 6.05 \pm 1.78 \end{array}$	33.4 ± 4.59 11.8 ± 2.14	$13.4 \pm 4.69 \\ 13.1 \pm 4.45$	27.5 ± 3.25 7.32 ± 2.96

TABLE P-5. MUTAGENIC ACTIVITY IN REVERTANTS PER MILE, VOLKSWAGEN WITH AND WITHOUT TRAP

TABLE 24. Mutagenic Activity of Volkswagen Diesel Exhaust Particle DCM Extracts Expressed as Revertants/mile of travel.

Revertants/Mile x 10 ⁻³ + S.D.				
Sample No.	TA98 + S9	TA98 - 59	TA100 + 59	TA100 - 59
With Trap*				
98/CFTP 114/ "	99.1 \pm 17.2 29.4 \pm 8.38	139 ± 11.3 39.0 ± 6.56	$\begin{array}{c} 82.1 \pm 21.4 \\ 24.7 \pm 10.3 \end{array}$	$\begin{array}{c} 80.0 \pm 28.3 \\ 28.9 \pm 10.4 \end{array}$
102/HFTP 118/ "	83.6 ± 15.9 69.2 ± 15.5	156 ± 16.4 89.3 ± 18.9		141 ± 41.1 68.1 ± 21.1
106/HFET 122/ "	129 ± 28.1 62.3 ± 6.74	106 \pm 20.5 86.7 \pm 11.9		$\begin{array}{c} 94.2 \pm 33.4 \\ 55.2 \pm 19.6 \end{array}$
110/NYCC 126/ "	$52.4 \pm 19.4 \\ 25.0 \pm 17.4$	56.9 ± 26.1 40.1 ± 16.7		$\begin{array}{c} 74.3 \pm 39.0 \\ 24.3 \pm 33.6 \end{array}$
Without Trap	*			
130/CFTP 146/ "	721 \pm 217 401 \pm 86.1	676 ± 193 604 ± 136	627 ± 326 553 ± 126	528 ± 81.4 493 ± 196
134/HFTP 150/ "	296 \pm 84.3 338 \pm 85.5	325 ± 77.4 537 ± 108	402 ± 167 444 ± 137	321 ± 115 391 ± 155
138/HFET 154/ "	252 ± 34.3 348 ± 43.3	$\begin{array}{c} 422 \pm 74.2 \\ 368 \pm 48.3 \end{array}$	316 \pm 72.3 284 \pm 80.2	$\begin{array}{c} 330 \pm 84.1 \\ 244 \pm 68.2 \end{array}$
142/NYCC 158/ "	656 ± 216 359 ± 106	1988 ± 273 705 ± 128	798 <u>+</u> 279 782 <u>+</u> 266	1635 <u>+</u> 193 436 <u>+</u> 176

^{*}All values without trap greater than corresponding values with trap; p<0.0005.

TABLE P-6. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION AND IN REVERTANTS PER MILE, MERCEDES WITH LOADED TRAP

TABLE 28. Mutagenic Activity of a DCM Extract of Exhaust Particles Collected from a Mercedes Benz Diesel Auto Operating with a Loaded Oxidizer Trap.

Particles were collected on teflon-coated glass fiber filters during the NYCC driving cycle, using baseline fuel (high aromatic). This is sample number 1280-70 from the SwRI. Extraction and mutagenesis testing were as previously described. The values for revertants per microgram of extract and for revertants per mile were calculated based on the linear portion of a dose response curve obtained with concentrations of 0,5,10,20 or 40 micrograms of extract per plate, with 3 replicate plates at each concentration. The number in parentheses following the values for revertants per microgram is the number of plates used to define the linear portion of the doseresponse curve, and also indicates the concentration range involved. Thus, "15" indicates a range of 0-40 micrograms, "12" a range of 0-20 micrograms, "9" a range of 0-10 micrograms, etc.

Revertants per Microgram + S.D.

Strain TA98 + S9: 5.97 \pm 1.05 (15) TA98 - S9: 6.96 \pm 1.21 (15)

Strain TA100 + S9: 5.29 \pm 1.30 (15) TA100 - S9: 3.71 \pm 1.62 (12)

Revertants per Mile Traveled x 10⁻³ + S.D.

Strain TA98 + S9: 122 ± 21.5 TA98 - S9: 151 ± 26.2

Strain TA100 + S9: 139 \pm 24.6 TA100 - S9: 72.0 \pm 31.4

Negative Controls. Values are the mean \pm S.D. of the number of spontaneous revertants on triplicate plates which received the DMSO solvent only.

TA98+S9: 44.7 ± 3.21 TA100+S9: 153 ± 17.5 TA98-S9: 36.3 ± 6.66 TA100-S9: 190 ± 5.86

<u>Positive Controls.</u> Values are revertants per microgram of compound as in Table 12.

Strain TA98 + S9 + 2AF: 64.6 ± 25.3 Strain TA98 - S9 + 2NF: 853 ± 138

Strain TA100 - S9 + MMS: 17.5 ± 2.06

TABLE P-7. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION AND REVERTANTS PER MILE, MERCEDES REGENERATION WITH BASELINE FUEL

TABLE 29. Mutagenic Activity of DCM Extracts of Exhaust Particles Collected from a Mercedes Benz Auto During Oxidizer Trap Regeneration.

Particles were collected during the HFET driving cycle while using baseline (high aromatic) fuel. These are samples #1280-74 and 1280-78 from the SwRI. Values are as in Table 28.

Revertants per Microgram of Extract + S.D.

#	TA98 + S9	<u>TA98</u> <u>- S9</u>
	$15.2 \pm 2.45 (15) \\ 7.60 \pm 1.27 (15)$	
	<u>TA100</u> + <u>S9</u>	<u>TA100</u> - <u>S9</u>
74 78	19.7 \pm 2.67 (9) 12.4 \pm 3.73 (9)	$13.0 \pm 1.82 (15)$ $11.1 \pm 4.03 (9)$
	Revertants per Mile o	f Travel x $10^{-3} \pm \text{S.D.}$
#	<u>TA98 + S9</u>	<u>TA98</u> <u>-</u> <u>S9</u>
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	<u>TA100</u> + <u>S9</u>	<u>TA100 - S9</u>
	114 ± 15.4 47.0 ± 14.2	75.0 \pm 10.5 42.0 \pm 15.3

Negative Controls and Positive Controls are the same as in Table 28.

TABLE P-8. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION AND IN REVERTANTS PER MILE, MERCEDES WITHOUT TRAP AND WITH LOW AROMATIC FUEL

TABLE 30. Mutagenic Activity of DCM Extracts of Exhaust Particles Collected from a Mercedes Benz Auto During Baseline Tests with Low Aromatic Fuel.

Particles were collected during test cycles CFTP and HFTP without an oxidizer trap. These are samples #1280-82, 1280-90, 1280-86, and 1280-94 from the SwRI. Values are as in Table 28.

	Revertants per TA98 + S9	Microgram of Extract + S.D. TA98 - S9
82 (CFTP) 90 (CFTP) 86 (HFTP) 94 (HFTP)	11.1 = 4.03 (1 8.94 ± 1.52 (1 8.48 ± 0.980 (4.46 ± 1.12 (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	<u>TA100 + S9</u>	<u>TA100 - 59</u>
82 (CFTP) 90 (CFTP) 86 (HFTP) 94 (HFTP)	14.2 ± 1.90 (1 11.6 ± 2.79 (1 5.90 ± 1.75 (1 5.02 ± 1.79 (1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	Revertants per M TA98 + S9	$\frac{\text{Lile of Travel} + \text{S.D. } \times 10^{-3}}{\text{TA98} - \text{S9}}.$
82 (CFTP) 90 (CFTP) 86 (HFTP) 94 (HFTP)	306 ± 43.9 246 ± 41.8 183 ± 21.1 95.0 ± 23.9	418 ± 65.6 424 ± 67.4 230 ± 18.9 233 ± 38.4
	<u>TA100 + S9</u>	<u>TA100 = S9</u>
82 (CFTP) 90 (CFTP) 86 (HFTP) 94 (HFTP)	390 ± 52.0 320 ± 76.8 127 ± 37.7 107 ± 38.2	$\begin{array}{c} 218 \pm 42.3 \\ 248 \pm 36.1 \\ 166 \pm 62.6 \\ 94.0 \pm 46.0 \end{array}$

Negative Controls. Values are the mean \pm S.D. of the number of spontaneous revertants on triplicate plates which received the DMSO solvent only.

```
TA98+S9: 57.7 \pm 8.50 TA100+S9: 153 \pm 21.7 TA98-S9: 43.3 \pm 8.20 TA100-S9: 159 \pm 9.24
```

<u>Positive Controls.</u> Values are revertants per microgram of compound \pm 1 S.D., as in Table 12.

```
Strain TA98 + S9 + 2AF: 58.7 \pm 5.51
Strain TA98 - S9 + 2NF: 1236 \pm 110
```

Strain TA100 - S9 + MMS: 17.5 ± 1.02

TABLE P-9. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION AND IN REVERTANTS PER MILE, VOLKSWAGEN WITH LOADED TRAP

TABLE 31. Mutagenic Activity of a DCM Extract of Diesel Exhaust Particles Collected from a Volkwagen Auto Operating with a Loaded Oxidizer Trap.

Particles were collected during a NYCC driving cycle using baseline high aromatic fuel. Extraction and mutagenesis testing were as previously described. This is sample #1280-162 from the SwRI. The values are as in Table 28.

Revertants per Microgram of Extract + S.D.

Strain TA98 + S9: 18.4 ± 2.02 (15) TA98 - S9: 25.8 ± 4.15 (12)

Strain TA100 + S9: 15.5 ± 3.05 (12) TA100 - S9: 18.5 ± 7.94 (9)

Revertants per Mile of Travel + S.D. x 10⁻³.

Strain TA98 + S9: 845 ± 93.0 TA98 - S9: 1190 ± 191

Strain TA100 + S9: 716 ± 140 TA100 - S9: 854 ± 366

Negative Controls. Values are the mean \pm S.D. of the number of spontaneous revertants on triplicate plates which received the DMSO solvent only.

TA98+S9: 42.0 ± 6.08 TA100+S9: 133 ± 24.2 TA98-S9: 36.3 ± 4.93 TA100-S9: 127 ± 18.6

<u>Positive Controls.</u> Values are revertants per microgram of compound as in Table 12.

Strain TA98 + S9 + 2AF: 85.3 ± 14.3 Strain TA98 - S9 + 2NF: 1320 ± 172

Strain TA100 - S9 + MMS: 8.42 ± 3.33

TABLE P-10. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION AND IN REVERTANTS PER MILE, VOLKSWAGEN REGENERATION WITH BASELINE FUEL

TABLE 32. Mutagenic Activity of DCM Extracts of Diesel Exhaust Particles Collected from a Volkswagen Auto During Oxidizer Trap Regeneration.

Particles were collected during the HFET driving cycle using baseline (high aromatic) fuel. Extraction and mutagenesis testing were as previously described. These are samples #1280-166 and 1280-174 from the SwRI. Values in the Table are as in Table 28.

Revertants per Microgram of Extract + S.D.

#	<u>TA98 + S9</u>	<u>TA98</u> - <u>S9</u>
	36.2 ± 5.13 (15) 53.2 ± 10.9 (12)	
	TA100 + S9	<u>TA100</u> - <u>S9</u>
	$21.0 \pm 5.68 (12)$ $31.9 \pm 5.04 (12)$	
	Revertants per Mile	of Travel + S.D. \times 10 ⁻³ .
#	<u>TA98</u> + <u>S9</u>	<u>TA98</u> - <u>S9</u>
	788 ± 112 554 ± 113	1320 ± 223 745 ± 150
	<u>TA100 + S9</u>	TA100 - 59
	457 <u>+</u> 124 332 <u>+</u> 52.5	329 <u>+</u> 91.0 266 <u>+</u> 109

Negative Controls and Positive Controls are as in Table 31.

TABLE P-11. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION AND IN REVERTANTS PER MILE, VOLKSWAGEN WITH TRAP AND LOW AROMATIC FUEL

TABLE 33. Mutagenic Activity of DCM Extracts of Diesel Exhaust Particles Collected from a Volkswagen Auto Equipped with an Oxidizer Trap During Baseline Tests with Low Aromatic Fuel.

Particles were collected during CFTP and HFTP driving cycles using a low aromatic fuel (16.2% Aromatics). Extraction of particles and mutagenesis testing were as previously described. These are samples #1280-178, 1280-186, 1280-182, and 1280-190 from the SwRI. Values in the Table are as in Table 28.

Revertants per Microgram of Extract + S.D.

#	<u>TA98 + S9</u>	<u>TA98 - S9</u>
178 (CFTP) 186 (CFTP)	$\begin{array}{c} 30.1 \pm 2.52 & (15) \\ 12.6 \pm 2.42 & (12) \end{array}$	$40.9 \pm 6.31 (12)$ $20.5 \pm 5.43 (12)$
182 (HFTP) 190 (HFTP)	$12.2 \pm 1.52 (15) \\ 8.19 \pm 1.24 (15)$	$16.2 \pm 2.48 (15) \\ 8.88 \pm 1.75 (15)$
	TA100 + S9	<u>TA100 - S9</u>
178 (CFTP) 186 (CFTP)	$18.6 \pm 2.56 (15)$ $9.15 \pm 1.83 (12)$	10.6 \pm 3.12 (12) 9.97 \pm 3.36 (12)
182 (HFTP) 190 (HFTP)	$8.02 \pm 1.15 (15)$ $4.94 \pm 1.72 (15)$	6.97 \pm 3.62 (9) 5.96 \pm 2.29 (12)
	Revertants per Mile of	$\underline{\text{Travel}} + \underline{\text{S.D.}} \times \underline{10}^{-3}$
<u>#</u>	<u>TA98 + S9</u>	<u>TA98</u> - <u>S9</u>
<u>#</u>	<u>TA98 + S9</u>	<u>TA98</u> - <u>S9</u>
# 178 (CFTP) 186 (CFTP)		TA98 - S9 221 + 34.1 97.0 + 25.6
# 178 (CFTP) 186 (CFTP)	TA98 ± S9 162 ± 13.6 59.0 ± 11.3	$ \begin{array}{r} $
# 178 (CFTP) 186 (CFTP) 182 (HFTP) 190 (HFTP)	TA98 ± S9 162 ± 13.6 59.0 ± 11.3 51.0 ± 6.36 29.0 ± 4.39	TA98 = S9 221 ± 34.1 97.0 ± 25.6 67.0 ± 10.2 31.0 ± 6.11 TA100 = S9

TABLE P-12. MUTAGENIC ACTIVITY IN REVERTANTS PER MICROGRAM OF PARTICULATE SOLUBLE ORGANIC FRACTION AND IN REVERTANTS PER MILE, VOLKSWAGEN WITHOUT TRAP AND WITH LOW AROMATIC FUEL

TABLE 34. Mutagenic Activity of DCM Extracts of Diesel Exhaust Particles Collected from a Volkwagen Auto Without an Oxidizer Trap During Baseline Tests with Low Aromatic Fuel.

Particles were collected during CFTP and HFTP driving cycles. Extraction of particles and mutagenesis testing were as previously described. These are samples 1280-194, 1280-202, 1280-198 and 1280-206 from the SwRI. Values in the Table are as in Table 28.

Revertants per Microgram of Extract + S.D.

	<u>TA98 + S9</u>	TA98 - S9
194 (CFTP) 202 (CFTP)	$8.05 \pm 0.936 (15)$ $10.8 \pm 1.41 (15)$	9.67 \pm 1.48 (15) 15.2 \pm 3.42 (12)
198 (HFTP) 206 (HFTP)	9.04 \pm 1.45 (15) 10.2 \pm 1.32 (15)	$\begin{array}{c} 12.8 \pm 1.73 & (15) \\ 21.5 \pm 3.41 & (12) \end{array}$
	TA100 + S9	<u>TA100 - 59</u>
194 (CFTP) 202 (CFTP)	$7.89 \pm 1.40 (15)$ $8.26 \pm 2.35 (15)$	8.11 \pm 1.42 (15) 8.84 \pm 2.07 (15)
198 (HFTP) 206 (P)	$13.7 \pm 5.41 (9) 11.1 \pm 3.94 (12)$	$8.69 \pm 1.11 (15)$ 12.8 \pm 2.13 (15)
	Revertants per Mile of	Travel \pm S.D. \times 10 ⁻³
	TA98 + S9	TA98 - S9
194 (CFTP) 202 (CFTP)	208 ± 24.2 327 ± 42.8	250 ± 38.3 461 ± 104
198 (HFTP) 206 (HFTP)	215 ± 34.5 188 ± 24.2	305 ± 41.1 397 ± 63.0
	<u>TA100 + S9</u>	<u>TA100 - 59</u>
	204 ± 36.2 251 ± 71.4	
198 (HFTP) 206 (HFTP)	325 ± 129 205 ± 72.8	206 ± 26.3 199 ± 39.3

