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ABSTRACT

VThe feasibility and costs of various NO, control methods, i.e.,
ammonia-based reduction and low NOX burners, were determined for potential
application to eight selected stationary sources of nitric oxide (NOx) emis—
sions in California, primarily in the Los Angeles area. The applicability of
selective ammonia-based reduction systems, both catalytic and noncatalytic,
were studied for seven major NO, sources: simple and combined cycle turbines
used by electric utilities, an internal combustion engine used in compressing
natural gas, an oil refinery process heater, an oil field steam generator used
in thermally enhanced oil recovery, a cement kiln, and a glass melting furnace
used in the manufacture of flat glass. Although the units selected were con-
sidered as representative either in terms of size, operation, or numbers in

use, the results apply specifically to them.

A 90% NO, reduction criterion was defined by the California Air
Resoﬁrces Board staff for these sources except for the oil field steam
generator and refinery heater. For the refinery heater the criterion was 50%
and for new and existing oil field steam generators was 70 and 50%, respec~-
tively. 1In addition, the potential reduction that could be expected by using
low NOx burners on utility boilers and other emission sources was also

assessed.

The major feasibility emphasis in this study was on the applicability
of existing control technology. Technical feasibility for NO, control was
evaluated on the basis of control technology developed in Japan and currently
being considered for application in the United States. Other factors such as
the compatibility of control measures with the emission source and power and

exhaust gas reheat requirements were also addressed.

It was concluded that all NOX emission sources studied could utilitze
selective catalytic reduction (SCR) to achieve the specified percent reduction
in NOx levels. Thermal denitrification (DeNOX), i.e., selective noncatalytic
reduction, was determined to be applicable in only those instances where
reductions of 50 to 70% relative to current levels were specified but at
significantly lower costs than for SCR installations. The use of thermal

DeNOk to achieve 907% reduction is not feasible for any of these sources.
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The benefit for further reduction in NO, emission rates resulting
from the use of low NO, burners in utility boilers in combination with
combustion modifications currently in use, i.e., two—stage firing and off-
stoichiometric combustion, appear somewhat limited. Further reductions of
approximately 107 appear realistic, with additional reductions possible

depending on specific boiler and burmer characteristics.

Capital investment estimates for early 1979 reflecting estimated
retrofit complexity factors for the various installations are provided.
Annual control in terms of mills per kilowatt hour, dollars per pound NOX
removed, dollars per million Btu thermal input, and dollars per ton product,

as appropriate, are reported.
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1. INTRODUCTION AND SUMMARY

The State of California Air Resources Board is evaluating the poten—
tial for reducing nitric oxide (NO,) emissions from utility power plants and

other stationary sources, primarily in the Los Angeles area.

This study examines the feasibility and costs of installing ammonia-
based reduction systems, both catalytic and noncatalytic for seven specific
sources of NO,: simple and combined cycle turbines used by electric utili-
ties, an internal combustion engine used in compressing natural gas, an oil
refinery process heater, an oil field steam generator used in thermally
enhanced oil recovery, a cement kiln, and a glass melting furnace used in the
manufacture of flat glass. It also examines the potential application of low
NO, burners to utility boilers and the other seven NO, emission sources.
Although the units selected (Table 1-1) were considered as representative
either in terms of size, operation, or numbérs in use, the assessments apply

specifically to them.

A 90% NO, reduction criterion was defined by the California Air
Resources Board staff for these sources except for the oil field steam
generator and refinery heater (Table 1-2). For the refinery heater the
criterion was 50%, and for new and existing oil field steam generators the
criteria were 70 and 55%, respectively (Table 1-3). 1In addition, the
potential reduction that could be expected by using low NO, burners (LNB) on

utility boilers and other emission sources was also assessed.

The study involved a number of .considerations including the

following:
a. Characterization of the selected NO, emitting equipment.

b. Assessment of LNB, selective catalytic reduction (SCR), and
thermal denitrification (DeNOX)'technology.

c. Evaluation of applicability of NO, control systems to the
various emission sources.

d. Determination of control system applicability and control costs.




TABLE 1-1.

EMISSION SOURCES STUDIED

NOX EMISSION SOURCE

EQUIPMENT
CHARACTERISTICS

Utility Boiler

Simple' Turbine

Combined Cycle Turbine

Internal Combustion

Engine

Oil Field Steam Generator

Refinery Heater

Cement Kiln

Glass Melting Furnace

175 MW boiler with existing
combustion modifications,
operated by Southern California
Edison (SCE)

121 MW installation, 8 JP5-fired
gas turbines, operated by SCE

236 MW installation, 2 oil-fired
gas turbines and associated waste

heat boilers, operated by SCE

2000 HP two-cycle turbocharged,
natural gas-fired engine, operated

by Southern California Gas Company

50 million Btu/hr crude cil-fired
unit, cperated by various oil producers

in Kern County, California

65 million Btu/hr, refinery gas-fired

unit operated by Chevron, USA, El Segundo,
CA

45 ton/hr coal-fired kiln operated by

California Portland Cement Company,
Colton, CA

Natural gas-fired furnace for producing
flat glass operated by PPG Industries,

Fresno, California




TABLE 1-2.

NO, REDUCTION CRITERIA

EMISSION SOURCE

NOX REDUCTION CRITERIA

Utility boiler- 175 MW
with existing combustion

modifications

Simple turbine-electric

utility application

Combined cycle turbine-

electric utility application

Internal combustion engine-
natural gas storage field

application

Oil field steam generator
thermally enhanced oil
recovery (TEOR) appli-

cation
Oil refinery process heater
Cement kiln

Glass melting furnace-

flat glass

Potential reduction based on state-of-

the-art application of low NOX burners

90% reduction

90% reduction

90% reduction

a) 100 ppm (approximately 70% reduc-
tion) for new units
b) 150 ppm (approximately 55% reduc-

tion) for existing units
50% reduction

90% reduction

90% reduction




TABLE 1-3. NOX REDUCTION CRITERIA AND CONTROL METHODS STUDIED

NOX Reduction Feasibility of NOx Control Assessed b,c
- . a . -
Emission Source Cr.1terla Low NOX Thermal SCR
Burner DeNOX

Utility Boiler State-of-the- d d

Art X - -
Turbine (Simple) 90% X X X
Turbine

{Combined Cycle) 90% X X X
1. C. Engine 90% X X X
0il Field Steam 70% (New)

Generator 55% (Existing) X X X
Refinery Heater 50% X X X
Cement Kiln 90% X X X
Glass Furnace 90% X X X

@See Table 1-1 for identification of specific sources
bApplication of only individual control methods assessed per study ground rules
CSee Table 1-7 for applicability

dNot part of study



For the data needed to characterize an emission source, information
was derived from conferences with cognizant technical personnel from the
various companies involved in its operation. The responses of various
organizations to questionaires developed by The Aerospace Corporation also

were used.

The major feasibility emphasis in this study was on the applicability
of existing control technology. Technical feasibility for NO, control was
evaluated on the basis of control technology developed in Japan and currently
being considered for application in the United States. Information developed
through discussions with personnel knowledgeable of the details of the
Japanese NOX control processes and applications and those familiar with U.S.

technology was used to augment published data.

The applicability of a control system and its potential for meeting
the NO, reduction criterion when installed on a specific emission source was

then determined.

Based on budget-type information from a number of sources, capital
investment estimates were prepared for retrofitting controls on the NOx
emitting equipment. Levels of installation complexity and equipment redun-
dancy, as appropriate, were defined. Annual costs were defiﬁed which included
capital charges and operating and maintenance costs. Costs associated with
plant or unit shutdown for installation of control equipment weré not

included.

1.1 NO_. EMISSION SOURCE.CHARACTERIZATION

The characteristics of each of the eight stationary sources; i.e.,
size, fuel, operation, and thermal input are summarized in Table 1-4. The
thermal input of the various equipment ranges from 12.6 million Btu/hr for the
internal combustion (IC) engine to 1645 million Btu/hr for the utility boiler,

corresponding to 1.3 and 175 MW, (electrical equivalent), respectively.

NO, emissions range from 6.7 1b/hr NOX as NO, (3.2 lb/lO6 Btu input)
for the IC engine to 627 1b/hr (0.38 lb/lO6 Btu) for the utility boiler (Table
1-5).
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1.2 CONTROL SYSTEM TECHNOLOGY AND APPLICABILITY TO EMISSION SOURCES

Control technology and its application in Japan and the U.S. were
examined. This was based on the reduction criteria for the various sources
defined for the study by the research staff of the California Air Resources

Board and on the use of LNB, thermal DeNO, and SCR (Table 1-3).

1.2.1 Low NO, Burners

Low NO, burners are widely used in Japan on utility and industrial
boilers and on other industrial processes. The NO, reduction is influenced by
the burner configuration, size, type of fuel burned (oil, gas, coal, and fuel
nitrogen content), and type of combustion modifications (CM) implemented prior
to the use of LNB; in no instance did it approach 90%. As an example for one
type of LNB with heavy oil, NO, was reduced from 18 to 42% when operated with-
out other CM techniques in use. When 40% reduction was achieved by other
types of CM, such as flue gas recirculation (FGR), staged combustion, water
injection, or a combination of these, further reductions of 10 to 207 were
achieved by the addition of an LNB, for a total removal of 50 to 60%

(Ref. 1-1).

The potential for further reduction in NO, emission rates resulting
from the use of LNB in combination with CM currently in use on cil-fired
utility boilers in the Los Angeles basin, i.e., two-stage firing (TSC) and
off-stoichiometric combustion (0SC), appears somewhat limited. On the basis
of average conditions, further reductions of approximately 107 appear
realistic with the addition of LNB, bringing the total to 27 and 417 for the

boilers with existing TSC and 0SC, respectively (Table 1-6).

The potential for meeting the NO, reduction criteria defined in this
study for the other emission sources with LNB was not evident and is reflected

in the summary presented in Table 1-7.

1.2.2 Selective Catalytic Reduction

NO, , which is virtually all nitric oxide (NO), is reduced to N, and

x’
HZO by ammonia in the presence of certain base metal catalysts. In order to

achieve a 90% reduction, temperatures in the range of 340 to 380°C (645 to
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715°F) are required in the reactor with an NH3 to NO, ratio of 0.9 to 1l.l.
Small quantities of oxygen in amounts normally present in the emissions as a
result of excess air in the combustion process are needed. Exhaust gas

characteristics of the units studied are summarized in Table 1-8.

In all cases SCR is capable of meeting the NO, reduction criteria
(Table 1-7). For the IC engine and refinery heater studied, the exhaust gas
temperatures are appropriate for SCR. However, in some situations, such as
the combined cycle turbine, o0il field steam generator, and cement kiln,
heating of the exhaust gas is necessary to achieve the required tempefature
levels; for the simple turbine and glass furnace, cooling (such as by air
dilution) is required. Although development of a low-temperature catalyst of
225 to 325°C has been conducted in Japan, use of such catalysts was not
considered for this study because they are not as well developed as those
operating in the 300 to 400°C range. Catalysts capable of operating at high
temperatures, approximately 650°C, are being developed in Japan; however,

their use was not considered current technology.

Catalyst life and reactivity are affected by catalyst configuration,
sulfur dioxide, particulates, and other constituents in the gas such as
alkalis. In most cases the exhaust gases from the sources studied were
relatively clean, except for the oil field steam generator, which contains S0,
and particulates, and for the cement kiln and glass furnace, which involve
hiéh exhaust gas particulate content and alkalinity. Although S0y-resistant’
catalysts are available, existing rules limiting S0y emissions from oil field
Steam generators will result in approximately 90% reduction in 505, thereby
appreciably reducing the S0, content in the exhaust gas. Use of wet scrubbers
to accomplish this would also reduce particulate levels wherein they would not
be a significant factor. The cement kiln studied has a particulate removal
system (baghouse), and the particulate concentrations exiting are such that
they are not expected to present severe problems for catalysts with parallel
flow-type catalyst configurations such as those with honeycomb, tubular, or
parallel plate shapes. Vendor recommendations indicate the need for an elec—

trostatic precipitator on the glass furnace installation.

11
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Unreacted NHy concentrations in the exhaust gas of approximately
10 ppm are typical with NH3/NOX ratios of 1.0 and 907 removal. Limits on NH4
emissions have not been established either in the U.S. or Japan. In general
the control systems in Japan are designed to limit the NH5 concentration to
10 ppm or less. Under certain conditions unreacted ammonia tends to be a
problem. At low exhaust gas temperatures in those systems containing S04 in
the exhaust, 303 combines with NH3 to form NH,HSO,, which at temperatures
below 250 to 300°C tends to condense on the catalyst, thereby reducing its
activity. In installations with air preheaters downstream of the SCR reactor,
the bisulfate may tend to plug passages. Intermittent heating of the catalyst
or equipment surfaces to temperatures above 350°C will remove the sulfate and,

in the case of the catalyst, restore its activity.

Considering all these factors, it was concluded that SCR is applic-
able to the emission sources studied. The catalyst bed sizes to achieve the

reduction criteria are shown in Table 1-9.

The catalyst volume is based on the space velocity (hr_l) and super-
ficial velocity correlations for honeycomb-type catalysts to remove the
specified levels of NO,. For example, 50% removal requires a catalyst volume
of approximately 30% of that for 90% removal from a gas with the same

conditions.

1.2.3 Thermal Denitrification (Selective Noncatalytic Reduction)

Ammonia reacts selectively with NO at approximately 1000°C (1830°F),
forming N, and HZO)' As in the case of SCR, DeNO, requires the presence of a
small amount of 0, for the reaction to occur. Exxon Research and Engineering
Company has patented the noncatalytic reduction process as well as the
introduction of hydrogen, which reduces the temperature window at which the

reaction occurs.

Tests have shown that the temperature range over which appreciable NO
reduction occurs is approximately 100°C (180°F) and the reduction levels are
a function of the NH3 to NO ratio and the time during which the reactants are
at the appropriate temperature. Introducing hydrogen maintains the selec-
tivity of the NO reduction reaction, and depending on the amount of H,

introduced (up to Hy to NHj ratios of 2) the location of the temperature

13




‘1o[reaed ul spaq Jo JaqumU = U {uolsuswip YiZus] = T {UCISUSWIP MO[J [BUOI}DDS SSOID) = NQ

'T-T 9IqeL Ul PORIIUSPT S9OIN0S 0]

TX9'TT X 9'TT X 9°T1 021 ‘¢ 06 ooeuIn g JUII[SIN SSeBlD
I ¥9¢X722%12 2€9 ‘91 06 ufry] Juswe)
ITXPCXL'eXLE €€ 0¢g 193e0 Axoulyoy
IX9'yX9'2x9ry T¢ (3uns1xd) ¢

1XLX9'2x g2 Ly (#oN) 04 10jeISULD Wed)S PR IO
[XeXegxg Le 06 2uT3ug UOIISNQWO,) [BUISIUT
TXLL¥GT X GI 0S¥ ‘¢ 06 surqany, o[04D paulquo)n
FPX6EX6X6 916 ‘2 06 ourqan], orduilg

q*x (MTxXxX Amui dWNTOA % “mﬂwﬂ..ﬂw p 22INOS UOTS ST

9215 pog 1SATERIRD P9IBWIISH uoonpsy ON

SY0LOVHY NOTLONAHd DILATVIVDO HAILOWETHS ¥04d HZIS Jd9 LSATVIVD QUIVHILSH *6-1 414V

14



window can be lowered by approximately 250°C (450°F) from the needed 1000°C
(1830°F).

Laboratory tests have shown that 80 to 90% NO, reduction can be
achieved with ammonia injection rates of 1.1 to 1.6 NH3/NO mole ratios.
However, for full-scale applications the removal rate appears to be limited to
approximately 65%, with 50% being a typical value for a constant load source
and perhaps 40% for a source with a variable load and hence fluctuating

temperature conditions occurring at fixed NH5 injection sites.

By-product emissions include unreacted NHB’ which may be from 30 to
50 ppm, resulting from the 1.5 NH3/NO mole ratio required to achieve 50% re-
duction. The NH3 has the potential for forming NH,HS0, where SO3 is present
and condensing at temperatures of approximately 215°C (425°F). Other emis-
sions such as cyanides and nitrates have been reported, averaging 2 and 10
ppm, respectively (Ref. 1-2). However, no correlation was observed between
the amount of ammonia injected and the emission levels of these pollutants,
thereby suggesting that the cyanide and nitrates are not a by—prodﬁct of fhe

NH3 injection process.

Full-scale use of thermal DeNOx has been applied in Japan, with'
approximately 11 units being reported, ranging from 190 to 1320 MMBtu/hr
thermal input. Five are operated during pollution alerts only; two were
demonstration units; and the remainder are operated continuously. A full-
scale demonstration tested in the U.S. on a 50 MMBtu/hr oil field steam
generator has been reported, with up to 65% removal at a mole ratio (NH4/NO)
of 1.5.

On the basis of the performance reported above for similar units, the
feasibility for thermal DeNO, achieving a 50 and 55% reduction has been shown
for the refinery heater and for the oil field steam generator retrofit,
respectively. For the new o0il field steam generator installation reduiring
707% - removal, the potential appears marginally feasible with an NH3 to NC mole

ratio of 2.0 and with NHy emissions of 30 to 50 ppm.
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1.3 CONTROL SYSTEM COSTS

Costs were defined for the application of control systems capable of
meeting the NO, reduction criteria (Table 1-9). Capital ivestment and annual
costs for those applications are summarized in Table 1-10. Total capital
investment estimates for SCR range from $33/kW for a simple turbine installa-
tion to $372/kwe for a flat glass melting furnace. The range of operating
costs are similar, i.e., from $1.04/1b of NO_ removed for the IC engines to
$57.78/1b of NO, removed for the combined cycle turbine:,, the latter being
very high because of the large amount of. reheat required and the relatively

low mass of NO, removed in meeting the 90% criterion.

The total capital investment for the SCR installations included an
estimate of the level of complexity of the retrofit and was included as an
incremental factor of 10 to 25%, as appropriate onm the facility investment
coéts. The glass furnace required a particulate removal device and that itenm,
$224/kWe for an electrostatic precipitator, is reflected in the capital

investment for that installation.

 Operating and maintenance (0&M) costs were typically 25% of the con-
trol costs, the remainder being the annual charge on capital. Some installa-
tions such as the combined cycle turbine, oil field steam generator, and
cement kiln required heating of the exhaust gas to achieve SCR operating
temperature. This affected the 0&M costs. In the case of the cement kiln, the

fuel cost for reheat represented about 30% of the annual cost.

In several instances where the NOx reduction criterion was less than
90%, i.e., oil field steam generator retrofit (55%) and refinery heaters
(50%), thermal DeNO, is applicable, and its capital investment was determined

to be $l6/kWe for each, and 0.36 and $1.58/1b NO_ removed, respectively.

The investment for retrofitting LNB cn-utility boilers is approxi-
mately $3.20/kwe. For the single LNB and combined LNB with CM installatioms,
the costs were 0.19 mills/kWh, or $0.020/106 Btu thermal input, in
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TABLE 1-10. SUMMARY OF NOX REMOVAL COSTS FOR SELECTED

STATIONARY SOURCES

NOx Total Capital Control Costsf
M b HRS/ Control Reduction Investment, Unit $/1b NO_ $/MMBtu
Stationary Source® [ YRC Method Criterion, % $/kwedae Costs Removed Input
h mills 0.076- 0.020
. LNB only 27-55 3.18 0.19kWh 0.155
Utility Boiler 175 0.45 - 3 mills
LNB+exist 7 3.18 0.197 7" 0.60 0.020
h,i kWh
CM *
. mills
Stationary Turbine 121 100 SCR 90 33 7ﬁzﬁﬁ——— 17.28 5.03
Combined Cycle 236 | 1300 SCR 90 162 29.50Hs | 57,7 5.24
Turbine
Internal Combus- 1.4 1800 SCR 90 183 $0.019/hp- 1.04 2.98
tion Engine hr
70 N° 15t $0.29/bb1" | 0.30 0.096
Thermal X 1 o
0il Field Steam 55 E 16 $0.27/bbl 0.36 0.091
Generator 6.6 7900 o
70 N 335 $4.03/bbl 4,03 1.30
SCR o
55 E 313 $3.78/bbl 3.78 1.22
Thermal’ 50 16t --° 1.58 0.092
Refinery Heater 6.8 7900
SCR 50 74 —-— 5.19 0.30
Cement Kiln 18.9 7900 SCR 90 324 $6.42/ton 2.40 1.75
Glass Furnace 15.4 | 8760 SCR 90 372P --° 0.91 1.38

For specific units identified in Tables 1-1 and 1-5.
MW equivalent to an electric power plant (based on thermal input to generate 1 MW of electricity).

Equivalent hours at rated capacity.

oanN T

Rounded off to nearest dollar except for low NOx burner.

®Includes retrofit cost om plant facility investment, see Tables 4-2, 4-6, and 4-8.
fCost related to facility; downtime (if any) not included.
gCapacity factor.

h .
Burner replacement only; O, control costs not included.

1Existing combustion modifiiations.

jIncremental removal relative to unmodified levels (25 ppm, or 55/hr).

kN = new installatiom, E = existing installation.

lIncludes Exxon licensing fee, $3.00/kW.

mPer net barrel of oil recovered (2 bbl net per bbl consumed).

nAssuming conditions in furnance are applicable for thermal DENOX ( must be determined experimentally for the unit).

o .
Product rate not available.

Plncludes $224/KW for an electrostatic precipitator (ESP).
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either instance. However, on the basis of dollars per pound of NO, removed, a
different perspective is gained, with the costs for an individual LNB instal-

lation being $0.076 to 0.155/1b NO, relative to $0.60/1b for the combined LNB
with CM.

1.4 CONCLUSIONS AND RECOMMENDATIONS

The results of this study have shown the feasibility of using SCR as
a NOg control method for removing 90% from the various emission sources
studied. In many instances, its use tended to be expensive because of varying
degrees of complexity in retrofitting existing installations due to equipment
size, additional fan capacity, or the need for exhaust gas reheating. 1In
general, thermal DeNO, systems can be expected under favorable exhaust gas
temperatures to reduce NO, by about 50% and are expected to meet the NO_
reduction criteria for the refinery heater and existing oil field steam gene-
rators, Also, because of the potential simplicity and relatively low cost of
this method, it may be possible that the simultaneous application of thermal
and SCR (at a reduced capacity, size, and resultant cost) may achieve nearly
90% NO, removal, where required, at a cost less than catalytic reduction
alone. Furthermore, the addition of ILNB in some applications together with
either thermal or catalytic control devices, or both, may be even more energy
efficient and cost effective. Also, because unreacted ammonia emissions in
some instances involving thermal reduction may be unacceptably high, its
combination with SCR may alsc be advantageous as a means of reducing ammonia
emissions. Therefore, a study to evaluate NO, reduction potential and costs,
as well as the operating impact of the simultaneous use of LNB, thermal DeNO_ ,

and SCR, is recommended.
1.5 REFERENCES
i-1. Jumpei Ando, NO_ Abatement for Stationary Sources in Japan,

EPA-600/7-79-205, U.S. Environmental Protection Agency, Office of
Research and Development, Washington, D.C., August 1979.

1-2. C. Castaldini, et al., Technical Assessment of Thermal DeNO, Process,
EPA-600/7-79-117, U.S. Envirommental Protection Agency, Office of
Research and Development, Washington, D.C., May 1979.

18



2. TECHNOLOGY ASSESSMENT OF NO, ABATEMENT ALTERNATIVES

2.1 NO.. FORMATION

NOx is formed in combustion processes as the result of the oxidation
of nitrogen from two different sources; i.e., fixation of atmospheric air at
high temperatures (thermal NOX*) and organically bound to the fuel (fuel
NOX*)- NOX produced from atmospheric nitrogen increases with increasing

temperature and oxygen concentration.

In either very fuel-rich or very air-rich mixtures, the NO formation
rate is very low. Even under stoichiometric combustion conditions, the NO
formation rate will be very low if the temperature of the combustion products
is less than about 2400 to 2800°F (1600 to 1800 K). Total NOx formed by the
thermal mechanism can»be further minimized, in most cases, by minimizing the
total time that the combustion products spend in the combustion process under
conditions of high NO formation rates. The NO formation rate, however, is
exponential in temperature and under near-stoichiometric conditions. With
average combustion temperatures of about 3900°F (2400 K) or higher, the NO
formation rate increases rapidly. Conversely, small reductions away from high

combustion temperatures can result in large reductions in NO, emissions.

The hydrocarbon molecules in liquid and solid fossil fuels are com-
plex. Among a wide variety of elements that are often found chemically bound
to the C-H molecules, there are usually significant quantities of nitrogen,
sulfur, and oxygen. The fate of the chemically bound nitrogen is determined
during the early stages of combustion where vaporization (or gasification),
oxidative pyrolysis, and heterogeneous combpstion are occurring. It appears
that, as the initial hydrocarbon oxidation reactions are being completed, the

nitrogen atoms are released. If oxidation of the nitrogen atoms to NO is to

*Although once formed there is no difference in the chemistry, for ease of
identifying the origin of the nitrogen and mechanism of NO formation
reference will be made to thermal and fuel NO .
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occur, it takes place at approximately the same time and in the same place as

the initial hydrocarbon reactions.

Currently, the mechanism by which this chemically bound nitrogen is
converted to NO,, to molecular N,, and to other nitrogen compounds such as HCN
is not understood. However, some empirical observations are well established
and can be used as guidelines to minimize NO, formed from this source. High
excess air favors conversion of organic fuel nitrogen to NO, but the conver-

sion rate is only affected slightly by temperature.

2.2 NO_ CONTROL METHODS

Control of NO, can be accomplished by combustion modifications (CM)
that affect the oxidation of nitrogen to NO or by treatment of the flue gas
after combustion to chemically reduce the NO to molecular nitrogen at temper-—

atures below those required for the oxidation reaction to occur.

Combustion modifications to reduce thermal NO, are based on reducing
(1) peak temperatures during combustion, (2) residence time of the combustion
gases in high temperature zones, and (3) reducing the availability of oxygen
in the primary, high-temperature combustion regions. Fuel NO, can be reduced
by decreasing the availability of oxygen in the combustion reactiom zone or by

utilizing a fuel with a lower organic nitrogen content.

2.3 NO . CONTROL ALTERNATIVES

The NO_ control alternatives examined in this study included the use
of (1) CM, primarily as implemented by low NO, burners (LNB) and (2) two types
of flue gas treatment, one with ammonia in the presence of a catalyst, selec-
tive catalytic reduction (SCR), and the other selective gas—phase decomposi-
tion of NO by ammonia at the appropriate temperature and referred to as
thermal denitrification (DeNO, ), selective noncatalytic reduction (SNR) or
thermal DeNOX.

The purpose of the study was to assess the feasibility and applica-
bility of applying these alternatives to reduce NOX emissions from eight
selected stationary sources, viz., utility boilers, simple and combined cycle
gas turbines, an internal combustion (IC) engine, oil field steam generator,

refinery heater, cement kiln, and glass melting furnace (Tables 2-1 and 2-2).
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TABLE 2-1.

EMISSION SOURCES STUDIED

NOX EMISSION SOURCE

EQUIPMENT
CHARACTERISTICS

Utility Boiler

Simple Turbine

Combined Cycle Turbine

Internal Combustion

Engine

0Oil Field Steam Generator

Refinery Heater

Cement Kiln

Glass Melting Furnace

175 MW boiler with existing
combustion modifications,

operated by Southern California
Edison (SCE)

121 MW installation, 8 JP5-fired
gas turbines, operated by SCE

236 MW installation, 2 oil-fired
gas turbines and associated waste

heat boilers, operated by SCE

2000 HP two-cycle turbocharged,
natural gas-fired engine, operated

by Southern California Gas Company

50 million Btu/hr crude oil-fired
unit, operated by various oil producers

in Kern County, California

65 million Btu/hr, refinery gas-fired

unit operated by Chevron, USA, El Segundo,
CA ‘

45 ton/hr coal-fired kiln operated by

California Portland Cement Company,
Colton, CA

Natural gas-fired furnace for producing
flat glass operated by PPG Industries,

Fresno, California
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TABLE 2-2.

NOx REDUCTION CRITERIA

EMISSION SOURCE

NOX REDUCTION CRITERIA

Utility boiler- 175 MW
with existing combustion

modifications

Simple turbine-electric

utility application

Combined cycle turbine-

electric utility application

Internal combustion engine-
natural gas storage field

application

0il field steam generator
thermally enhanced oil
recovery (TEOR) appli-

cation
Oil refinery process heater
Cement kiln

Glass melting furnace-

flat glass

Potential reduction based on state-of-

the-art application of low NOX burners

90% reduction

90% reduction

90% reduction

a) 100 ppm (approximately 70% reduc-
tion) for new units
b) 150 ppm (approximately 55% reduc-

tion) for existing units
50% reduction

90% reduction

90% reduction
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2.3.1 Combustion Modifications

Combustion modifications can be classified into four separate

categories:
a. Change of operating conditions
b. Modification of combustion system design
C. Modification of burner design
d. Other

Examples of the various methods in use are summarized in Table 2.3, as well as
their overall effectiveness and the operational impact of implementation.
Although the intent of this study is to concentrate on the assessment of
burner design modifications (LNB), a brief description of the other more
widely used CM is included. An appreciation of the other CM methods is
important because existing stationary sources that are being studied for LNB
retrofit applications, especially utility boilers, may already employ the
other methods, and the LNB incorporates some of the principles used in various

types of modifications.

2,3.1.1 Change in Operating Conditions

Low-Excess—Air Combustion (LEA)

In this technique combustion air is reduced to the minimum amount re-
quired for complete combustion while maintaining acceptable furnace cleanli-
ness and steam temperature. It is also a known means of preventing low—-
temperature corrosion caused by 503 in large boilers. It reduces thermal and
fuel NOX by decreasing the oxygen concentration in the combustion region. In
addition, the quantity of flue gas is reduced, resulting in an improvement in

boiler efficiency.

Reduced Heat Release Rate (Reduced Power Output)

Thermal NO, formation generally decreases as the volumetric heat
release rate or combustion intensity decreases. Therefore, NO, emissions can
be lowered by reducing combustion intensity by load reduction, e.g., derating

in existing units or enlarging the firebox in new units. The reduced heat
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TABLE 2-3. OVERVIEW OF COMBUSTION MODIFICATIONS (Ref. 2-1)
Control Existing Operational
Technique Applications Effectiveness Impact

Low Excess Air
(LEA)

Retrofit and new
utility boilers;
some use in in-

dustrial boilers

10 to 30% for
thermal and fuel

NO
x

Increase in efficiency;
amount limited by
smoke or CO at very
low EA

Load Reduction

Some retrofit use
on gas and oil
utility boilers;
enlarged fireboxes
on new coal units

0 to 407 for
thermal NOX

Decrease in efficiency
and power output;
limited by spare
capacity and smoke
formation

Reduced Air
Preheat (RAP)

Widespread use in
large turbo-
charged IC engines

10 to 40% for
thermal NOX

Slight decrease in
efficiency, increase
power output

Off-Stoichio-
metric
Combustion
(0SC), includ-
ing OFA, BOOS,
BBF

New and retrofit
use on many util-
ity boilers; dem-
strated on in-
dustrial boilers

20 to 50% for
thermal and fuel

NO
X

No major impact with
new design; potential
for flame instability,
efficiency decrease,
increased corrosion
(coal-fired) with
retrofit

Flue Gas
Recirculation
(FGR)

Retrofit use on
many gas— and oil-
fired utilicy
boilers; demon-
strated on indus-
trial boilers

20 to 507 for
thermal NO ;
effect on fuel
NO

x

Possible flame insta-
bility; increased
vibration

Water, Steam
Injection

Widely used for
gas turbines

30 to 70% for
thermal NOX

Slight decrease in
efficiency; limited by
CO formation; power
output increases

Burner
Modifications

New and retrofit
use on utility
boilers; demon-
strated on resi-
dential furnaces

30 to 60% for
thermal and fuel

NO
X

No major impact with
new design; retrofit use
constrained by firebox
characteristics
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release rate lowers the bulk temperature, which then reduces the amount of

thermal NOx formed.

Generally, the overall heat release rate per unit volume is inde—
pendent of the unit rated power output (Ref. 2-2). However, the ratio of
primary flame zone heat release to heat removal often increases as the unit
capacity is increased. This causes NOX emissions from large units to be
greater than for small units of similar design, firing characteristics, and
fuel.

An average of 30% reduction in NO, is reported for a 42% reduction in
firing rate of oil-fired boilers and an average 447 reduction for gas-fired
units with a 44% load reduction (Ref. 2-5). The influence of firing rate in
gas=fired boilers is especially evident because NOX emissions are solely the
result of thermal effects. The effect on oil-fired units is less noticeable
because the conversion of fuel nitrogen to NOx generally represents a signifi-
cant portion of the total NO formed. However, a reduction in firing rate
will affect firebox aerodynamics, thereby affecting fuel NOx emissions to a

lesser degree.

A reduced firing rate may lead to several operating problems. Aside
from the limiting of capacity, low-load operating usually requires higher
levels of excess air to maintain steam temperature and to control smoke and CO
emissions. The steam temperature control range is also reduced substantially,
thereby reducing operating flexibility and response to changes in load. The
combined results are reduced operating efficiency (due to high excess air) and

reduced load following capability (due to a reduction in control range).

When the unit is designed for a reduced heat release rate, the
problems associated with derating are largely avoided. The use of an enlarged
firebox produces reductions in NOX emissions similar to load reduction on

existing units.

Reduced Air Preheat (RAP)

This reduces the flame temperature and therefore thermal NOX.
However, it also reduces fuel efficiency and is not considered a practical

control technique.
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2.3.1.2 Modification of Combustion System Design

Two major categories of staged combustion are generally used: off-

stoichiometric combustion (0SC) and two—stage combustion (TSC).

Off-Stoichiometric Combustion

This technique depends on the combined effects of spacing fuel-rich
and air-rich burners. The primary, fuel-rich regions reduce oxygen concen-
tration, and the secondary, air-rich regions reduce temperatures. Combustion
of the unburned fuel from the fuel-rich burners is completed at lower temper-—

atures with the excess air from fuel-lean burners.

In practice, OSC is implemented by biased burner firing (BBF),

burners out of service (BOOS), or overfire air injection (OFA).

The BBF technique consists of firing the lower rows of burmers. This
may be accomplished by maintaining normal air distribution to the burners
while adjusting fuel flow so that a greater amount of fuel enters the furnace

through the lower rows of burners than through the upper rows.

In the BOOS mode, individual burners, or rows of burmers, admit air
only. This reduces the airflow through the fuel-admitting or active
burners. Thus, the burners are firing more fuel-rich than normal, with the
remaining air required for combustion being admitted through the inactive

burners.

These methods reduce NO, emissions by reducing the excess air avail-
able in the active burner zone. This reduces fuel and thermal NO, forma-
tion. These techniques are applicable to all fuels and are particularly
attractive as control methods for existing units since few, if any, equipment
modifications are required. Average NO  reductions of 30 to 50% can be

expected (Ref. 2-2).

Location of fuel- and air-rich burners require systematic testing.
Often it is effective to place the air-rich burners or air ports in the
central upper parts of the furnace walls or in the region of highest heat
release. Flame stability and vibration may be problems. It was reported that

these problems were avoided if the burners taken out of service did not exceed
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25% for 335 MW tangential fired and 480 and 750 MW opposed-fired units (Ref.
2-3).

The OFA technique for NOX control involves firing the burners more
fuel rich than normal while admitting the remaining combustion air through
overfire air ports. The method is effective in reducing NOX and may be used
with all fuels. Reduction in NO, of 30 to 507 can be expected. However,
there is an increased potential for furnace tube wastage due to local reducing
conditions when firing coal or high-sulfur oil. There is also a greater
tendency for slag accumulation in the furnace when firing coal. 1In addition,
with reduced airflow to the burners, there may be reduced mixing of the fuel
and air. Thus, additional excess air may be required to ensure complete

combustion. This may result in a decrease in efficiency.

The OFA technique is more attractive in original designs than in
retrofit applications for cost considerations. Additional duct work, furnace
penetrations, and extra fan capacity may be required. Phyéical obstructions
outside of the boiler may make installation more costly, or insufficient
height between the top row of burners and the furnace exit may not permit the
installation of OFA ports and the enlarged combustion zone required by the 0SC

technique.

Two—-Stage Combustion

In TSC approximately 70 to 90% of the stoichiometric air is intro-
duced into the first stage. Additional air to complete the combustion is
admitted downstream. Because of the low oxygen concentration and temperature

in the first stage, formation of thermal and fuel NO, are reduced.

The size and characteristics of the combustor tend to dictate the
location of the secondary air ports. The TSC technique cannot be applied to
installations with dimensions that cannot accomodate greater flame lengths.
With TSC the amount of unburned products tends to increase, thereby neces-
sitating an increase in total excess air requirements. However, with suitable
location of the second-stage ports, NOx reductions are obtained. Depénding on
the location of the second-stage ports, TSC is further classified into four

types:
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a. On the furnace wall above the burners
b. Top burners using air only

C. Side or rear walls of the furnace

d. On the periphery of the burners

Large power plant boilers usually employ type (a) or (b). Type (b)
is used in units where (a) cannot be accomodated. Types {(c¢) and (d) are used
in medium and small capacity boilers. Type (c) is not readily adaptable to
water tube boilers as it requires considerable remcdelling. Small installa-

tions with single burners generally can be readily adapted to type (d).

Flue Gas Recirculation

In flue gas recirculation (FGR), a portion of the flue gas from the
economizer outlet is returned to the boiler via the furnace hopper or through
the burner windbox or both to mix with the combustion air. The NO reduction

is achieved primarily through a decrease in flame temperature.

Flue gas recirculation through the furnace hopper and near the
furnace exit has been used for a long time for steam temperature control.
However, FGR through the windbox is very effective for NOX control on gas— and
oil-fired units and, to a lesser degree, through the furnace hopper. However,

it has been shown to be relatively ineffective on coal-fired units (Ref 2-2).

Recirculation ratics are limited to 30 to 40% to prevent unstable
firing. 1In larger units, this limit is usually less. Maintaining recircula-
tion raicios in appropriate units may improve combustion conditions and reduce
soot formation. The decrease in flame temperature alters the distribution of
heat to furnace walls and lowers the fuel efficiency of existing

installations.

Flue gas recirculation for NOX control is more adaptable to new
designs than as a retrofit application. Retrofit installation for FGR
requires a fan, flues, dampers, and contrecls and may result in the possibility
of increasing existing fan capacity toc compensate for increased draft loss.

In addition, the FGR system itself may require a substantial maintenance

program because of the high-temperature environment experienced and potential
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erosion from entrained ash in the case of coal-fired units. Thus, the cost
effectiveness of this method of NO, control has to be examined carefully when

comparing it to other control techniques.

As a new design feature, the furnace and convective surfaces can be
sized for the increase in mass flow and change the furnace temperatures.
However, in retrofits the increased mass flow increases turbulence and mixing
in the burner zone and alters the convective heat absorption. Erosion and
vibration problems may result. Flame detection can also be difficult with FGR
through the windbox. In addition, controls must be employed to regulate the
proportion of flue gas to air so that sufficient concentration of oxygen is
available for combustion. Vibration and furnace rumble has been reported in
implementing FGR with 480 and 750 MW units. The problems were corrected on

the 480 MW unit by modifying the design of the oil gun diffusers (Ref. 2-3).

Limited data indicate that FGR alone reduces NoO, by about 15% for
coal, 20 to 30% for oil, and 30 to 60% for gas. For oil and gas firing, FGR

is more effective when combined with OFC.

Water or Steam Injection

Injection of water or steam ié an effective method of reducing flame
temperature and suppressing NOx formation. However, boiler efficiency losses
of about 10% have been reported. Two techniques may be used: injection into
the combustion chamber (including the use of increased steam flow rate in the
atomizer) and mixing (emulsification) of water with fuel. Injection ports
close to the burners are effective for steam injection into the chamber. The
water injection rate upper limit is approximately 278 1b/106 Btu (5 kg/

10% kcal) (Ref. 2-4).

Formation of soot decreases with the use of steam injectiom, so that
excess air may be reduced. 1In addition to decreased e efficiency, higher

corrosion rates may be experienced.

Reduced Heat Release in the Combustion Chamber

(Increase in Furnace Volume)

Reducing burner volumetric heat release rates by about 10 to 20% com-
pared to conventional units by increasing firebox volume results in large

boilers and furnaces that more easily adapt to various CM.
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Increasing burner spacing also is a means of reducing flame tempera-

tures and NO, emissions especially in the center of closely spaced burners.

2.3.1.3 Modification of Burner Design

This approach achieves NOX reduction by the use of an improved
burner, generally referred to as an LNB. Most LNB designed for utility
boilers control NO by reducing flame turbulence, delaying fuel air mixing,
and establishing fuel-rich zones where combustion initially takes place. This
represents a departure from the usual burner design procedures, which promote
high turbulence, high intensity, and rapid combustion flames. The longer,
less intense flames produced with LNB result in lower flame temperatures,
which reduce thermal NOX generation. Moreover, the reduced availability of
oxygen in the inital combustion zone inhibits fuel NOX conversion. Therefore,

both thermal and fuel NOx are contrclled by the LNB.

Low NOX burners, as applied to boilers and various types of furnaces,

may be classified into five types (Ref. 2-4):
a. Good mixing
b. Divided flame
C. Self-recirculation
d. Staged combustion
e. Combination

Much of the development and use of LNB, for oil and gaseous fuels has been in
Japan, including large burners with capacities of up to 20 x 10/ Btu/hr
(5 x 107 kcal/hy) for boilers and 8 x 107 Btu/hr (2 x 10/ kecal/hr) for

furnaces.

Good Mixing Type

Good mixing type LNBs are useful in reducing thermal NOX formation by

shortening the high-temperature residence time of the combustion gases.
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Generally, they have no effect in reducing fuel NOX because of the high oxygen

concentration in the initial combustion stage.

Divided Flame Type

In this type of burner, the flame temperature and residence time are
reduced by means of dividing the burner into several independent small flame
zones. NOX reduction by this method decreases with an increase in the
effectiveness of other control techniques. For example, . without other
techniques the reduction ratio from this burner ranges from 18 to 42%, and

about 10 to 30% when 40% reduction is achieved by other techniques.

Self-Recirculation Type

The self-recirculation type reduces both thermal and fuel NO, forma-
tion in such a manner that combusted hot gases from the periphery of the flame
are aspirated by the action of the fuel jet and atomizing air or steam into

the initial combustion stage. Thus gasification of the fuel and combustion

occurs in a reduced oxygen Zzone.

This type of burner is effective not only for NOx reduction but also
for soot suppression because of the hot gas recirculation, and is used in

metal heating furnaces.

Staged Combustion Type

Staged combustion burners are divided into two different types: TSC
and OSC LNB. 1In addition, the TSC burners are classified by the first stage

equivalence ratio, i.e., fuel-rich and air-rich.

Staged combustion-type burners are being developed by numerous

manufacturers in Japan and are described in Section 2.4.2.4.

Combination Types

Several LNB combine the methods described above. An example of this

is a burner combining TSC and self-recirculation features.
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2.3.2 Thermal Denitrification

A method for removal of the oxides of nitrogen downstream of the
combustion region of stationary sources involves selective gas-phase decompo-—

sition of nitric oxide by ammonia (Ref. 2-5).

If ammonia is mixed into the combustion products with temperatures in
the range of 1300 to 2000°F (650 to 1095°C), it will selectively react with

the nitric oxide in the presence of oxygen to form molecular nitrogen water:

6NO + 4NH3 = 5N, + 6H,0

Although under laboratory conditions NO conversion rates in excess of
85% have been observed, in practice reduction of nitrogen oxide occurs on the
order of 50% in the temperature range of 1750°F +100 (955°C £ 55°) for oil and

gaseous fuels.

Mixing of NH3 with the combustion products and residence time at
temperature are important parameters. By introducing a readily oxidizable gas
such as hydrogen in conjunction with ammonia, the temperature range at which
the selective NO reduction occurs can be lowered to about 1300 to 1400°F (704
to 760°C).

. Results which were obtained in a gas-fired combustion tunmnel illus—
trating.the effect of temperature and ammonia concentration are shown in
Figure 2-1. It can be seen that the reaction occurs over a narrow temperature
range and, under these laboratory conditiouns, approximately 75% of the NO, is
removed when one mole of NHj is injected for every mole of NO, initially
present. The amount of unreacted NH4 (NH3 breakthrough) for laboratory tests
for 85% NO removal (ét NH3/NO mole ratio of ‘1.7 and 1000) is approximately
100 ppm (Figure 2-2). A more detailed discussion of thermal DeNO_ appliéa—

tions will be provided in Section 2.4.3.

It has been reported (Refs. 2-6 and 2-7) that at conditions wherein
NO is reduced there is no reduction of €04 to CO0. However, oxidations of CO

to C02 is inhibited so that unburned CO will remain as such when the NO is
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Figure 2-2. Thermal DeNO_ performance as a function of temperature
(laboratory gata) (Ref. 2-7)
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reduced. For normally operating gas— and oil-fired units, CO oxidation is
usually complete prior to reaching the ammonia injection point. Also, no
increases in the concentration of particulate nitrates, 303, and HCN relative

to installations without thermal DeNO have been reported.

Although there is no increase in the amount of S04, unreacted NHj
reacts with 503 and H20 in the cooler downstream sections where ammonium

bisulfate is formed.

2.3.3 Selective Catalytic Reduction

Ammonia selectively reacts with NO without the presence of a catalyst
at elevated temperatures. The optimum temperature for the thermal DeNOX
reaction is 950 to 1000°C (Section 2.3.2). 1In the presence of a catalyst, the
temperature of the NO reduction reaction temperature in the presence of

ammenia is lowered.

Currently, numberous catalysts (Figure 2-3) have been developed with
an optimum reaction temperature of 300 to 400°C (570 to 750°F) (Ref. 2-4),
with NO conversion rates of 90% or greater. The presence of small quantities
of oxygen in the gas to be treated is necessary for the reduction of NO to
occur. This effect is illustrated in Figure 2-4. The reactions that are

generally considered to occur are:

8NH3 + 10NO + 02 9N2 + lZHZO

At lower temperatures the reaction rate is low, and at higher temperatures the

ammonia is oxidized to NO and N20.

Emphasis has been placed on nonnoble catalysts. Although they are
less efficient and require higher temperatures than noble catalysts, they are
less expensive, more resistant to SOX poisoning, and do not promote formation

of N,O as has been reported for some noble catalysts (Ref. 2-8).
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SOX may attack the catalyst carrier. For example, SOX (especially
S03) tends to react with Al,05 to form an A12(504)3, thus decreasing the
available surface area and catalyst activity. Base-metal oxide catalysts also
react with S0, to varying extents; however, these base metal sulfates are

still reactive.

Other problems associated with the use of SCR processes are the
decrease in catalyst activity and the increase in pressure drop, which are
created from particulate pluggage of the reactor. Methods used to minimize
these problems are parallel passage reactors, moving—bed reactors, regenera-

tion steps, and specially shaped catalysts.

The formation of NH,HSO, in the presence of S04 and unreacted ammonia
presents another concern with the use of SCR processes. The unreacted ammonia
is a function of the NH3 to NO, ratio that is defined by the NO, reduction
characteristics of the catalyst. It is usually formed downstream from the
catalytic reactor as the flue gases are cooled in heat exchange equipment

according to the following reaction:

The conditions at which it is formed are shown in Figure 2-5. For example,
NH,HSO, forms at approximately 210°C if the concentration of both SO03 and NHq
are 10 ppm. NH4H504 is corrosive and also interferes with heat transfer in
the heat exchange equipment. At lower temperatures, it may solidify and form
(NHA)ZSOA' When formed, occasional steam blowing or washing with water are

needed for removal of these compounds.

A discussion of the application of the various SCR catalysts is
provided in Section 2.4.4. They differ primarily in catalyst characteristics
such as composition and shape. Denitrification efficiencies in excess of 90%
have been reported in industrial applications. Factors affecting efficiencies
in addition to catalyst composition and design include operating temperature,
NH3 to NOX ratio, and resistance to contaminants such as particulates, SOX,
and others.
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2.4 APPLICABILITY AND EFFECTIVENESS OF NO_ CONTROLS

The state of development and application of the various NO, controls
in this country and in Japan are discussed in this section. The applicability

of installing the sources included in this study is discussed in Section 3.

2.4.1 Combustion Modifications

A number of effective CM for controlling NO, emissions are being
used, singly or in combination, on utility boilers and other furnaces. The
effect of tests on 61 units in the U.S. and average NO, reduction on 358 units
in Japan are summarized in Table 2-4. The applicability of various CM to
reduce NOX emissions originating from nitrogen in the fuel and combustion air

is shown in Table 2-5.

The common techniques applied to oil-fired boilers are low excess air
(LEA) firing, 0SC, and FGR (Ref. 2-2). Other techniques that have been tested
are water injection (WI) and reduced air preheat (RAP). However, these latter
have found little application due to attendant efficiency losses. Other
techniques used include BBF, BOOS, OFA, and reduced firing rate {(Refs. 2-2 and
2-4). These methods may be used on existing boilers although modifications to
the unit may be necessary. A summary of the various control methods and their

operational impact is provided in Table 2-3.

The ma jor concerns regarding low NO, operation employing CM are the
effects on boiler efficiency, vibration and flame stability, and steam and

tube temperature.

Before NO, control techniques are applied to an existing boiler, it
is important to assure that it is in good operating condition. Uniform burner
air and fuel flows are essential for optimal NOX control. Retrofit NG,
control systems must be designed and installed properly to minimize poten-
tially adverse effects. In the event more problems occur, additional hardware
modifications may be required, increased vigilance by the boiler operator, or
an accelerated maintenance and overhaul schedule. As more background and
hindsight is gained from problems experienced in the past, retrofit systems
can be designed and installed with care to avoid potential adverse effects
(Ref. 2-2).
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TABLE 2-4. EFFECT OF COMBUSTION MODIFICATIONS ON NOX EMISSIONS

NOX Reduction, %

b, ¢ Japan d, e
Control Method U.S.
(Average) No. of Units

Low Excess Air (LEA) 10 - 20 N/Af -
Off-stoichiometric Combustion

(OSC) ‘ 30 - 50 18 24
Two-stage Combustion (TSC) 30 27 72
Flue Gas Recirculation (FGR) 20 - 30 32 25
OSC + FGR 30 - 75 N/A -
TSC + FGR N/A 42 92
Low NO_ Burner (LNB) 40 - 608 27 80
LNB + OSC N/A 25 17
LNB + TSC N/A 34 32
LNB + TSC + FGR N/A 44 16

a
Oil fired boilers (utility)
b

Ref. 2-2

C

d .
Ref., 2-4
e
Utility and industrial boilers
P ‘
Not available

Total of 61 utility boilers; 29 coal, 16 oil,and 16 gas

€Coal-fired projections. Coal not included in d.
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TABLE 2-5. APPLICABILITY OF COMBUSTION MODIFICATIONS TO
REDUCE NO_ EMISSIONS

Applicability to Reduce NOX
Originating from

Modification

Thermal Fuel
Low Excess Air Yes Some
Reduced Power Output Yes Minimal
Reduced Air Preheat Yes No
Off-stoichiometric Combustion Yes Some
Two-stage Combustion Yes Yes
Flue Gas Recirculation Yes Minimal
Steam/Water Injection Yes No

a a

Low NOX Burner

a

Different designs embody modifications itemized above in varying degrees.

Therefore their potential applicability will be based on the type of com- .

bustion modification(s) incorporated in the burner.
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Low NOX burners are being installed, especially in Japan, to reduce
NO, emissions from oil- and gas—fired units (Tables 2-6 and 2-7) (Ref. 2-4).
These burners are being installed in many new and existing units as the

primary NO, control device or for use in conjunction with other NO, reduction

methods.

NO, emission levels for boilers before and after the use of CM are
shown in Table 2-8. The NO, reduction ratio ranges from 20 to 50% with dif-
ferent fuels. New boilers tend to give lower NOx emissions than do existing

boilers.

The discussion that follows for LEA, 0SC, and FGR pertains primarily
to oil-fired boilers; characteristics of installation in California are

summarized in Table 2-9.

The low NO, techniques used for gas-fired boilers and their effects
are similar to those for oil-fired boilers. Usually, there is no distinction
between 0il- and gas-fired boilers as they are designed to switch from one
fuel to the other accordimg to fuel availability. Since boiler design
details, NOX control methods, and the effects of low NO, operation are similar
for gas- and oil-fired units, most of the discussion of applicable NO, control
measures to oil-fired boilers and potential problems applies. After switching
from oil to gas firing, NO, emissions may be difficult to control. Burning of
the residual oil tends to foul the furnace because of its oil ash content.
Therefore, NO, coutrol measures which have been tested on a clean furnace with
gas may be affected‘after oil firing as a result of the fuel change. These
problems can be resolved by complete water washing of the furnace after
burning oil (Ref. 2-2).

2.,4,1.1 Low Excess Air Combustion

With LEA, reductions in NOX missions of 10 to 207 can be expected
(Ref. 2-2). It may be used with virtually all fuels and firing methods.
However,‘furnace slagging and tube wastages may limit the degree of applica-
tion. LEA may be used in conjunction with other NO, control methods. Care in
operation is required to avoid carbon monoxide, smoke, and unburned fuel

emissions. The effect of LEA operation on NO, emissions from oil-fired
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TABLE 2-6.

NUMBER OF All BOILERS AND BOILERS WITH COMBUSTION
MODIFICATION IN JAPAN (Ref. 2-4)

Existing Boiler s

??I,)Egt)tyd - New Boileg‘s B'ici)lteal]:s
Nm~ /hr) Total (A) With CM (B) B/A (%) with CM with CM
Above 500 154 153 99.3 22 175
100-500 331 155 46,8 30 185
40-100 407 72 17.7 9 81
10-40 2,683 41 1.5 24 65

5-10 3,696 18 0.02 11 29
Below 5 72,313

Total 79,584 439 0.6 96 535

a

Boilers installed by 1974.

b

Boilers installed between 1975 and 1977.

C

NOx emission standards were first applied to large stationary scurces
As a result, the CM

and have gradually been extended to smaller ones.
application ratio (B/A) is larger for boiler with larger capacities.

d
500, 000 Nm3/hr approximately equal to a 167 MW electrical utility boiler.
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burners is shown in Figure 2-6 (Ref. 2-9). A reduction of 23% was achieved in

reducing the excess oxygen from 3 to 2% and 36% with reduction of 0o from 3 to
1.5%.

In Japan, LEA has been applied to large boilers burning high-nitrogen
fuels such as grade B (0.08 to 0.35% N) or grade C (0.20 to 0.35% N) heavy
oils. This method has not been used to any extent on small boilers or
furnaces because they generally burn low nitrogen fuels such as kerosene,
grade A heavy oil (0.005 to 0.8% N), or gas and no specific attempt is made to
reduce NO emissions. Small units are generally unmanned and their operation
not well controlled; in these instances, LEA tends to cause incomplete

combustion.

2.4.1.2 Off-Stoichiometric Combustion

An average NO, reduction of approximately 20% in Japan and within a
range of 30 to 50% for the U.S. is reported for OSC applications (Table 2-4).
The influence of the amount of air at the burner on the formation of fuel NO,
with OSC combustion of o0il is shown in Figure 2-7 (Ref. 2-10). Generally,
when nitric oxide control is being implemented, operation is in the reducing
region, i.e., the left side of 100% air (Figure 2-7). With these burner
throat fuel-air ratios, the conversion of the fuel nitrogen to nitric oxide

results in a low additional increment of 50 ppm or less.

An OSC operation generally increases the minimum excess air require-
ments of the boiler, which may result in a loss in boiler efficiency. 1In
extreme cases when the boiler is operating close to the limits of its fan
capacity, boiler derating may be required. Derating of as much as 15% has been
reported in some instances because of inability to meet the increased airflow

requirements at full load (Ref. 2-2).

Other potential problems attendant with the application of 0OSC in
oil-fired boilers have included flame instabilities, boiler vibrations, and
excessive temperatures of convective section tubes. However, on the basis of

past experience, none of these problems have been considered significant.
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Staged operation usually results in hazy flames and obscure flame
zones. Therefore, new flame scanners and detectors are often required in
retrofit applications. 1In addition, because 0SC produces an extended flame
zone, flame carryover to the convective section may occasionally occur.
However, in one case where intermittent flame carryover occurred, no excessive

tube temperatures were recorded.

2.4.1.3 Flue Gas Recirculation

The use of FGR is a process in which a portion of the flue gas, com—
prising approximately 10 to 20% of the air fed to the furnace is recirculated

into the combustion zone.

Gas recirculation as practiced in utility plants for boiler tube
temperature control is not the same as FGR for NO, control because the
recirculated gases are injected downstream of the burner. The flue gas must
enter directly into the combustion zone if it is to be effective in lowering

the flame temperature and reducing NOX formation.

The effect of FGR theoretically may be treated as purely an enthalpy
effect, the recirculated flue gas decreasing the flame temperature. The
nitric oxide formed for the characteristic time in the adiabatic regions of

the flame zone can be calculated theoretically (Figure 2-8).

For a typical recirculation rate of about 15%, the nitric oxide would
theoretically be reduced by 80% or more. On gaseous fuel, the results shown
are very close to what is predicted theoretically. The actual data spread
shown in Figure 2-8 demonstrates that reduction df from 2.5 to 4.5 have been
obtaingd (Ref. 2-10). However, with fuel oil the reductions are not as
dramatic, with typical levels of approximately 30% reported in this country

and Japan.

Gas recirculation has also been employed in low-temperature heating
furnaces in industrial applications to achieve greater and more uniform heat
transfer into the product. Vertical shaft lime kilns often use recirculation
to control calcining temperatures more effectively. The effect on NO,

"emissions in the latter cases, however, is not known (Ref. 2-9).
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There are a number of potential problems which can occur in retrofit
FGR applications. The most common problems, such as FGR faﬁ and duct vibra-
tions, can usually be avoided by good design. Other problems such as flame
instability, which can lead to furnace vibration, are caused by the increased
gas velocity at the burner throats. Modifications to the burner geometry and
design, such as enlarging the throat, altering the burner tips, or adding
diffuser plates or flame retainers, may then be required. These modifications
are usually made by trial and error for each boiler and are often time con-
suming. If the problems of excessive boiler vibration and flame instabilities

persist at high loads, boiler derating may be required.

Another potential problem associated with FGR is high tube and steam
temperatures in the convective section. The increased mass velocities which
occur with FGR cause the convective heat transfer coefficient to rise. This,
coupled with reduced furnace heat absorption, can give rise to high convective
section temperatures leading to tube failures. Increased mass flowrates in
the furnace may also cause furnace pressures to increase beyond safe limits.

-Usually, however, FGR has an advantage of not increasing minimum excess air

~
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levels. Boiler efficiency therefore is unaffected, except for the power

consumed by the FGR or booster fans.

Boilers fired with gas usually have higher gas temperatures at the
furnace outlet than when fired with oil. Gas flames are less luminous and
therefore radiate less energy to the furnace walls than oil flames. The upper
furnace and convective section inlet surfaces are thus subject to higher
temperatures with gas firing. These temperatures may increase further when

the combustion zone is extended due to OSC.

2.4.1.4 Combinations

The combination of 0SC and FGR is found to be very effective in
reducing NO, emissions, i.e., 30 to 75% (Table 2-4). However, the problems
associated with each technique are also combined. Tube and steam temperature
problems‘in the upper furnace are particularly exacerbated, as both 0SC and
FGR tend to increase upper furnace temperatures and convective section heat
transfer rates. In addition, boiler efficiencies usually decline slightly
with combined OSC and FGR firing due to higher excess air requirements and

greater fan power consumption.

\

2.4.2 Low NO, Burners

A number of improvements in burner design for liquid and gaseous
fuels have been developed in Japan to reduce the formation of NO,, . These have
been applied to boilers and various kinds of furnaces and are clarified into

five types:
a. Good mixing
b. Divided flame
C. Self recirculation
d. Staged combustion
e. Combination.

Low NO burners have been developed in Japan with capacities of
20 x 107 Btu/hr (5 x 107 keal/hr) for boilers and 8 x 107 Btu/hr (2 x 107

kecal/hr) for furnaces.
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2.4.2.1 Good Mixing Type

These furnaces reduce the formation of thermal NO, by shortening the
residence time of the combustion gases in high-temperature regions, but have
little effect in reducing fuel NO, because of a high oxygen concentration in

the initial stages of combustiomn.

An example of a good mixing type LNB is shown in Figure 2-9 (Ref.
2-11). This burner has been commercialized by Nippon Furnace Kogyo Kaisah,

Ltd (NFK), based on a TRW design, and is designated as the NFK-TRW burner.

The tasic burner has a single control configuration aligned with the
centerline of the air venturi whereby the air is injected as a continuous
cylindrical stream. Jets of fuel are mixed with either atomized steam or air
injected radically outward through a large number of shaped ports. The air
and fuel are then further mixed by means of a deflector, which functions as a
flame holder. The mixture of fuel and air produces a thin, conical-shape
flame according to the flow pattern. As a result of the flame shape, a
maximum radiation surface is produced, and heat from the flame is rapidly
removed. Therefore, the residence time of combustion gas in the high-
temperature regions is shortened and reduction of thermal NOX is acéomplished.
Relative to a conventional burner, NO, reductions of approximately 407% have
been achieved when burning type C fuel oil (0.29% nitrogen fuel) (Fig-
ure 2-10). A total of 120 boilers in Japan have these types of burners
installed (Ref. 2-12). Burners which can burn either oil or gas have been
commercialized. The burner reduces not only NO, but alsc soot emissions. In
addition, it allows the heat load in the combustion chamber to be maintained
as high as before and serves to increase the fuel efficiency. Generally, this

burner is considered applicable only to boilers because of its flame shape.

2.4.2.2 Divided Flame Type

In the divided flame type LNB, the fuel spray is divided into several
independent streams. NO_ reduction occurs due to several factors. Flame
temperatures are lowered and high-temperature residence times are shortened as
a result of the formation of fuel-trich and lean zones in the fuel spray (Ref.
2-13). A split flame burner has been developed by Ishikawajima-Harima Heavy

Industries, Ltd, (IHI) utilizing a liquid fuel atomizing tip in which the
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pressure atomizing tip divides a hollow, cdnical, conventional fuel jet into
four groups. The steam atomizing tip divides the multiple fuel jets into two
or three clusters of uniformly scattered, conventional fuel jets (Figure \
2-11). For the split flame steam atomizing burner (Mark II model), the NO
has been reduced 30 to 40%. The effect of this type of burner combined with
other NO, control methods such as FGR, staged combustion, and water injection

for a pressure atomizing burner are shown in Figure 2-12.

2.4.2.3 Self-Recirculation Type

The self-recirculation type has the potential of reducing both
thermal and fuel NO, formation. Hot combustion gases are entrained by the
action of the fuel jet and atomizing air or steam and introduced into the
initial combustion stage. Both gasification of fuel and burning in a low-

oxygen-concentration zone are achieved in an initjal combustion stage.

An example of the self-recirculation type burner is shown in Fig-
ure 2-13. This burner has been developed by Daido Tokushuko Company under a
technical license agreement with Caloric Gesellschaft fur Apparate Bau, West
Ggrmany (Ref. 2-4). It can be applied to either gaseous or liquid fuels. The
formation of NO, has been reported to be reduced by over 50% (Figure 2-14).
This type of burner is effective not only for NOx reduction but also for soot
suppression by hot combustion gas recirculation, and is used in metal heating

furnaces.

A burner designed exclusively for gas firing, developed by Sanray
Reinetsu Company, Ltd., is called the XB burner. Several fuel gas injection
nozzles are positioned in a circular pattern in order to shorten the flame.
The recirculated combustion gas is aspirated into an annular region in the
vicinity of the fuel injection nozzles. NO, levels are shown in Figure 2-15.

A similar type of burner has been developed by Chugai Ro Kogyo Company, Ltd.

2.4.2.4 Staged Combustion Type

These may be divided into two general groups: the two-stage combus-

tion (TSC) and off-stoichiometric (OSC) types.

The TSC burners employ a fuel-rich first stage, with air added in the

second stage. An example of such a burner for gaseous fuel application is the
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FH burner (Figure 2-16). The NO, reduction characteristics are shown in
Figure 2-17. It has been developed by Chugao Ro Kogyo Company, Ltd., and is
used in heating furnaces. This type of burner has the advantages of a rela-
tively simple configuration with the capability of fuel NO, reduction.
Similar types of burners have been developed by other burner manufacturers,
viz., Mitsubishi Heavy Industries, Ltd. (MHI); Kawasaki Reinetsu Company,
Ltd.; Osaka Gas Company; Sanray Reinetsu Company, Ltd.; and Rozai Kogyo
Company, Ltd.

Results of LNB performance in a 125 MW boiler reported by Kawasaki
(Ref. 2-14) are shown in Figure 2-18 for fuel oii containing 0.15% fuel-bound
nitrogen. Combined with FGR, an overall 80% reduction to 63 ppm was achieved
with its IS-2 burner relative to its conventional burner that produced 326
ppm. By adapting the IS-1 conventional burner to staged combustion and with
13% of the air in the second stage, the burner produced 176 ppm. With the
Kawasaki LNB, designated as IS-2 and commercialized in 1978, emissions were

further reduced to 63 ppm by staging 20% of secondary air and by recirculating
20% of the flue gas.

\

The effect of boiler output on NO, emissions is shown in Figure 2-19
for the IS-2 burner, which exhibited slightly higher emissions at reduced
levels. In Figure 2-20, the effect of combustion staging and FGR are shown.

Emissions of 69 ppm are reported for 207 FGR and staging.

An LNB designed for use with liquefied natural gas (LNG) (containing
88% CH,) has exhibited emissions as low as 28 ppm (Figure 2-21) at 156 MW. At
75, 50, and 40% loads, emissions were 30, 30, and 26 ppm, respectively, with
FGR and second stage air in the range of 20 to 25%.

A basic configuration for an off-stoichiometric burner is illustrated
in Figure 2-22. This burnmer has been developed by MHI for boilers using grade
A 0il or kerosene and has been designated as a spray premix T-burner. The
fuel sprayed in the upper and lower compartments is evaporated by preheated
air and premixed with air to generate air-rich premixed flames. The middle
compartment forms a fuel-rich flame. Thus, 0SC is realized. To reduce NOX
further, recirculated flue gas is mixed into the air. NO, levels with this

burner are shown in Figure 2-23.
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Other variations of the premix concept are available for utility
boilers using gaseous fuels and for industfialbboilers. These are designated
as the premix (PM) and spray premix R-burner, respectively. The effect of
FGR, burner load, operating air ratio, and combustion air temperatures are
shown in Figure 2-24. 1In virtually all cases, NOX levels of less than 60 ppm

(2% of 02) are reported (Ref. 2-15).

NOx levels produced by another OSC type burner installed on a boiler
using grade C oil are shown in Figure 2-25. The main feature of this burner
developed by the Volcano Company (Ref. 2-4) is the dissimilarity of the fuel-
injection orifice diameters in the atomizer nozzle tip. Air is uniformally
distributed around the atomizer. Therefore, OSC is achieved, those regions
around the larger fuel holes being fuel rich and fuel lean zones being pro-
duced around the smaller holes. The burner tends to increase soot emissions

at low excess air because of the resultant oxygen deficiency in some of the

flame zones.

The OSC type burmers are being developed by Babcock Hitachi, IHI, and
others for coal application. Because of the development status of these
burners and since the principal foecus of this study is to evaluate applica-—
bility of LNB to existing oil-fired utility boilers, detailed discussions of

coal-fired applications are not included in this report.

An example of the amount of NO, reduction that can be expected in
coal-fired boilers is shown in Figure 2-26. Approximately 35% reduction is
realized with LNB. When combined with TSC and FGR, approximately 55% reduc-
tion is achieved (Ref. 2-16).

2,4.2.5 Combination Types

Several LNBs combine the methods described. The SRG burner developed
by Nippon Furnace Kogyo Kaisha, Limited, (NFK) is illustrated in Figure 2-27.
It combines both TSC and self-recirculation principles (Ref. 2-17). It has

been adopted mainly to oil heating furnaces and boilers. Characteristics are

shown in Figure 2-28.

65



NOx (NORMALIZED TO 2% Oy}, ppm

NOx (NORMALIZED TO 2% 05}, ppm

NOx (NORMALIZED TO 2% Oy), ppm’

[==]
(=]

(=2
o

B
=3

[
o

(=]

[=2]
o

S
o

N
(=]

[==]

100

70
50

30
20

0

Figure 2-24.

SYMBOL O O A
BURNER PMBURNER | SPRAY PREMIX | SPRAY PREMIX
T-BURNER R-BURNER
FUEL PROPANE KEROSENE KEROSENE
AIR TEMPERATURE, °C 320 250 30
FURNACE 8t/h 2t/h 2t/h
HEAT INPUT, kcal/h 35 X107 107 12X 107
EXCESS OXYGEN, % 2 2 3
i T~
-
| | | | | | ]
5 10 15 20 25 30 35
GAS MIXING RATIO, % FGR
SYMBOL O O A
BURNER PMBURNER | SPRAY PREMIX | SPRAY PREMIX
T-BURNER R-BURNER
FUEL PROPANE KEROSENE KEROSENE
AIR TEMPERATURE, °C 320 250 30
GM RATIO, % 26 15 0
MAXIMUM HEAT ;
INPUT, kcal/h 35X 107 107 12X 10
EXCESS OXYGEN, % 2 2 3
. e =L -
m_c,_(p_/_'é./_
] ] | ] ] ] ] |
200 40 60 80 100 120 140 160
BURNER LOAD (%)
SYMBOL O O A
BURNER PMBURNER | SPRAYPREMIX | SPRAY PREMIX
T-BURNER R-BURNER
FUEL PROPANE KEROSENE KEROSENE
HEAT INPUT, kcal/h 35x 107 107 1.2 X 107
EXCESS OXYGEN, % 2 2 3
P GM RATIO, % 25 15 0
W el
-
- o————TC
| | | | | (|
50 100 150 200 250 300

AIR TEMPERATURE (°C)

(Ref. 2-15)

66

Effect of various parameters on a

premix burner




NO, CORRECTED TO 4% 0y, ppm

Figure 2-25.

Figure 2-26.

400

300

200

LOW-NO, ATOMIZER

L 1
60 , 80 100
LOAD, %

Effect of low NO_ atomizer on NO_ emissions
(boiler capacity: 55 t/hr, ~235 MW ; fuel,
grade C heavy oil; air temperature, 280°C,
535°F) (Ref. 2-4)

-

100 , ,
?INCREASING COOLING
AREA IN FURNACE

80 —
TWO-STAGE

x COMBUSTION

J

LOW-NO, BURNERS

GAS RECIRCULATION |

20— =]

NO, LEVEL, %

£
(=]

1 ] l
0 10 20 30

RECIRCULATION GAS FLOW, %

NOx reduction in coal-fired boilers; low NOX
burners in combination with other combustion
modifications (Ref. 2-16)

67




RE-COMBUSTION GAS
€0z.Hy0-N2- 0y

GASIFICATION GAS \

CO, Hy RICH \

GASIFICATION REGION 7

ﬁ COMBUSTION PRODUCTS

k-— SECONDARY AIR
i l

PRINCIPLE OF THE SRG BURNER

FUEL

Figure 2-27. Principle of self-recirculation gasifiecation
burner (Ref. 2-17) '

68
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Hitachi Zosen has commercialized LNBs that combine staged (0SC)
combustion and self-recirculation for liquid and gaseous fuel applications.
All the air is fed to a central premix zone, with a portion of the fuel
forming an oxygen-rich primary zone. Subsequently, the fuel burns rapidly in
the combustion chamber, minimizing both thermal and fuel NO,. Fuel for the
second stage is fed into the combustion chamber through several second-stage
nozzles located in a circular pattern around the primary combustion zomne. The
high-velocity fuel jets aspirate flue gas to complete the combustion in a
fuel-rich zone, at a low heat release rate and temperature. No decrease in

combustion efficiency is claimed (Ref. 2-18).

Relative to a nonstaged burmer, NO reductions in the range of 70 to
807 are observed for liquid (with low fuel nitrogen content) and gaseous fuels

(Table 2-10). The effect of the amount of secondary fuel, overall

TABLE 2-10. LOW NOg BURNER PERFORMANCE (Ref. 2-18)

NOX (3% 02), ppm Néx
oy [ segme [ seeonian | sesuction
Methane (CHA) 0 77 15 81
Propane (C3H8) 0 82 18 78
Kerosene Not 98 25 74
Available
Heavy 0il A 0.2 117 32 . 72

2Burner capacity 400 x 104 kcal/hr (16 x 106 Btu/hr), 4 burners, flue gas

temperature 850°C (1560°F).
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stoichiometric ratio, and air preheat temperatures is shown in Figures 2-29

through 2-31. These burners are available in capacities ranging from 50 x 104

keal/hr (2 x 10% Btu/hr) to 300 x 10% keal/hr (120 x 106 Btu/hr).

2.4.3 Selective Noncatalytic Reduction

Application of SNR as a thermal DeNOx process to reduce NO in com-
bustion effluents using ammonia (thermal DeNOx described in Section 2.3.2) has

been patented.by the Exxon Research and Engineering Company (ERE) (Ref. 2-19).

In commercial applications, NO, reduction rates of 35 to 65% have
been reported (Table 2-11) although higher efficiencies have been reported in

laboratory tests conducted in the U.S. and Japan.

2.4.3.1 Llaboratory Tests

Laboratory experiments conducted in the U.S. and Japan (Refs. 2-4,
2-7, and 2-20) have indicated the potential for NOx reductions in excess of
90% for emissions emitted from the combustion of gaseous and liquid fuels
(Figures 2-32 through 2-34).

. In addition to influencing the extent of the NO_ conversion reaction,
temperature, ammonia injection rate, and residence time are also key factors
that affect the amount of unreacted ammonia that is emitted. Test data
(Figure 2-35) indicate that the concentration of unreacted ammonia at the
injection temperature of 965°C (1770°F) increases significantly at NH4/NO
ratios greater than 2.0 (molar ratio of NH3 to initial NO concentration). At
a lower reaction temperature, 870°C (1600°F), the amount of ammonia carryover
increases substantially because of the slower chemical reaction. If the
reaction is allowed to occur at higher temperatures than the optimum 955°C
(1750°F), at temperatures above 1000°C (1830°F), there is virtually no NH,4
carryover (breakthrough). However, this is at the expense of NO conversion as

‘can be seen in Figure 2-33,

Ammonia injection rates also depend on the initial conecentration of
nitric oxide. Experimental data (Figure 2-36) show that lower molar ratios of
NHy to MO are needed to achieve a specific proéess efficiency when the initial
NO concentration is greater than 400 ppm. These experimental data further
indicate that the perceﬁt oxygen in the flue gas may also have some effect on

required NH3 injection rates.
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TABLE 2-I1.

LARGE THERMAL DeNOX INSTALLATIONS

Process Plant Gas Cap§c1ty, Gas Inltla} NH3/| Hy/ ZNOy NH,,| Start
Developer User Site Source Fuel Nm>/hr Temp, | NOx @3% {5 NO, | Reduction 3 |Date | Ref
velop (10%Btu/he) | °c | 0z,ppm ®| Tx PP
MHI? Chubu Chita Utility Low-S 1,036,000 850~ | 110-140 |1.5 0 45 NA 2/77 2~4,
Electric boiler oil 350 MW 1030 2-21
MHI NAb NA Utility Low-5S 1,000,000 NA NA NA NA NA NA c 2-22
boiler oil 350 MW
MHT MCId Mizushima | Indus~ Low-S 160,000 NA NA NA | NA NA NA (¢ 2-22
trial oil
boiler
MH1 MCI Mizushima | Indus- High-S 500,000 | NA NA NA | NA NA NA |c 2-22
trial oil x 2
boiler
MHI MCI Yokkaichi | Indus-~ High-S 160,000 NA NA NA NA NA NA ¢ 2-22
trial oil
boiler
MCI MCI Mizushima [ Indus- Low-S 540,000 NA NA NA NA NA NA 75 2-4
trial oil
boiler
¢ Mitsui Chiba Indus— Naphtha 120,000 | 670- 130 2.0 | NA 35-40 NA [12/75) 2-4,
Petro- trial 780 2-21
Chem boiler
TT Tonen Kawasaki Cogen Low-S 423,000 705- 140 1.5 0.4 60 40 76, 2-4,
Sekiyu boiler o0il, gas X 2 800 78 2-21
Kagaku (1135x2) 2-23
TT Tonen Kawasaki Indus- Low-8 (215) 950 196 1.810 55 10 7/77 2-21
Sekiyu trial oil, gas 2-23
Kagaku boiler
TT Kykyto Chiba Vacuum Low-S 160,000 920 156 2.0|0 63f 30 10/77 | 2-4
Petro pipestill} oil, gas (190) 2-21
TT Toa Kawasaki | CO co 314,000 | 705- 170 1.5]0.5 50 80- |3/78 | 2-4,
Nenryo boiler (400) 800 100 %—%%
T Toa Kawasaki | Atomos- Low-$ 254,000 920 156 2.010 63f 30 3/78 | 2-4,
Nenryo pheric o0il, gas 2-21
pipestill

MHT = Mitsubishi Heavy Industries
NA = Not available

b

c .
In service

dMCI = Mitsubishi Chemical Industries

eTT = Tonen Industries

£ 30 to 40% at NH,/NO
3" %
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Experiments conducted by ERE show that for typical conditions, an
ammonia injection ratio of 2.0 achieves the optimum maximum process effi-
ciency. Figure 2-37 shows that minimal additional NO reduction is obtained by

increasing the ammonia injection rate beyond the NH3/NO molar ratio of 2.0.

The thermal DeNOx process can be applied over a greatly widened range
of temperatures if certain additives are injected with the ammonia. Of the
many additives investigated, hydrogen is the most effective over the tempera-
ture range of from 700 to 1010°C (1290 to 1850°F) as shown in Figure 2-38.
Figure 2-39 illustrates the effect of hydrogen in shifting the optimum
reaction temperature measured in a commercial-size firetube boiler. The
magnitude of this shift depends on the amount of HZ injected relative to the
NH3. For example, at H2/NH3, molar ratios on the order of 2:1, SNR of NO, can
be made to occur at 700°C (1290°F).

600 B
) 2% EXCESS OXYGEN
500

400 1065°C

300

]\
w0 -\

NO, PPM

10240C

Figure 2-37. Effect of NH3 injection rate on NO emissions (Ref. 2-20)
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. (Ref. 2-4)

In Japan, Chubu Electric also has conducted extensive laboratory
tests (Ref. 2-4). Maximum NO, removal was obtained at 950 to 1000°C. When
240 ppm of NH3 was used with 200 ppm NO, 80% of the NO was reduced at
1000°C,with a reaction time of 0.2 seec. The addition of Hy at a mole ratio of
2.5 (Hy = to - NH;) shifted the optimum reaction temperature from 1000°C to
about 800°C. The effects of temperature and NH3/NO mole ratio on NO, removal
efficiency and NH; leakage were also studied. At 1100 and 1200°C, NO, removal
efficiency is low, 45 to 60% relative to 60 to 95% at 950 to 1000°C. It has
been postulated that a portion of the NH3 is converted to NO at the high
temperatures. At the high temperatures ammonia emissions are also low (Figure
2-42). MHI has studied SNR jointly with Mitsubishi Chemical Industries (MCI)
and has constructed a large-scale iunstallation for Chubu Electrie at Chita
Station (Ref. 2-4). Their laboratory test results are generally consistent
with others in terms of NOx removal rates and residence time requirements.

The latter are illustrated in Figure 2-~43, which indiecate that at 950°C a ,
maximum residence time of 0.4 sec is required for maximum NO, reduction. At
850°C, the duration required for the reaction to proceed exceeds 1.0 sec.
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Poor mixing of ammonia with the flue gas may cause ammonia carryover
to occur also at NH3/NO molar ratios much lower than 2.0. 1In general, NH3/NO
molar ratios can be expected to range from 1.0 to 2.0 in large scale applica-
tions of the thermal DeNO, process. The actual injection rate used for
specific applications will depend on the desired NO, reduction, flue gas

conditions and source configurations, and ammonia emission considerations.

2.4.3.2 Large Scale Applications

Exxon has reported the effect of flue gas temperatures and ammonia
injection rates for application of thermal DeNO_ applications on commercial

boiler and furnace installations (Figures 2~-44 and 2-45) (Ref. 2-21).

In Japan, MCI has conducted large scale tests at its own plants
(Ref. 2-4). The characteristics and performance of major SNR plants are
presented in Table 2-11. MHI and MCI have recently completed a large SNR
installation which treats flue gas from a 375 MW utility oil-fired boiler at
the Chita Power Station of Chubu Electric. Tonen Technology, a subsidiary of

Toa Nenryo, has constructed medium-size commercial SNR plants (Table 2-11).

. All of the units remove 40 to 60% of NOX, using 1 to 2 moles NH3 per
mole NO, . Because of the low gas temperatures, hydrogen was required in some

cases to achieve the desired rate of NOx reduction.

Mitsubishi Kakoki Kaisha has built many small SNR units (3000 to 6000
Nm3/hr) to treat flue gas from heating furnaces. Although the removal ratio
is not as high as by SCR, SNR is simple, less expensive, and useful for gas

sources for which a high NOX removal ratio is not needed (Ref. 2-4).

In the U.S., a demonstration test of a thermal DeNO, system installed
on an oil field steam generator has been reported (Ref. 2-25). A detailed

discussion of the results are presented in Section 3.4.

Due to the nature of the process, with its relatively narrow operat-
ing temperature limits, requirements for good NH3 mixing, and adequate reac-
tion time, it appears to be more suitable to constant load sources with fixed
emission characteristics. It has however, been applied on the No. 2 boiler at

Chita Station of Chubu Electric Power Company, which has an operating load
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that ranges from 100 to 30% (375 to 113 MW). The boiler generates 1225
tons/hr of steam at 375 MW of electric power, and the total gas volume exceeds

1,000,000 Nm3/hr. It burns a low-sulfur oil (0.2% S), and the flue gas
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Figure 2-44. Performance of thermal DeNO_, systems in
commercial applications (Re%. 2-24)
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contains about 100 ppm S0, of which about 3 ppm is 504, and 110 to 140 ppm
NO, virtually all of which is NO. Because of temperature fluctuation due to
the boiler lcad, 15 water—cooled ammonia injection nozzles were placed in two

locations between the secondary superheater and reheater (Figure 2-46).

The gas temperature at 150 to 375 MW (40 to 100% load) ranges from
900 to 1150°C at the front nozzles and 800 to 1030°C at the rear ones.
Ammonia is injected from the rear nozzles at 290 to 375 MW (78 to 100% load,
930 to 1030°C), from both nozzles at 225 to 290 MW (60 to 70% load), and only
from the front nozzles below 60% load (below 1000°C). When the boiler load
drops below 50%, NHy is seldom added because the NO, emissions are generally

within regulatory limits.

Operating conditions for 40% NO_ removal with less than 20 ppm NH3
carryover are illustrated in Figure 2-47 (Ref. 2-26). A NH3/NOX mole ratio of

1.5 may be used at full load, with smaller ratios at lower loads.

A comparison of the calculated NOy removal efficiencies and unreacted
NHy carryover with those observed in actual plant operation can be made
(Figure 2-48). The observed removal efficiency was slightly lower when the
initial NO_ concentration was 110 ppm than when it was 140 ppm. In both
. cases, the predicted NO, removal performance and the actual operating data
were in good agreement. Actual levels of unreacted NHq were a little larger
than the calculated amount. A NO, removal efficiency of about 40% has been

obtained with NHy emissions of 30 ppm by using 1.5 mole of NHy per mole of NO.

Operation of the SNR system at the Chita Station was initiated in
February 1977, and NOX removal has been 40 to 45%. It has been reported as
virtually trouble-free except for deposits of ammdnium salts with particulates
in the air preheater (Ref. 2-4). Initially, deposits of ammonium salt formed,
thereby increasing the pressure drop. After two months of operation, a water
wash was required for their removal. The problem has been relieved by
increasing the soot blowing ecapacity. It is estimated that a water wash will
be required about twice a year. It usually gives no visible plume, but a
plume has been reported in the winter when the outlet NH, concentration

exceeded about 40 ppm.
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A thermal DeNO installation for an industrial boiler which can
generate 120 tons/hr of steam (flue gas 120,000 Nm3/hr, 40 Mwe) has been
operated intermittently by Mitsui Petrochemical since 1976 at its Chiba plant
(Ref. 2-4). The plant has five boilers, and the specific boiler chosen for
the SNR installation was selected because of a relatively large volume for its
capacity and the availability of space to locate ammonia injection nozzles.
The nozzle locations have a temperature range of about 700 to 800°C, which is
slightly lower than the optimum reaction temperature of 850 to 1000°C for NO
reduction by NHB' Therefore, H, has been used to obtain optimum NOX reduction
at the 700 to 800°C range. Three nozzles were installed, and a total of 2
moles NH3 and 8 moles H, injected for each mole of NO_ . Steam is used as the
NHy carrier, air not being used because of the presence of H. Usually 35 to

40%Z of the NOX is removed, and the NH3 carryover emissions are 10 to 15 ppm.

Initially the boiler burned 0.8% sulfur oil, and the unreacted NHq
ranged from 20 to 30 ppm. After a few weeks operation plugging of the air
preheater with ammonium bisulfate deposits was reported (Ref. 2-4). Subse-—
quently, sulfur—-free fuel, gas or oil (about 0.02% S), has been used, and

operation has been trouble-free.

Mitsui Petrochemical recently installed an SCR unit for a larger
boiler (200,000 Nm3/hr) which burns low-sulfur oil (0.2 to 0.6% S) (Ref. 2-4).
The air preheater has experienced no plugging problem with NH,HSO, because the

NHq carryover has been maintained below 5 ppm.

There are five relatively large SKNR units in Japan coustructed in
1976 or later for oil or petrochemical companies. They have been used when a
poliution alert is issued or when the total NOX emissions from the refinery or
the petrochemical plant exceed regulatory limits. The DeNO_ units can be
operated continuously if necessary and can remove 45 to 57%Z of the NO with
the addition of 1 to 2 moles of NHy per mole of NO,. .In some cases, hydrogen

(0.5 mole Hy per mole of NH3) is required.
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2.4.4 Selective Catalytie Reduction

As discussed in Section 2.3.3, the SCR process (Figure 2-49) takes
advantage of the selectivity of NH,3 to reduce NO, to N, and Hy0 in the
presence of a catalyst. Limited experimental work on SCR has been done in the
U.S. but most of the effort has been centered in Japan, primarily in the area

of treating gases from the combustion of liquid and gaseous fuels.

Over 70 commercial SCR installations have been constructed (Table
2-12). Ninety percent NO, removal, if specified, is reported as being

achieved in commercial installations.

Many of the commercial installations use granular catalysts in fixed
bed reactors to treat clean gas from the combustion of LNG, liquid petroleum
gas (LPG), kerosene, or off-gas from the petrochemical industry. The
remaining use various types of reactors with moving beds or parallel-flow
catalysts to treat semidirty gas from the combustion of low-sulfur oil or
dirty gases from the combustion of high sulfur or from coke ovens and iron ore
sintering machines.

Base metal oxide catalysts that operate in the temperature range of
300 to 400°C (570 to 750°F) are most frequently used. They are less expen-—
sive, more resistant to SOx poisoning, and do not produce N,O as has been

reported for some noble metal catalysts (Ref. 2-27).

Catalyst composition is usually a proprietary item; little is known
about the actual compositions in use. Japanese development has been mainly
with base metals such as iron, vanadium, chromium, manganese, cobalt, nickle,
copper, and barium. Experimental results and NOX conversion rates vary widely
for these catalysts, depending on operating conditions and gas characteris~
tics. The metals are normally deposited on a carrier, which was alumina in
the earlier stages of development. It was found that in gases containing SOX,
the 805 reacted with the Al,05 to form a sulfate, decreasing the available
surface area and reducing catalytie activity over a period of time. Other
problems affecting the use of catalysts include a decrease in its activity and
an increase in the pressure drop resulting from particulate plugging. Methods
to minimize these problems include parallel passage reactors, moving bed

reactors, specially shaped catalysts, and catalyst regeneration.
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In Japan catalysts used in clean gas applications are generally
guaranteed for 2 years operation before replacement, and 1 year for dirty gas

applications.

The formation of NH4HSO4 from unreacted NH3 and SO3 that may be

' present in the flue gas may be of some conecern in certain appliecations. It is
formed at temperatures in the range of 200 to 220°C as the gases are cooled in
heat exchange equipment downstream of the reactor. The compound is corrosive
and interferes with heat transfer, and at lower temperatures it can solidify

necessitating steam blowing or water washing for its removal.

Factors affecting application of SCR will be discussed as well as

general characteristics of the various processes and commercial installations.

2.4.4,1 Process Parameters

For 90% NO, removal, space velocities (SV)* of 5,000 to 10,000 hr~!
have been used with granular catalysts treating dirty gases (Figure 2-50).
Catalyst and reactor configurations for the various types of gases are shown
in Figure 2-51. For clean gases, space velocities of 10,000 to 20,000 hr~1
have been used with highly reactive catalysts that would otherwise be poisoned

by S0,. The SV is usually less with parallel flow type reactors (Table 2-13),

Mole ratios, NH3/NOX, of approximately 1.0 are typical for 90%
removal. - The amount of unreacted ammonia (NH3 in reactor effluent) is
virtually zero when the NH3/NOX mole ratio is less than 0.8 and increases
significantly when the ratio is larger than 1.0. The use of a large SV
reduces the amount of catalyst, but lowers the NOX removal efficiency and

increases ammonia emissions.

The temperature range for catalytic reduction is usually 300 to 400°C
(570 to 750°F). Low-temperature catalysts that are reactive at 150 to 250°C

(300 to 480°F) have been developed for gases such as those from iron-ore

*

Space velocity is defined as the ratio of the volumetrie flow rate of gas
passing through the reactor (at 0°C and atmospheric pressure) to the volume
of the catalyst bed.
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400°C, using granular catalyst (Ref. 2-4)
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REACTOR CATALYST PRINCIPAL
FLUE GAS TYPE SHAPE STRUCTURE
CATALYST
(A)
PLATE’
FIXED BE
TLPED D HONEYCOMB-
TYPE
(PARALLEL)
CATALYST
DIRTY GAS FLOW
(HIGH SULFUR
0IL FUEL OR
SEMI-DIRTY
GAS (KERO-
SENE, LOW
SULFUR
FUELS) (B) PELLET
MOVING BED TYPE
TYPE CATALYST
CATALYST
N
CLEAN GAS (c) PELLET N
(LNG, LPG, AND | FIXED BED TYPE iad -
NAPTHA FUELS) TYPE CATALYST (R
FLUE
GAS
Figure 2-51. Application of catalyst and reactor

configurations (Ref. 2-4)
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sintering machines and coke ovens. A catalyst being tested by Kureha Chemical
in a 5000 Nm3/hr pilot plant installation is reactive at 150°C (300°F) but is
poisoned by SOX, and its use requires nearly complete desulfurization (Ref.
2-4). A catalyst developed by JGC is effective at 200°C (390°F) and is
resistant to S04. Although ammonium bisulfate deposits on it below 250°C and
reduces its activity, occasional heating of the contaminated catalyst to above
350°C (660°F) removes the bisulfaté. MHI is developing a catalyst that will
operate at temperatures up to 650°C (1200°F). Catalysts will be discussed in
Section 2.4.1.2.

Currently, most SCR catalysts have a life of over 2 years when used
on clean gas, 1 to 2 years on semidirty gas, and 1 year on dirty gas. The
catalysts are being improved; however, some areas require additional work to

improve catalyst performance and lifetimes.

Many dirty gases at a high temperature contain appreciable constit-
uents in the vapor phase, such as vanadium in oil-fired boiler flue gas, and
alkaline compounds in the gases from glass melting furnaces, cement kilns, and
iron-ore sintering machines. These compounds may tend to deposit on the
cataIYSt as liquids or solids even for the parallel flow type where solid
particulates in the gas do not deposit. The deposits affect the catalyst in
various ways. Vanadium rarely lowers the catalyst activity but can change the
optimum reaction temperature. Alkaline compounds lower the activity appre-
ciably. Although most of the alkaline compounds can be removed by a water

wash, the catalyst is usually degraded to some extend (Ref. 2-4).

The particulates smaller than about 1 micron tend to enter the small
pores of the catalyst carrier, slowly reducing the activity. This "blinding”

can not be avoided even in the parallel flow type reactors.

Most of the SCR catalysts oxidize up to about 2% of 802 to SO3. The

oxidation ratio may be higher when the ammonia content in the gas is low.

Factors such as operating temperature, catalyst and reactor configu-
rations, and other characteristics will be discussed briefly before describing

application of SCR to commercial installationms.

99




Catalyst Shape and Reactor Configuration

Plugging by particulates has been one catalyst problem area. For
clean gases that contain particulate concentrations of less than about
30 mg/Nm3, a simple type of reactor with granular or ring tube catalyst in a
fixed bed can be used without appreciable problems. Electrostatic precipi-
tators (ESP) can be used to reduce the particulate content to 30 mg/Nm3 for
those gases with high particulate levels. Since SCR requires a temperature of
350 to 400°C, a hot ESP is needed. A hot ESP is applicable for low-sulfur
coal where a cold ESP does not remove the ash efficiently. However, a hot ESP
does not always work well with particulates from high-sulfur fuels, and there-
fore it is sometimes desirable to apply SCR to gases with high particulate

contents.

For dust-laden gases, moving bed and parallel flow type reactors have
been developed (Figure 2-51 and TaBle 2-14). The moving bed reactor uses a
granular catalyst, which is charged from the top of the reactor and moves down
intermittently or continuously while the gas flows across and through the
catalyst layer. The granular catalyst discharged from the bottom of the
reactor is screened to remove particulates and is returned to the reactor. If
needed, the catalyst is heated to 700 to 800°C (1300 to 1500°F) to eliminate

sulfur compounds and carbon before it is returned to the reactor.

The moving bed can treat gases containing particulate concentrations
of up to about 300 mg/Nm3, e.g., flue gases from an oil-fired boiler. For
gases with 30 to 100 mg/NmB, an intermittent moving bed may be appropriate,
moving the bed when the pressure drop reaches unacceptable levels. A
continuous moving bed may be preferable for gases with 100 to 300 mg/Nm3.
Flue gas from a coal-fired boiler containing about 20 g/Nm3 should first be
treated with an ESP or other means to reduce the particulate content to below

300 mg/Nm3 (Ref 2-4).

The parallel flow type reactor uses a fixed bed where the gases pass
through passages between the parallel catalyst layers. This type of reactor
is expected to handle gas from a coal-fired boiler even without previous dust

removal (Ref. 2-4).
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TABLE 2-14. REACTORS FOR DUSTY GAS TREATMENT (Ref. 2-4)

Process Plant Capacity
Type Developer User Site Gas Source Fuel (! /har) Complet ion
Moving Bed Ritachi Led, Kawatetsu Chemical Chiba Coke Oven coc/wrc™ 500,000 Rov 1976
Ritachl Ltd. Chiyoda Kenzai Raizuka Boiler no(as)® 15,000  oOct 1977
Ritachi Letd. Nippon Oils & Pats Amagasaki Boiler [ 1] 20,000 Apr 1978
Mitsubishi H.I. Sumitomo Chemical Sodegaura Boiler m(w)‘ 382,000 Sept 1976
Kobe Steel Kansail N.K. Amagasaki Coke Oven oG 104,000 Aug 1977
Kurabo Kurabo Rirakata Boiler Ro(ns) 30,000 Aug 1975

Asahi Glass Asahi Glass Furnace 70,000
HRoneycomb Nitsubishi H.I. Fuji 0f1 Sodegaura Boiler wo{LS) 200,000 Jan 1978
Mitsubishi H.I. Chubu Electric Chita Boiler HO(LS) 1,920,000 Feb 1980
Ishikawajima H.I. Chubu Electric Taketoyo Bofler Crude 011 20,000 Apr 1977
Ishikavajima H.I. Ajinomoto Kawasaki Boiler m(LS) 180,000 Jan 1978
Ishikavajima H.I. Company E —_ Boiler RO(LS) m,ooo" Apr 1978
Ishikawajima H.I. Company F — Boiler BO(LS) 480,000°  June 1978
Ishikavajima H.I. Chugoku Electric Kudawmatsu Boiler Crude 011 1,000,000 Apr 1979
Ishikawajime R.I. Chugoku Electric Kudamat gu Boiler Ho(LS) 1,900,000 July 1979
Ishikawajima H.I. Tohoku Electric Niigata Boiler RO(LS) 1,660,000 Aug 1981
Parallel Passage JGC Kaghima 011 Kashime Furnace 50,000 Nov 1975
JeC Fuji 011 Chiba Boiler [+ ] 70,000 July 1976
Jce Nippon Steel Kimitsu Coke Oven (e S 150,000 Mar 1977
Parallel Plate Mitsubishi H.X. Tokyo Electric Yokosuka Boiler RO(LS) 40,000 Mar 1977
Mitsubishi H.I. Company C - Beiler Bo(LS) 1,010,000 Feb 1978
Mitsubishi H.I. Company D — Boiler BO(LS) 490,000 July 1978
Ritachi, Ltd. Company A — Boiler Ho(LS) 490,000 June 1978
Hitachi, Ltd. Company B - Boiler BO(LS) 550,0007  June 1978
Tube Mitsui Engineering Ukishima Pet. Chem. Chiba Boiler m(LS) 220,000 Apr 1978

2Coke oven gas/refinexy off gas.

o

oil (bigh sulfur).

vy ofl (low sulfur).
Combination wvith selective nomcatalytic redoction.
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The parallel flow catalysts are produced in various shapes, including
rings, tubes, plates, and honeycomb. There is also an arrangement in which a
granular catalyst is carried in thin "envelopes” and held in place by metal
mesh. The envelopes are suspended in the gas stream in such a way that the
gas flows parallel to the surface. Five types of parallel flow catalysts are
in use in Japan for SCR. These are classified as (1) metal honeycomb, (2)
parallel plate, (3) ceramic honeycomb, (4) tubular, and (5) parallel passage
(Figure 2-52). Reactors using catalyst types (2), (4), and (5) have a
relatively wide passage for gases to flow and have little tendency for dust
plugging. However, the wide clearances require a relatively high gas velocity
of 16 to 32 ft/sec in order to create turbulent flow and produce a high NO
removal efficiency. Consequently, a reactor with a long flow length is
required to achieve the necessary SV; therefore the resultant pressure drop is
relatively high. Also, it is possible that appreciable erosion of the
catalyst may occur at the high-gas velocity when treating flue gas, as from a
coal-fired boiler without prior particulate removal. Because of the larger
surface area per unit volume, the honeycomb catalysts can avoid some of these

problems by operating at lower velocities, of 3 to 16 ft/sec.

Metallic substrate honeycomb catalysts can generally provide more
reactive surface in a given volume than a ceramic honeycomb. On the other
hand, a ceramic honeycomb may be less susceptable to loss of activity in
erosive (from fly ash) environments because the catalyst is present throughout
the ceramic substrate rather than being deposited or etched on a metallic

surface (Ref. 2-27).

A parallel passage reactor originally developed by Shell was further
developed by JGC for NO, decomposition. The reactor uses small catalyst
granules packed in thin envelopes made of metal mesh; these envelopes are
placed in parallel as illustrated in Figure 2-53(a). The catalyst elements
are 5 to 6 mm thick and are set about 7 mm apart. A unit assembly is made up
of 35 elements, each 50 cm side and 1 m long to give a module 50 cm square and
1 m long in the direction of gas flow. The modules are stacked in the re-
actor. For a reactor four modules deep, the pressure drop is 6 to 8 in. H20°
In order to preclude one of the potential problems of deposition of small
amounts of dust on the mesh, JGC has developed a sand blast system to remove

the deposit.
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Figure 2-52. Cross sections of typical parallel flow catalysts (Ref. 2-4)
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A large size honeycomb can be made with a metallic material by
activating the surface chemically. A wave-type honeycomb configuration,
designated as NOXNON has been developed by Hitachi Zosen for dirty gas
applications in pilot plant tests [Figure 2-53(b)]}. The spacing of the
surfaces is 8 mm between the plates and 12 mm between the points at which the
wavy element is attached to the plates. This gives a relatively large area
per unit volume for the honeycomb (said to be 550 to 600 m2/m3) as compared to
other parallel flow catalysts. Performance of this catalyst is shown in

Figure 2-54,

Hitachi, Ltd., has conducted tests with plate catalysts. The plates
are made of a base with catalyst impregnated into the surface. The plate
thickness and the spacing between them are roughly the same, each on the order
of 10 mm. The plates are made up as modules about a meter square and used in
the number required to give adequate NO, removal. The length of the catalyst
assembly, in the direction of the flow, depends on the degree of removal
required, the gas velocity needed to get adequate mass transfer, and erosion
caused by the dust in the gas. Figure 2-55 illustrates‘the catalyst plates,
cells, and units installed in a reactor. Mitsubishi Heavy Industries (MHI)

has also developed plate catalysts.

Tubular catalysts have been tested by several companies, including
Kawasaki Heavy Industries, Ltd. (KHI) and Mitsui Engineering [Figure 2-53(c)].
The latter commercialized the catalyst for the Chiba plant of Ukishima
Petrochemical. Tubes are spaced so that gas flows in parallel both inside and
outside of the tubes. Mitsui Engineering has determined an optimum packing
configuration wherein the tubes are not in contact with each other, resulting
in a low-pressure drop (Figure 2-56). Maximum efficiency is obtained at low
NH3 emissions (Figure 2-57). At the Ukishima Petrochemical plant, tubes with

33 mm outer and 20 mm inner diameters and 1000 mm lengths are used.

A thin-wall honeycomb catalyst with small openings can be highly
efficient and has been used at a commercial SCR plént onstructed by MHI for
Fuji 0il. Recently, IHI started operations with honeycomb catalysts at large
plants for utility boilers. Full-scale experience is outlined in Section
2.4.4.2,
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Figure 2-54. Characteristics of NOXNON 500 catalyst (Refs. 2-4 and 2-30)
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Outline of a reactor for a 600 MW boiler (Ref. 2-28)

Figure 2-55.
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Operating Temperature

The temperature range required for catalytic reduction is typically
300 to 400°C (570 to 750°F). The process is relatively insensitive to
temperature in this range because the side reactions that make temperature
critical in noncatalytic reduction do not take place to any significant
extent. The effect of temperature on performance is shown in Figure 2-58.
NO, removal flattenms out above 570°F (300°C), but residual NHq continues to
drop off. However, higher temperature levels are undesirable because of the
larger gas volume, and with some catalysts NOy removal performance starts to
decrease.

Catalysts are available for low-temperature application by JGC

Corporation (Ref. 2-32) (Figure 2-59) and others and were iscussed in Section

2.4.4.1. High-temperature catalysts for operating up to 650°F (1200°F) for
gas turbine combined cycle operation are being developed by MHI (Ref. 2-22).

However, mno specific information was available.

Space Velocity

The catalyst volume is a significant factor im NO, decomposition,

performance, pressure drop, and ultimately in cost. An example of the effect

of SV is shown in Figures 2-60 and 2-61. Space velocities in the range of

5000 to 10,000 hr ! are usually considered for typical semidirty gas applica-

1 can be

tions in Japan (Table 2-13). Higher velocities of up to 20,000 hr™
used for clean gases (Ref. 2-26), and dirty gases may require velocities in
the range of 2000 to 3000 hrl. Superficial velocities of 2 to 10 m/sec (6
33 ft/sec) are typical for parallel flow catalyst configurations with cor-

responding pressure drops of 30 to 160 mm HZO (1.2 to 6.3 in HZO)'

In Japan, honeycomb catalyst characteristics may also be specified
terms of "area velocity” (AV), or gas volume per hour per unit of apparent
catalyst surface area (m3/hr—m2). An AV of 8 m3/m? x nrl is equivalent to
SV of about 5000 hr™l,

Ammonia Requirement and Equipment Turndown

For normal operation requiring 90% NO, reduction, an NH3/NO mole

to

in

an

ratio of 1.0 is typical, generally producing NH3 emissions of less than 10 ppm

(Figure 2-62). Operation at reduced load generally does not pose any probiem
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for SCR, as illustrated by the results shown in Figures 2-63 and 2-64. The
decrease in efficiency caused by reducing the load to 25% is more than offset
by the reduced SV, resulting in an overall increase in DeNO_ efficiency and a

consistent NH3 emission of less than 10 ppm.

2.4.4.2 Commercial Experience

Application of SCR in Japan was initiated commercially in 1973 and in
the past several years has been in widespread use on primarily utility boilers
as well as other industrial equipment such as furnaces, coke ovens, and

sintering machines (Table 2-12).

Generally consistent performance of 90% NO_ removal has been
achieved. Full-scale data are illustrated in Figure 2-58. In some instances,
specification requirements of less than 90% were established (Table 2-12). 1In
some units, the catalyst was installed in the ductwork to take advantage of
existing fan overcapacity, with a resultant 307 NO, removal being achieved.

In three installatioms, the duct-SCR installation was combined with thermal

DeNOx to attain 50 to 607 NOX reduction.

A reactor installation containing a hexagonal honeycomb catalyst for
a 200,000 Nm3/hr (67 MWe) boiler at the Fuji 0il Sodegaura refinery is shown
in Figure 2-65. Heavy oil with a sulfur and nitrogen content of about 0.4 and
0.06 to 0.07%, respectively, is burned. Exhaust gas temperature is 330 to
400°C (625 to 750°F); particulate content is 20 mg/NmB; inlet NO, and SO,
concentrations are approximately 115 and 190 ppm, respectively. NO, removal
at a mole ratio of one and at an SV of 6500 hr! is 86% (80% specified). For
90% removal and for fixed and moving bed reactors, reactor pressure drops in
the range of 50 to 200 mm H20 (2 to 8 in. HZO) were reported (Table 2-15).
Process power requirements are primarily due to fans needed to overcome the
added resistance of the SCR reactor installation. While specific to each
installation, approximately 0.12% of utility boiler output per 100 mm HZO
(4 in. H20) pressure were reported. In most cases, catalysts for dirty gas
installations are expected to be replaced annually, medium dirty every 1 to
2 years, and clean gases every 2 years (Figures 2-66 and 2-67). Indications
are that, especially in the latter two categories, longer lifetimes may be

available (Refs. 2-26 and 2-36).
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U.S. experience has been limited to pilot plant scale operation
utilizing the Hitachi-Zosen process. The installation is at a site provided
by Georgia Power Company at Albany, Georgia, on a 0.5 MW, slipstreanm, produced
from the combustion of a typical medium sulfur coal (Ref. 2-34). According to
Chemico Air Pollution Control, Envirotech Corporation, satisfactory catalyst
performance has recently been observed with 2283 mg/Nm3 (1.0 grains/SCF)
particulate loading in the flue gas (Ref. 2-35) passing through a metallic

honeycomb catalyst, which is a feature of the Hitachi-Zosen process.
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3. APPLICABILITY OF NO, CONTROLS TO SPECIFIED SOURCES

Eight stationary sources of NO, emissions located in California,
primarily in the Los Angeles area, were studied. These included utility
boilers, simple and combined cycle turbines, an internal combustion engine,
oil field steam generator, refinery heater, cement kiln, and glass melting
furnace. The sources as well as the reduction criteria and control methods
were defined for the study by the research staff of the California Air
Resources Board; the control methods studied were the use of low NO, burners
(LNB), thermal denitrification (DeNOX), and selective catalytic reduction
(SCR) (Table 3-1). '

The characteristics of each of the eight selected stationary sources,
i.e., size, fuel, operation, and thermal input, are summarized in Table 3-2.
The thermal input of the various equipment ranges from 12.6 million Btu/hr for
the internal combustion (IC) engine to 1645 million Btu/hr for the utility

boiler, corresponding to 1.3 and 175 MWe, respectively.

. ' No, emissions range from 6.7 lb/hr NO, as NO, (3.2 1b/10°% Btu input)
for the IC engine to 627 lb/hr (0.38 lb/lO6 Btu) for the utility boiler (Table
3-3). Other characteristics such as exhaust gas temperatures and conditions

affecting the use of NO, controls are shown in Table 3-4.

The individual sources and the potential for utilizing the various

control methods are described in succeeding sections.

The results of this study have shown the feasibility of SCR achieving
90% NOx removal in the various applications studied (Table 3-5). 1In general,
thermal DeNO, systems can be expected to reduce NO, about 50% and are expected
to meet the NOX reduction criteria for the refinery heater and existing oil

field steam generators.

The NO, reduction potential of the LNB is influenced by the burner
configuration, size, type of fuel burned (oil, gas, coal, and fuel nitrogen
content), and type of combustion modifications (CM) implemented prior to the

use of LNB. 1In no instance was its use capable of approaching 90% NO,
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TABLE 3-1. NO_ REDUCTION CRITERIA AND CONTROL METHODS STUDIED

NOX Reduction Feasibility of NOX Control Assessedb’ <
Emission Source & Criteria Tow NO Thermal SCR
< |
Burner DeNOX

Utility Boiler State-of-the- d d

Art X - -
Turbine (Simple) 90% X X X
Turbine

{Combined Cycle) 90% X X X
I.C. Engine 90% X X X
Qil Field Steam 70% (New)

Generator 55% (Existing) X X X
Refinery Heater 50% X X X
Cement Kiln 90% X X X
Glass Furnace S0% X X X

2See Table 1-1 for identification of specific sources

bApplica.tion of only individual control methods assessed per study ground rules
€See Table 1-7 for applicability

dNot part of study
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reduction. In some limited cases with low-nitrogen fuel oils (approximately

0.1 to 0.2%), use of LNB in utility boilers resulted in a 55% NO, reduction.

The potential for further reduction in NO, emission rates resulting
from the use of LNB in combination with CM currently in use on oil-fired
utility boilers in the Los Angeles basin, i.e., two-stage firing (TSC) and
off~stoichiometric combustion (0SC), appears somewhat limited. Further
reductions of approximately 10% appear realistic with the addition of LNB,
based on average conditions, bringing the total to 27 and 41% respectively,

for the boilers with existing TSC and 0SC.

The potential for meeting the NO, reduction criteria defined in this
study for the other emission sources with LNB was not evident and is reflected

in the summary presented in Table 3-5.

3.1 UTILITY BOILERS

Oil-fired utility boilers operating in the South Coast Air.Quality
Management District (SCAQMD) were considered in this study. In response to
the California Air Resources Board Research Staff interest, emphasis was
placed exclusively on an evaluation of the NO, reduction potential and

applicability of using LNB on utility boilers of approximately 175 MW in size.

3.1.1 Source Characteristics

The boilers in the study size range all have single-wall, front-fired
burners except for Huntington Beach units 3 and 4, which are horizontally
firing burners (Table 3—6). The burners installed on the various boilers
number 12, 16, and 24, with 16 being used exclusively for 175 to 180 MW units
and 12 or 24 for 215 to 240 MW boilers.

Low sulfur (0.25%) residual fuel o0il is burned and contains

approximately 0.25% fuel-bound nitrogen.

3.1.2 NO,, Emissions

NO, controls currently in use with the boilers being studied are

either staged combustion (overfire air - OFA), 0SC (burners out of service -

BOOS), or both (Refs. 3-1 and 3-2). NO, emissions are generally in the range
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of 240, 300, and 425 ppm (dry, 3% 02) for staged combustion; 210, 225, and 295
for off-stoichiometric; and approximately 270 for the combined methods. These

are summarized in Table 3-6.

With 0.25% fuel-bound nitrogen, the maximum possible fuel NO,
emissions for the Southern California Edison (SCE) units would be
approximately 330 ppm and for the Los ‘Angeles Department of Water and Power
(DWP) boilers, 370 ppm (Table 3-7). Operating with 0.25% nitrogen oil, the
conversion rate of fuel nitrogen to NO, is approximately 58% (Ref. 3-4).
Therefore, the maximum estimated uncontrolled fuel NO, is about 200 ppm
(Table 3-7).

Bench scale tests with residual oils containing 0.25% fuel nitrogen
exhibit fuel NO, emissions of 216 ppm (dry, 3% 05). At that condition,
approximately 457 of the total NO, formed is thermal. On that basis, the
total full-load uncontrolled emissions of the boilers are estimated as

360 ppm.

Data for oil-fired boilers are also available from several other
sources. For single, wall-fired units with all burners active, emissions of
345 ppm at full load are reported in Ref. 3-5. Elsewhere (Refs. 3-6, 3-7, and
3-8), uncontrolled emissions are given as ranging from 300 to 367 ppm, (dry,
3% 02) (Table 3-8). The major fraction of the units were oil-fired and
operated in the Los Angeles basin; therefore, the fuel nitrogen content is

expected to be the nominal 0.25%.

Using an average of 360 ppm (for the front wall-fired units) as the
uncontrolled level, the effects of existing control measures are shown in

Table 3-9, generally ranging from 15 to 40% NOX reduction.

3.1.3 Combustion Modification NO_ Control Alternatives

The more common CM techniques used on oil-fired boilers to reduce NO_
emissions are OFC and flue gas recirculation (FGR). Other techniques which
have been tested are water injection (WI) and reduced air preheat (RAP).
However, the latter two have found little application because of resultant
efficiency losses (Ref. 3-10). Use of LNB, either installed with or without

other modifications is practiced extensively in Japan (Ref. 3-11).
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TABLE 3-7. ESTIMATED NO, LEVELS FROM FUEL-BOUND NITROGEN

Fuel Oil Maximum Possible Estimated Uncontrolled
) Consumption Fuel NO_b Fuel NOXc
Unit at Full a x 3 3
Load N bbl /hr 1b /hr ppm lb /hl‘ ppm
Alamitos 1&2 265 720 327 418 190
El Segundo 1&2 250 680 312 394 181
Huntington 1 305 830 333 481 193
Beach
305 830 331 481 192
305 830 328 481 1950
4 320 870 327 505 190
Redondo Beach 280 760 345 441 200
5&6
Haynes 1 355 965 362 560 210
2 370 1006 378 583 219
3 352 955 352 | 554 204
4 362 985 362 571 210
Scattergood 1 305 830 388 481 - 225
2 285 775 362 450 210
*Ref. 3-3.
b

0.25% fuel nitrogen, NO_ as NO,,.

€589 conversion of fuel nitrogen to NO for oil containing 0.25% N (Ref. 3-4).

d3% 0,, dry.
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TABLE 3-8. UNCONTROLLED NOX EMISSIONS FROM OIL-FIRED BOILERS

Boiler Type Emissions MW References
Ppm, dry
Front Wall Fired 345 180-240 3-5
Front Wall Fired 360-367 180-250 3-8
Opposed Firing 300 ~200 3-6
Tangential Divided 350 320-335 3-7
Test Burner 360 -—— 3-9
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TABLE 3-9.

EMISSION REDUCTION RESULTING FROM EXISTING COMBUSTION
MODIFICATION NO, CONTROL METHODS

NOx Emissions, ppm, dry, 3%02 LA
Utility Unit Desig.| Burners, Firingc Control
& MW No. Config Method | Controlled |Uncontrolled [Reduction
SCE Alamitos
1,175 16 WFEF 2-stage 425 360 --
2,175 16 WFF 2-stage 416 360 --
El Segundo
1,175 16 WFF OSC, 271 360 25
2-stage
2,175 16 WFEFE OSC, 271 360 25
2 -stage
Redondo
5,175 16 WEF 2 -stage 306 360 15
6,175 16 WFF 2-stage 306 360 15
Huntington
Beach
1,215 24 WEFF oSscC 245 360 32
2,240 24 WEF oSsC 295 360 18
3,228 24 HO 2-stage 240 300 20
4,235 24 HO 2-stage 297 300 --
DWP Haynes
1,230 12 WFF 0oSsC 210 360 42
2,240 12 WEE QSC 210 360 42
3,228 12 WEE oSscC 225 360 38
4,235 12 WFF OSC 225 360 38
Scattergood
1,180 16 WFF oSC 225 360 38
2,180 16 WFFE 0oSC 225 360 38
Ref. 3-8 180-250 -- WFF OsC 253-270 360-367 25-31

%Low sulfur oil (0.25% fuel nitrogen)

bFJ:'om Ref. 3-2.

“WFF:

wall, front fired, HO:

dSee Table 3-3.
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