CONTRACT NO. A832-131
FINAL REPORT
JANUARY 1999

Multivariate Receptor Modeling
of SCAQS VOC and Airborne
Particle Composition Data

CALIFORNIA ENVIRONMENTAL PROTECTION AGENCY

— ¥ .« AIR RESOURCES BOARD
@_-—"'7:-; Research Division







Multivariate Receptor Modeling of SCAQS VOC
and Airborne Particle Composition Data

Final Report
Contract No. A832-131

Prepared for:

California Air Resources Board
Research Division
2020 L Street
Sacramento, CA 95814.

Prepared by:

Ronald C. Henry
YiMi
William Moran

University of Southern California
Department of Civil Engineering
Environmental Engineering Program
3620 South Vermont Avenue
Los Angeles, CA 90089-2531

January 1999






For more information about the ARB's Research Division,
its research and activities, please visit our Web site:

http://www.arb.ca.gov/rd/rd.htm






University of Southern California
Department of Civil Engineering
Environmental Engineering Program
3620 South Vermont Avenue
Los Angeles, CA 90089-2531

Summary

Innovative multivariate receptor modeling techniques were applied to several types of data
collected during the Southern California Air Quality Study (SCAQS). The purpose of the modeling was to
deduce as much information about the sources as possible from the data alone and with the aid of some
basic physical constraints. The data examined were the Volatile Organic Compound (VOC) gas phase
data, the airborne particle composition data, and routine gas monitoring data. The models applied were the
Source Apportionment by Factors with Explicit Restrictions (SAFER) multivariate receptor model, and the
Source Identification Through Empirical Orthogonal Functions (SITEOF) hybrid source — receptor model.

The VOC data from all sites for the fall intensive were combined into a singe data set that had a
sufficient number of data points for multivariate analysis. The summer VOC data differed too much from
site to site to be consolidated into a single set and the number of data points at each site was insufficient to
support a multivariate analysis. Three factors were found to explain almost all the variability of the fall
data. A graphical, three-dimensional version of the SAFER model determined the composition of these
three sources, which could be identified as roadway (direct tailpipe plus running gvaporative) emissions,
whole gasoline, and gasoline vapor. On average, 60 percent of the Total Non-Methane Hydrocarbons
(TNMHC) were apportioned to roadway emissions, 19 percent to whole gasoline, 15 percent to gasoline
vapor, and 6 percent were unexplained or to background levels of TNMHC. There was a significant
difference between the morning and afternoon source apportionment. In the morning, 71 percent of the
TNMHC were apportioned to roadway emission, 14 percent to whole gasoline, 11 percent to gasoline
vapor, and 4 percent were unexplained. In the afternoon, 44 percent of the TNMHC was apportioned to
roadway emission, 27 percent to whole gasoline, 20 percent to gasoline vapor, and 10 percent were
unexplained. This is consistent with increased evaporative emissions from parked vehicles at higher
aftemoon temperatures.

Multivariate receptor modeling of the particle composition data was restricted to summer PM-10
from five sites: Anaheim, Azusa, Burbank, Hawthorne, and Long Beach. The summer PM-2.5 and all the
fall particle composition data sets had too little data for a valid multivariate analysis. Two source types,
roadway and soil, account for most of the non-secondary PM-10. The composition and contributions of
these sources were estimated by a two-dimensional version of the SAFER model. Roadway is defined as
all PM-10 emissions from roadways, including direct tailpipe emissions and reentrained road dust. Soil is
defined as all crustal material not directly associated with roadway emissions. The composition of
roadway and soil sources varies little between the five sites. The average PM-10 source apportionment
allocates 30 percent of the total PM-10 to roadway, 18 percent to soil, 35 percent to inorganic secondary
species, and the remaining 17 percent represents, by process of elimination, an upper limit on the amount
of secondary organic particulate matter.

The hybrid receptor modeling was unsuccessful because of the limitations in the wind fields.
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1. Introduction

Innovative multivariate receptor modeling techniques were applied to several types of data
collected during the Southern California Air Quality Study (SCAQS). The purpose of the modeling was to
deduce as much information about the sources as possible from the data alone and with the aid of some
basic physical constraints. The data examined were the Volatile Organic Compound (VOC) gas phase
data, the airborne particle composition data, and some routine monitoring data. The models applied were
the Source Apportionment by Factors with Explicit Restrictions (SAFER) multivariate receptor model and
the Source Identification Through Empirical Orthogonal Functions (SITEOF) hybrid source-receptor
model. The following section gives a brief introduction to these models.

2. AN OVERVIEW OF RECEPTOR MODELING

By using air quality information at a certain site mathematical receptor models try to determine
the possible sources of these air pollutants. It is hoped that the information gained can be useful in
developing air quality management tools. Receptor models go about their work in a fashion fundamentally
different from dispersion models. Commonly a dispersion model would be used to study the effects of a
plume. A dispersion model works by taking the emissions at a certain point and trying to determine the
concentrations of various pollutants downwind of that source. In order to do this, the meteorology of the
area must be well understood. In contrast, a receptor model works by taking air quality information at a
certain point and trying to determine the sources of the various air pollutants. A receptor model (along
with dispersion models) works on the principle of mass conservation of elements between sources and
ambient concentrations. By using receptor models, one can avoid reconstructing the transportation and
dispersion patterns of the various species. In other words, a receptor model makes no assumptions as to
wind speed or direction though this information can be useful.

Receptor models have developed rapidly in the last several years. The factors which have led to
the rapid development of receptor models include:

1} the development of source profiles. These source profiles may need modification when used but they
provide some necessary guidelines to receptor model applications;

2) the huge database of ambient monitoring data now available allows for the development of models
based on statistical techniques; and

3) the advancement in computation techniques and equipment in the last several years that allows the
computations to be done on desktop machines in a reasonable time.

2.1 RECEPTOR MODEL FUNDAMENTALS

The fundamental mathematical expression of a receptor model can be stated as
C=AS+E, (1.1)

where C is an n by m matrix of ambient concentration data; 4 is an n by p matrix of source compositions,
whose columns correspond to the source profiles of the p sources; § is a p by m source contribution matrix,
whose rows are the contribution factors from the p sources; and E is an n by m matrix composed of
monitoring and analysis errors. Equation (1.1) is simply the mass balance relationship. In general, Cis
known, having been obtained from air quality monitoring, but 4, S, and E remain unknown. A and $ need
to be solved by means of source apportionment. :

Theoretically, there is no unique analytical solution for Equation (1.1). For solving 4 and § in
practice, there are many approaches which have been developed and formulated. A set of complete



solution procedures, fundamental theories, and application methods form a mathematical model for solving
equation (1.1), these models are called receptor models. In order to solve equation (1.1), several models
have been investigated and developed. Among these models, there are two major groups which have been
fully studied and widely applied: 1) CMB (chemical mass balance) models; and 2) multivariate models.
This separation is based on the mathematical techniques for solving equation (1.1).

22 CMB Modeling Methods

The primary modeling approach of a CMB model is to apportion source contributions, .S, on the
basis of known source profiles, A, or an assumed A. Mathematically, this procedure may be described in
the following way. Because E in equation (1.1) is an n by m matrix composed of monitoring and analysis
errors, the expectation value of E is equal to zero. Mathematically this may be expressed by the following

equation:
E(E)=0, (1.2)

where 0 is a zero 1xm raw vector. If A in Equation (1.1) is given, the unbiased estimation of the source
contributions, S, can be analytically given by the following equation:

S=(4'4)"AC. (1.3)

where the superscript ¢ stands for the matrix transpose. This is the fundamental formula for a CMB model.
A CMB model is composed of the algorithms developed from equation (1.3) and their corresponding
computation programs.

The CMB mode] features a mathematically simple and very direct procedure, which results in this
model having been widely applied to a variety of source apportionment problems. On the other hand, the
CMB models have several limitations for source identifications. First, without further assuming the
atmospheric dispersion factors, the solution from a CMB model will be a set of source contributions with
no emission rates. The source contributions being equal to the product of the dispersion factors and
emission rates.

Second, although there is a huge library of source profiles which is helpful in defining A4 in
equation (1.3), modifications are usually needed for a specific problem. The determination of the needed
modifications can be a tedious, subjective process. In current CMB models, there is no constraint to
mathematically guarantee that equation (1.3) can give a non-negative solution of S. In order to avoid
negative values in S,  traditional method largely relies on the selection of 4, which undoubtedly increases
the difficulty in determing A.

Third, if there is a solution to Equation (1.3), (A'A)' must exist. However, a singularity may lead
to no solution or a to very unstable solution to equation (1.3). Practically, this condition requires that the
source- profile vectors are linearly independent. However, when selecting A, there is no way to directly
identify the collinearity in 4. On the other hand, collinearities often exist among the source profile vectors
in actual analyses, which limits the accuracy and resolution of solutions from CMB models. A collinearity
problem occurs when any two sources have similar source profiles.

2.3 Multivariate Analysis Methods

In comparison with the CMB modeling methods, multivariate approaches attempt to directly
extract the information on both source contributions and profiles with the help of the singular value
decomposition (SVD) of C. Therefore, the utility of multivariate analysis is that the estimation results are
not dependent on possibly erroneocus source profile libraries. The principle of multivariate models is thata
measured concentration is a linear sum of the products of source compositions and source contributions
plus random errors created during monitoring and laboratory analyses. Mathematically, it may be
expressed by equation (1.1), too. Instead of directly solving equation (1.1), the matrix C'is transformed by
means of SVD into a product of three special matrices:
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C=UDV"', (1.4)

where U is an n by n matrix whose columns are the eigenvectors of CC; ¥ is an m by n matrix whose
columns are the eigenvectors of C'C; and D is an n by n diagonal matrix composed of the corresponding
singular values. Singular values are the square roots of eigenvalues. Eigenvectors of a matrix are special
because these vectors are mapped by the matrix into themselves, i.e., the eigenvectors do not change in
direction after being multiplied by the matrix. Only the length of the eigenvector is changed, and this
amount is given by the eigenvalue. If the ambient pollutants are released from p sources, p < m, in the D
matrix, the first p singular values will be much greater than the rest. Taking these characteristics of D into
consideration, the three matrices in equation (1.4) are partitioned for the p sources:

D 0 V!
— - P v
U—[Up U,], D-[O D,]’ v {th] (1.5)

r

where U, isan nby p matrix which includes the first p eigenvectors of U; D, isap by p diagonal matrix
composed of the first p singular values of D; and V' is a p by m matrix including the first p rows of J~.
Accordingly, U, and ¥/’ contain the rest of the eigenvectors of their corresponding matrices. D, is an m-p
by m-p diagonal matrix formed by the rest of the singular values. The three matrices in Equation (1.4) are
substituted by equation (1.5), then equation (1.4) becomes

e, vfv 5]V

This equation can be further simplified by expanding these matrices and abandoning the zero terms:
_ t t
C'—UprVp +UDYV, . (1.6)

Equation (1.6) is the primary equation which multivariate analysis models attempt to solve by various
means. If C represents a distribution of the concentration data in the multi-dimensional space established
by elements or species in a sample, the physical meaning of SVD decomposition is a transformation of the
space bases. The new space is a linear and orthogonal one which is established by the eigenvectors of C.
These eigenvectors are practically the linear combinations of the original elements and species. Therefore,
a source profile will be the linear combinations of these eigenvectors. The importance of a SVD
transformation is to ascertain the eigenvectors because each of them is a part of the source profiles. The
methods of determining these eigenvector combinations lead the multivariate analysis models to develop
along various directions.

The mathematical approaches in multivariate analysis models may be grouped into six categories:
1) source apportionment by factors with explicit restrictions (SAFER) method (Henry and Kim, 1990; and
Henry, 1991); 2) singular value decomposition of initial analysis data matrix or principle component
analysis (Lawson and Hanson, 1976}, 3) factor analysis based upon eigenvector analysis; 4) target
transformation factor analysis (TTFA) to approach a transformation of eigenvectors until the difference
between the transformed and the targeting vectors is minimized (Hopke, 1991); and 5) multiple linear
regression which is actually a linear least-square fitting method (Kleinmann et al., 1976).

The multivariate modeling approach seems to be mathematically more robust than the CMB
approach. These multivariate modeling solutions do not depend on any previous assumption to obtain
calculation results. Therefore, they are mathematically more meaningful and more objective. Although
Equation (1.6) consists of a set of linear algebra equations, there are still more unknown variables than
mathematical relationships or equations. Consequently, Equation (1.6) defines a mathematical problem
which does not come to closure. The solution to Equation (1.6) will be actually some feasible regions of
source profiles. A feasible region is defined as the space that inciudes all of the variables satisfying all of



the related equations and constraints in the problem. Under some constraints, these feasible regions may be
limited to quite narrow areas.

Finally, the calculation accuracy of some multivariate models relies excessively on the quality of
input data and the size of this data body. In other words, these methods do not have enough tolerance to
random errors. This could be a serious difficulty in simulations dealing with practical problems.

2.4 Hybrid Mathematical Modeling-SITEOF

The hybrid dispersion-receptor model employed in this study, Source Identification Through Empirical
Orthogonal Functions (SITEOF) was established on the basis of the gradient dispersion equation as the
basic mass balance equation. Generally, a dispersion model usually solves concentration distributions
according to emission rates coupled with some atmospheric transportation characteristics. Instead, the
primary objective of this hybrid model is to estimate emission rates on the basis of ambient concentrations
at several given sites and some atmospheric transportation characteristics. Conceptually, the two modeling
approaches are the reverse of each other. However, the mathematical methods used in SITEOF are not the
reverse mathematical procedure of a dispersion model. SITEOF utilizes multivariate analysis to extract
atmospheric dispersion and transportation information from ambient concentrations. An SVD and some
empirical orthogonal functions (EOF s) are used to perform this statistical computation. The empirical
orthogonal functions are a group of linear orthogonal polynomials which can be utilized to form a basis for
the expansion of analytical functions. In SITEOF, EOFs are determined by the SVD of the concentration
data matrix, and the resulting EOFs are composed of the eigenvectors and singular values obtained from
this SVD. The function of these EOFs is to substitute into the integral functions formed during an
integration of the dispersion equation. The mathematical background for SITECF follows.

For transportation in the atmosphere, the mass conservation equation is actually a dispersion
equation. Let c = c(t, x,,z) be the concentration of the species of interest at point (x,,z) and time 7. For
dispersion in the atmosphere the following equation can be obtained

é:—u@——vé-w£+Kx£§+K —5—22—+K_§Zé+Q+S+R4 (%)}
a & & & 7.4 Y& A

This is a general expression of the dispersion equation often used for air pollution research. The left hand
side of Equation (1.7) is the concentration change with time. The first three terms on the right side
represent the concentration changes as a result of advection, or the so-called advection terms. The next
three terms are the diffusion terms caused by atmospheric turbulence. ©, S and R are the source term, the
sink term and the transformation term, respectively.

SITEOF uses a different form of the dispersion equation. In particular the diffusion terms in
equation (1.7) are used for describing a stochastic diffusion process for 2 concentration distribution.
However, from the receptor modeling point of view, the concentrations from a receptor site are a set of
stochastic measurements or a random field, which have already included the effect of the stochastic
diffusion. In this situation, the diffusion terms in equation (1.7) become unnecessary. Moreover,
comparing the advection and diffusion terms, it can be found that the advection is generally one order
greater than the diffusion. Because the concentrations are aiways associated with some random errors from
sampling, and analysis, the inaccuracy created from the evaluation of the advection is generally similar in
size to the value of the diffusion terms. Asa result of this situation, the diffusion terms in equation a7
can be eliminated without decreasing the accuracy of the calculation.

For air pollutant concentration data, the concentration distributions are usually given as two
dimensional fields, ¢ = ¢(t, x, y). Equation (1.7}, then, is changed into equation (1.8)

%:—u%—v%+Q+S+R. (1.8)

Rearranging equation (1.8) gives us the basic equation used in SITEOF
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Some further modifications are also done to better carry out the solution to the equation 1.9. These
modifications are described eisewhere.

2.5 Source Apportionment by Factors with Explicit Restrictions-SAFER

SAFER (Henry and Kim, 1990) begins with a singular value decomposition (SVD) of the
unscaled, uncentered, raw data matrix. Non-negativity constraints (positive source compositions and
contributions) and other physical constraints on the predicted source compositions are represented as a
linear programming in the eigenvector space determined from the SVD. The solution to this linear
programming defines the boundary of the feasible region, i.e., the region within which predicted sources
have only positive compositions and contributions and obey any additional physical constraints which have
been imposed. Much of the the power of the SAFER (or any) multivariate model comes from restricting
the range of possible source compositions by reducing the dimensionality of the data set. This comes about
because the various species are commonly very highiy correlated with each other. In this way, the
candidate source contributions are found to lie in an n-dimensional subspace of the data.

2-5



3. Volatile Organic Gas Data

3.1 Introduction

A three dimensional version of the Source Apportionment by Factors with Explicit Restrictions
(SAFER) model was applied to Volatile Organic Compound (VOC) data collected during the fall intensive
sampling campaign of the SCAQS. The purpose of the analysis was to estimate the VOC composition of
the three vehicle-related sources that dominate VOC concentrations. These are roadway emissions (vehicle
exhaust plus running evaporative losses), whole gasoline, and gasoline vapor. Harley et al. (1992) and
Watson et al. (1993) have shown the dominance of these sources in the SCAQS data and Henry et ai.
(1994) have demonstrated the same for VOC data from Atlanta. Source contributions for the three vehicle-
related sources are also estimated by SAFER.

3.2 Data

A descriptive analysis of the VOC data for the summer and fall SCAQS intensives is given by
Lurmann and Main (1992). For the current study, SAFER modeling was restricted to the data from the fall
intensive for two reasons. First, there is less missing data because the VOC concentrations are much higher
than in the summer, and second, the data from different sites could be combined into one data set
containing 124 observations. Multivariate analysis of the summer VOC data showed significant
differences between the sites that prohibited combining data from several sites together, which is necessary
in order to obtain a data set that has sufficient observations for a reliable multivariate analysis.

The VOC species included in the analysis are given in Table 3-I. These species were chosen
because they had few or no missing data. In addition, the Table indicates those species that were selected
for application of the SAFER model because singular value decomposition showed this subset of species
had three strong factors.

All the VOC concentrations in this report are in ppbC. Multiply ppbC by 0.4908 to convert to
1gC/m*. Because carbon makes up the vast majority of the mass of the VOCs, this is very close to ug/m?.

3.3 Methods

3.3.1 Source Compositions and Contributions from SAFER

Source compositions were determined by a three-source version of the SAFER model (Henry and
Kim, 1990) applied to the sixteen identified species in Table 3-I. Although developed entirely
independently, this method is similar to the three factor self-modeling curve resolution model as described
in the chemometrics literature by Sun ez al. (1987). The conditions of the SAFER model ensure that the
source compositions and contributions are non-negative; however, SAFER relies on additional physical
constraints to find a unique solution among the infinite number of feasible solutions. The additional
physical constraints applied in this case were:

o  Propene is used a tracer for roadway emissions because the preferred tracer acetylene was missing
almost half the time. Propene is more reactive than acetylene, but since the analysis is restricted
to the fall when photochemisrty is reduced, this is not a problem.

e The gasoline and gasoline vapor sources do not contain propene.

e  The roadway source was chosen to have the minimum possible amount of propene that is
consistent with the data and the non-negativity constraint on the source contributions..

»  The gasoline source was chosen to have the maximum possible amount low carbon number VOCs
and the minimum amount of high carbon number VOCs,



e The gasoline vapor source was chosen to have the minimum possible amount of high carbon
number VOCs.

The source contributions determined by SAFER have the correct relative VOC composition but
each may be multiplied by an arbitrary factor yet to be determined. These factors are determined so as to
best fit the observed Total Non-Methane Hydrocarbons (TNMHC), as explained next.

The relative source composition matrix determined by SAFER is normalized so that the sum of
across each species is the average value of the species in the data. Next, the source contributions for this
source composition matrix are determined by a linear least squares fit to the data. Because of this
normalization, the three source contributions so obtained must have a mean value of one. TNMHC is
regressed against these source contributions; the coefTicients are then the average source contribution of
each source to TNMHC. The final source composition matrix is calculated by dividing each column of the
relative source composition matrix by the corresponding average source contribution. The final source
contributions are determined by multiplying the normalized source compositions by the corresponding
average source composition determined by regression on TNMHC. The resulting source compositions and
source contributions are optimal in explaining the sixteen species used in the analysis and TNMHC.

3.32  Source Compositions from Regression

The source compositions of the remaining fifteen species in Table 3-1 were determined by
regressing the concentrations against the source contributions, the regression coefficients are the source
compositions, assuming that there are no other significant sources to that species or other problems with
the data. If the species have high R? values and the regression coefficients are reasonable, this is a good
model validaton.

3.4 Results And Discussion

34.1 SAFER

Figure 3-1 shows the SAFER plot of the 16 vehicle-related species in model. Because some VOC ’
species concentrations are much larger than others, the VOCs have been normalized to a mean of one so
that a few species do not dominate the analysis. The lines are the locus of points where a species = 0, some
key lines are labeled. All possible non-negative source compositions lie inside the convex hull formed by
the lines. The points representing roadway, gasoline, and gasoline vapor are shown. Non-negative source
contributions are guaranteed if all the observed data points lie inside the triangle formed by the sources.
The gasoline and gasoline vapor sources must lie on the line propene = 0, since it is known that there is no
propene in these sources. The gasoline vapor source was chosen to minimize the concentration of heavy
VOCs, and the roadway source has the smallest amount of propene possible while meeting the non-
negative source contribution requirement.

A set of relative source contributions normalized to mean one was calculated using the relative
source composition matrix corresponding to the points in Figure 53-1 The regression of TNMHC against
the normalized source contributions is given in Table 3-II. The R? values are over 99% indicating that
TNMHC is very well explained by the three vehicle-related sources. A plot of the observed TNMHC
versus the sum of the three vehicle-related sources is shown in Figure 3-2. The background TNMHC is
given by the intercept is 90 ppbC, the average roadway source contribution is 891 ppbC, gasoline is 288
ppbC, and gasoline vapor is 227 ppbC. These average source contributions are then used to calculate the
unnomalized source contributions and source compositions, as explained in the methods section above.

3.42  Source Contributions

Table 3-II1 gives the average source contribution estimates by site for the morning (0500 to 0900
starting time) and afternoon (1200 to 1600 starting time). The same figures expressed as a percentage of
average TNMHC are given in Table 3-IV. Not too much should be read into differences between sites
since the averages in the Tables represent widely different numbers of samples from perhaps different
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days, as shown in Table 3-V. There is a significant difference between morning and afternoon period,
however. In the moming, roadway emissions are about 70 percent of TNMHC, while in the afternoon this
drops to only 44 percent. The difference is made up by roughly equal increases in gasoline and gasoline
vapor. Also, the unexplained TNMHC goes from 4 percent in the morning to 10 percent in the afternoon,
on average. The increased gasoline and gasoline vapor contribution in the afternoon is consistent with
emissions from parked vehicles and the higher temperatures in the afternoon.

3.4.3 Source Compositions

Table 3-VI gives the source compositions for the 16 vehicle-related species in the SAFER model.
The table also gives the source compositions for the remaining species determined by regression on the
source contribution estimates. The adjusted R? for the regression is given for each species not included in
SAFER: a low R?, say less than 0.9, indicates that the species may have other sources, or that it has other
data problems. For example, ethane and propane have R? values below 0.8 and are found in geogenic and
commercial natural gas. Other species with low R* values are noctane and nnonane; these are present at
low levels in the vehicle-related sources and may have other significant sources. The low R? for ethene is
more likely caused by data problems, since no other large sources are known. The fact that so many
species that were not used in the SAFER model are well fit by it is a validation of the model and its
predictions.

The roadway VOC composition derived in this study is in reasonably good agreement with those
reported elsewhere. Table 3-VII compares the roadway profile of this study with three others, the profile
used for Chemical Mass Balance (CMB) by the Desert Research Institute (DRI), Watson et al. (1993);
measurements in the Caldecott Tunnel as reported in Watson et al. (1993); and measurements taken ina
freeway underpass in downtown Atlanta during the summer of 1990 (Conner et al., 1994).

The comparison of the gasoline profile with other reports is not quite as good as for the roadway
profile, but it is still very good, as can be seen in Table 3-VIII. Benzene and nbutane in the current profile
are quite a bit larger than in other reported profiles. The gasoline vapor profile also shows more benzene
and toluene, but less nbutane than other reports, as seen in Table 3-IX. Since most of the other major and
minor VOC species compare quite well for gasoline and gasoline vapor, the inconsistencies in some
species cannot be explained as all species being too low or too high.

Additional insight into the SAFER model results can be had by comparing the predicted and
observed concentrations for the individual VOC species; these are seen in Table 3-X. Most species,
including benzene and toluene, are well modeled, with less than a 10 percent difference between the
average predicted and observed concentrations. The only species that is significantiy over-predicted is
nbutane, by 11 percent. Noctane and nnonane are significantly underpredicted, like propane and ethane in
Table 3-VI, these species had low R? and may have other sources. The case of nbutane is less easy to
understand. Perhaps the multivariate analysis was unable to determine a reasonable source composition for
nbutane because the composition was varying during the period. This is possible because refiners increase
the nbutane in gasoline in the late fall and winter to improve cold starting performance.

3.5 Conclusions

The primary conclusions of this study are:

e VOC data from the various sites from the SCAQS fail intensive can be consolidated into a single
data set, i.e., all sites seem to be affected by the same sources. This is not true for summer VOC
data.

e« TNMHC and most of the individual VOC species are well explained by three vehicle-related
sources: roadway emissions (direct exhaust and running evaporative), gasoline, and gasoline
vapor.



The three source SAFER model was validated by its success in explaining VOC species that were
not used to develop the model.

On average, 60 percent of the TNMHC was apporticned to roadway emissions, 19 percent to
whole gasoline, 15 percent to gasoline vapor, and 6 percent wete unexplained or due to
background.

There was a significant difference between the morning and afternoon source apportionment. In
the morning, 71 percent of the TNMHC was apportioned to roadway emission, 14 percent to
whole gasoline, 11 percent to gasoline vapor, and 4 percent were unexplained. In the afterncon,
44 percent of the TNMHC was apportioned to roadway emission, 27 percent to whole gasoline, 20
percent to gasoline vapor, and 10 percent wre unexplained. :

The source composition for roadway emissions as determined by the SAFER model is similar to
the composition of roadway emissions seen in other studies. However, the SAFER profile shows
some differences that are specific to the SCAQS data set.

The composition of gasoline and gasoline vapot, as estimated by SAFER, is in general agreement
with source samples. The SAFER estimate of the nbutane fraction of these sources is probably
inaccurate since nbutane is over-predicted. This may be the result of variations in nbutane
composition of gasoline made by refiners to adjust the cold start characteristics of the gasoline.

Ethane and propane were not well modeled by the three-source model. They probably have
significant non-vehicle related sources.
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Tables

Table 3-1 VOQC Species Included in the Multivariate Analysis

Name or Abbreviation Chemical Name Included in
SAFER
Ethane Ethane
Ethene Ethene
Ethyne Ethyne
Propene Propene X
nButane n-butane
iPentane 2-methylbutane X
nPentane n-pentane X
CyPentane cyclopentane
2MPentane 2-methylpentane X
3MPentane . 3-methylpentane
nHexane n-hexane X
MCyPentane methyl-cyclopentane X
24DMPentane 2 4-dimethylpentane
Benzene benzene
CyHexane cyciohexane
2MHexane 2-methylhexane X
23DMPentane 2,3-dimethylpentane X
3MHexane 3-methyihexane X
224TMPent 2,2 4-trimetylpentane X
nHeptane nheptane X
MCyHexane methylcyclohexane
234TMPent 2,3,4-trimethylpentane X
Toluene methylbenzene
2MHeptane 2-methylheptane X
3MHeptane 3-methylheptane
nOctane noctane
EBenzene ethylbenzene X
MPXylene 1,3-dimethylbenzene X
+1,4-dimethylbenzene
OXylene 1,2-dimethylbenzene X
nNonane nnonane
124TMBenz 1,2, 4-trimethyibenzene




Table 3-11 Regression of TNMHC on Source Contributions Normalized to Mean 1.

Regression Statistics

Multiple R 0.9968

R Square 0.9936

Adjusted R Square 0.9935

Standard Error 86.3068

Observations 124

Coefficients  Standard t Stat -
Error

Intercept 89.8 13.77 6.53

Roadway 890.7 9.17 97.06

Gasoline 288.3 10.01 28.79

Gasoline Vapor 227.0 9.02 25.18

Table 3-1II Source Contributions by Site and Time (ppbC)

SITE Roadway Gasoline Gas Vapor Unexplained TNMHC

ANAHEIM Moming 1671 199 248 137 2255
Afterncon 512 233 243 66 1054
All 874 222 244 88 1429

BURBANK Morning 2147 444 325 58 2975
Afternoon 642 438 219 107 1405
All 1112 440 252 92 1896

CENTRAL LA Moming 1145 287 109 145 1687
Afterncon 492 325 190 103 1110
All 838 305 147 125 1415

HAWTHORNE Morning 2583 280 128 64 2927
Afterncon 230 153 133 136 652
All 701 178 132 96 1107

. LONG BEACH Morning 1638 330 401 65 2433

Afternoon 375 224 230 114 943
All 1064 281 323 87 1756

RIVERSIDE Morning 1595 140 83 -20 1797
Afternoon 199 129 83 35 445
All 414 131 83 26 653

Grand Total Morning 1551 303 249 92 21956
Afternoon 420 258 188 94 959
All 883 276 213 93 1466




Table 3-1V Source Contributions as a Percentage of TNMHC

SITE Roadway Gasoline Gas Vaopr Unexplained
ANAHEIM Morning 74 9 11 6
Afternoon 49 22 23 6

All 61 16 17 6

BURBANK Momming 72 15 11 2
Afternocon 45 31 16 8

All 59 23 13 5

CENTRAL LA Morning 68 17 6 9
Afternoon 44 29 17 9

All 58 22 10 9

HAWTHORN  Morning 88 10 4 -2
Afternoon 35 23 20 21

All 63 16 12 9

LONG BEACH Morning 67 14 16 3
Afternoon 40 24 24 12

All 61 16 18 5

RIVERSIDE Morning 89 8 5 -1
Afternoon 45 29 19 8

All 63 20 13 4

Grand Average Morning 71 14 11 4
Afternoon 44 27 20 10

All 60 19 15 6

" Table 3-V Number of Observations by Site and Time

SITE No. Obs.
Morning ANAHEIM 5
BURBANK 5
CEN. LA 18
HAWTHORNE 3
LONG BEACH 18
RIVERSIDE 2
Aftemoon  ANAHEIM 11
BURBANK 1
CEN. LA 17
HAWTHORNE 8
LONG BEACH 15
RIVERSIDE 11
Grand Total 124




Table 3-VI Source Compositions Determined by Multivariate Receptor Modeling

(Percent of TNMHC)
Roadway Gasoline Gas Vapor Adj. R*?

Ethane 413 0.00 0.00 0.7¢
Ethene 479 0.00 0.00 0.87
Ethyne 4.01 0.00 0.00 0.93
Propene - 2.16 0.00 0.00

Propane 3.39 2.18 10.58 0.75
nButane 5.97 10.45 20.91 0.93
iPenfane 6.52 7.08 15.34

nPentane 2.97 2.31 8.12

CyPentane 0.38 0.36 0.70 0.99
2MPentane 2.48 2.84 3.19

3MPentane 1.74 2.06 2.00 0.92
nHexane 1.62 1.83 2.16
MCyPentane 1.60 1.63 1.68
24DMPentane 0.56 .71 0.42 0.94
Benzene 3.30 3.04 2.52 0.4
CyHexane 0.38 0.46 0.44 0.86
2MHexane 1.03 1.35 0.36
23DMPentane 0.82 1.15 0.45

3MHexane 1.1 1.62 0.49

224TMPent 1.70 2.18 0.41

nHeptane 1.00 1.65 0.24

MCyHexane 0.86 1.76 0.33 0.86
234TMPent 0.58 0.70 0.00

Toluene 8.53 9.70 2.98 0.98
2MHeptane 0.39 0.66 0.09

3MHeptane 0.46 0.58 0.02 0.92
nOctane 0.39 0.52 0.11 0.74
EBenzene 1.31 1.75 0.26

MPXylene 5.56 5.11 0.12

OXylene 1.94 1.99 0.23

nNonane 0.18 0.40 0.21 0.76
124TMBenz 2.21 1.82 0.00 097
Sum 74.07 67.92 73.97

aR? values are only given for species not included in the SAFER
model, i.e., those determined by multiple regression.




Table 3-VII Comparison of Roadway Composition to Other Studies. (Percent of TNMHC)

This LA Caldecott Atlanta
Study  Winter Tunnel® Summer
1987° 1990°

Ethene 479 9.90 6.43 434
Ethyne 4.01 278 2.12 3.80
Propene 2.16 3.13 2.75 1.96
nButane 5.97 6.44 2.84 4.1
iPentane 6.52 493 7.79 8.64
nPentane 297 2.21 273 2.66
CyPentane 0.38 0.21 0.44 0.25
2MPentane 2.48 1.91 3.17 2.43
3MPentane 1.74 1.37 1.85 1.42
nHexane 1.62 0.92 1.72 1.09
MCyPentane 1.60 0.92 1.77 0.78
24DMPentane 0.56 0.82 0.00 0.70
Benzene 3.30 3.91 5.42 273
CyHexane 0.38 0.22 0.29 0.17
2MHexane 1.03 0.76 1.20 0.87
23DMPentane 0.82 0.76 0.46 0.90
3MHexane 1.1 1.38 1.25 0.89
224TMPent 1.70 2.91 1.59 2.51
nHeptane 1.00 0.78 0.93 0.54
MCyHexane 0.86 0.64 0.51 0.30
234TMPent 0.58 0.17 0.00 0.95
Toluene 8.53 7.10 8.27 6.59
2MHeptane 0.38 0.33 0.47 0.32
3MHeptane 0.46 0.55 0.00 0.36
nOctane .39 0.44 0.32 0.29
EBenzene 1.31 0.79 1.50 1.28
MPXylene 5.56 3.32 5.95 4.35
OXylene 1.94 2.22 2.46 1.66
nNonane 0.18 0.31 0.00 0.21
124TMBenz 2.21 3.33 227 2.16
3 Watson et al. (1993), "Conner ef al.(1993)




Table 3-VII Comparison of Gasoline Composition with Other Studies (Percent of TNMHC)

This LA LA Atlanta
Study Winter  Summer Summer
1087° 1987° 1990°

Ethane 0.00 0.00 0.00 0.01
Ethyne 0.00 0.00 0.00 0.00
Propene 0.00 0.00 0.04
nButane 10.45 5.60 3.30 3.23
iPentane 7.08 6.19 6.90 7.37
nPentane 2.31 2.56 2.76
CyPentane 0.36 0.49 0.50 0.27
2MPentane 2.84 2.32 3.30 2.88
3MPentane 2.06 1.77 2.10 1.79
nHexane 1.83 1.69 2.00 1.50
MCyPentane 1.63 2.19 2,50 1.10
24DMPentane 0.71 0.98 0.75
Benzene 3.04 1.88 1.0 1.53
CyHexane 0.46 0.50 0.60 0.25
2MHexane 1.35 1.68 1.28
23DMPentane 1.15 1.34 1.02
3MHexane 1.62 1.51 1.27
224TMPent 2.18 0.00 2.82
nHeptane 1.65 1.58 0.85
MCyHexane 1.76 0.86 1.00 0.57
234TMPent 0.70 0.00 1.33
Toluene 9.70 0.64 10.20 8.11
2MHeptane 0.66 0.00 0.50
3MHeptane 0.59 0.00 0.61
nQctane 0.52 0.90 1.00 0.45
EBenzene 1.75 2.02 1.90 1.80
MPXylene 5.11 8.63 8.30 6.30
OXylene 1.98 342 3.10 2.60
nNonane 0.40 0.58 0.22
124TMBenz 1.82 3.87 3.20 418
3 Watson ez al. (1993), "Harley er al. (1992),

© Conner et al.(1993)
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Table 3-LX Comparison of Gesotine Vapor Composition to Other Studies (Percent of TNMHC)

This LA LA Atlanta
Study Winter  Summer Summer
1987° 1987° 1990°

Ethane 0.00 0.0 0.01
Ethyne 0.00 0.00 0.00
Propene 0.00 0.00 0.13
nButane 20.91 30.48 30.00 21.80
iPentane 16.34 14.28 22.30 27.90
nPentane 8.12 4.40 7.40
CyPentane 0.70 0.53 0.50 0.43
2MPentane 3.19 2.03 2.80 3.53
3MPentane 2.00 1.49 1.60 1.93
nHexane 2.16 1.19 1.10 1.20
MCyPentane 1.68 1.49 1.10 0.81
24DMPentane 0.42 0.56 0.52
Benzene 2.52 1.20 0.70 0.87
CyHexane 0.44 027 0.30 0.12
2MHexane 0.36 0.87 0.486
23DMPentane 0.45 0.69 0.46
3MHexane 0.49 0.62 0.44
224TMPent 0.41 0.00 0.99
nHeptane 0.24 0.53 0.20 0.21
MCyHexane 0.33 0.26 0.10 0.12
234TMPent 0.00 0.00 0.23
Toluene 2.98 1.54 0.70 1.28
2MHeptane 0.09 0.00 0.06
3MHeptane 0.02 0.00 0.01
nOctane 0.1 0.13 0.00 0.04
EBenzene 0.26 0.15 0.00 0.10
MPXylene 0.12 0.51 0.10 0.32
OXylene 0.23 0.23 0.00 0.12
nNonane 0.21 0.01 0.01
124TMBenz 0.00 0.03 0.30 0.11
3 Watson ef al. (1993), "Harley er al. (1992),

¢ Conner et al.(1993)
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Table 3-X VOC Species Apportionment (ppbC)

Roadway Gasoline Gas Sum Observed Predicted
Vapor Observed
Propene 19.21 0.00 0.00 19.21 19.59 0.98
nButane 53.21 30.12 4745 130.78 118.05 1.1
iPentane 58.03 20.42 3483 113.28 113.28 1.00
nPentane 26.44 6.65 18.42 51.51 51.44 1.00
CyPentane 3.34 1.04 1.59 5.98 6.05 0.99
2MPentane 22.12 8.18 7.24 37.54 37.53 1.00
3Mpentane 15.53 5.93 453 25.99 28.27 0.92
nHexane 1440 5.29 490 24.59 2477 0.99
MCyPentane 14.27 4,71 3.82 22.79 22.87 1.00
24DMPentane 5.01 2.03 0.86 8.00 7.60 1.05
Benzene 29.42 8.76 5.72 43.90 43.18 1.02
CyHexane 3.37 1.34 1.00 5.71 6.07 0.94
2MHexane 9.18 3.91 0.82 13.90 13.83 1.01
23DMPentane 7.30 3.33 1.02 11.65 11.60 1.00
3MHexane 9.93 4.68 1.11 15.72 15.82 0.99
224TMPent 15.10 6.29 0.93 22.32 22.35 1.00
nHeptane 8.90 476 0.54 14.20 14.23 1.00
MCyHexane 7.70 5.08 0.75 13.53 15.03 0.90
234TMPent 5.19 2.01 0.00 7.21 7.08 1.02
Toluene 75.99 27.98 6.76 110.72 115.50 0.86
2MHeptane 3.48 1.91 0.20 5.60 5.68 0.99
3MHeptane 412 1.70 0.05 5.88 6.06 0.97
nOctane 3.47 148 0.26 522 7.08 0.74
EBenzene 11.64 5.05 0.59 17.28 17.60 0.98
MPXylene 439.50 14.73 0.28 64.50 64.25 1.00
OXylene 17.25 574 0.52 23.52 23.70 0.99
nNonane 1.58 1.14 0.47 3.20 3.82 0.84
124TMBenz 19.66 525 0.00 24.92 24.21 1.03
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Figure 3-2 Observed Total Non-Methane Hydro-Carbons versus that predicted by SAFER as the sum of the three
vehicle-related species.
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4. Particle Composition Receptor Modeling

This section covers the multivariate receptor modeling of PM-10 and PM-2.5 composition data
for the summer and fall SCAQS intensive periods. Limitations of the data make impossible receptor
modeling of the summer PM-2.5 data and all the fall data. Also, significant differences between the
summer and winter data make it impossible to consolidate these two data sets. Thus, this section is
restricted to analysis of the PM-10 data from the summer intensive.

Multivariate analysis shows that two sources explain, at most sites, practically all of the non-
secondary component of PM-10. These two sources can be identified as roadway and soil. The roadway
source consists of all the PM-10 coming directly from roadways, a combination of resuspended road dust
and direct emissions. Elemental carbon is assumed to be a tracer for roadway emissions. The soil source is
simply all soil dust not directly associated with roadways. The composition of these two source types and
the contributions of each to total PM-10 are estimated by a graphical version of the Source Apportionment
by Factor with Explicit Restrictions (SAFER) model.

4.1 Data Screening

4.1.1 PM-10 Summer Data

We obtained 9 data files which included the original summer PM-10 data as LOTUS worksheets.
They included the analysis results of the samples originaily collected from 9 sampling sites: Anaheim;
Azusa; Burbank; Claremont; Downtown Los Angeles; Hawthorn; Long Beach; Riverside; and San
Nicholas Island. The abbreviations used for these site names are given in Table 4-I. Each worksheet is
composed of 3 types of data: the original data body; the detection limits; and the 3-sigma error bars. These
three data sets have been individually saved as three major data matrices of 55 rows by 33 columns. The
rows of the original data matrix represent the 55 observed samples, and the columns represent the 33 target
elements. The data are the analysis results of elemental concentrations. Therefore ,theoretically, 55x33
elemental concentrations have been provided for each sampling site. The matrices of the detection limits
and the 3-sigma values include the data corresponding to the original detected data

In some of the nine files, there are several samples which have some problems caused by errors in
their analyses or sampling processes. Also, it has been found that several samples include some significant
outlier data points. The data from these two types of samples may contain some wrong statistical
information, and may mislead the whole analysis to an incorrect results. For limiting any possible error
sources to this analysis, these sample rows have been deleted from the data matrices.

At all sites, the original worksheet includes a large amount of BDL (Below Detection Limit)
points. An element becomes unavailable to this analysis when it contains too many BDLs. Therefore, the
next data preparation step is to screen out such elements. Based upon the above rule of data elimination, an
element column was deleted from the analysis data body if there exist more than 3 BDL among the 55 data -
points. In order to provide some unbiased statistical information to the analysis, for every element, there
should be a sufficient number of data above the detection limit in the original worksheet. For this analysis,
to obtain a correct result, each involved element should contain more than 95% of originally detected data
points. However, the actual situation is that, among the 33 target elements, most of their elemental
concentrations are below the limit of detection. The remaining elements at each site are listed in Table
4-11. The few BDL’s that remained in the data were replaced by the half values of the corresponding
detection limits.

The PM-10 Teflon filters collected by the SCAQS samplers were non-uniform in deposit caused
by an error in sampler design (Matsumura and Cahill, 1990). Some conversion factors to the individual
elemental concentrations have been found by Matsumura and Cahill (1990) based upon their statistical
analyses of several selected filters by the PIXE proton milliprobe. Therefore, the original data are
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converted in the manner of dividing the elemental concentration columns by the corresponding conversion
factors. The conversion factors used in this step are shown in Table 4-I11.

4.1.2 PM-10 Fall Data

Six data files including the original fall PM-10 data have been obtained. The files are the analysis
results of the samples originally collected from 6 sampling sites: 1) Anaheim; 2) Burbank; 3) Downtown of
Los Angeles; 4) Hawthomn; 5) Long Beach; and 6) Riverside. Each file provides 2 types of data: the
original data body and the detection limits. These 2 parts of data have been individually saved one after
another on a day by day base. Thirty samples are included in the files, and their 31 elements have been
analyzed. The data in these files are the analysis results of elemental concentrations. After rearranging
these data, each file is now a 30x31 matrix, whose rows and columns are corresponding to 30 samples and
3] target elements, respectively. Similar to the preparation procedures for the summer data, these fall data
have also been carefully examined. However, because the number of available samples in the 6 files is 30
or less (refer to Table 4-1V), these files don’t have enough data to support multivariate analysis.

413 Summer and Fall Combined PM-10 Data

The six corresponding summer and fall data matrices are combined together, respectively, to form
six lumped data matrices. Doing this work is based upon an assumption that a better analysis result could
be obtained if the data body has more data points. However, another condition to make this assumption
true is that the two parts of the data should contain similar statistical information. To examine whether
there exists such a condition for the two parts, several scatter plots between some elements have been
prepared. But these plots are showing the same fact, to a different extent, that the two parts of data are
statistically different. Figure 4-1 is one of these plots showing this conclusion. Therefore; no further
analyses were conducted for the consolidated data.

4.1.4 PM-2.5 Summer and Fall Data

The original PM-2.5 summer and fal! data have the same format as the corresponding PM-10 data.
However, these data have more BDLs, and therefore, more element columns were deleted from their
original data body than PM-10 data. The PM-2.5 data were screened in the same way as the PM-10 data.
The remaining elements and their numbers of sample rows in the summer data are listed in Table 4-V.

For the PM-2.5 summer data, very few elements are available after screening out the BDLs.
Given the limited number of species with most observations above minimum detectable limits, the summer -
PM-2.5 data was judged unsuitable for multivariate analysis. After screening, the fall PM-2.5 data also do
not included enough samples for multivariate analysis. After applying the data screening process to these
data, between 22 and 24 observations were left at each site, much too few for a reliable application of
multivariate receptor model.

4.1.5 Data Screening Conclusions

The end result of the data screening was that only the PM-10 data from the summer intensive was
amenable to multivariate analysis. The fall PM-10 and the summer and fall PM-2.5 had too few
observations for a reliable multivariate analysis. An attempt 1o overcome this problem by consolidating the
fall and summer data was not possible because analysis showed that the sources for the two datasets were
different.

Due to the limited number of the elements available in the summer PM-10 data, it was found that
only two possible particulate sources, roadway and soil dust, can be identified from such data. Therefore,
there was no reason to keep the data columns whose elements are normally not or very weakly related to
any of these two sources, such as Na, Mg, P, C1, K, Zn, and Ba, in the data matrices. In order to eliminate
any possible interferences from these species, their columns are deleted from the data matrices.

For the identification of the roadway sources, the data of the elemental carbon concentrations may
provide some valuable information to this analysis because the elemental carbon is a tracer element for
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roadway sources, which can help in separating the roadway sources from soil dust. Fortunately, the
clemental concentrations of carbon have been detected for the SCAQS samples and saved in another data
file. The elemental carbon data were extracted from the file, and combined with other elements to form a
new data matrix. The structure of the final data matrices for this analysis are summarized in Table 4-VI.

4.2 Methods and Resuits

A 2D (2-Dimensional) version of the SAFER model is employed to identify sources and to
estimate the composition and contribution of these sources to PM-10 during the summer intensive. The 2D
model is mathematically identical to the original version of the self-modeling curve resolution technique
(Lawton and Sylvestre, 1971). Since all the non-negativity and additional constraints in a 2D model can be
seen graphically, there is no need to use the linear programming methods of the full SAFER model.

42.1 Principle Component Analysis

Principle component analysis was applied to the data matrices listed in Table 4-VI. The results of
this analysis provide the information about how many and how clearly separated the potential sources can
be identified. The purpose of conducting a principle component analysis of these data is to examine
whether each data matrix carries enough statistical information about the two particulate sources.

The results for Claremont do not show the necessary two clear factors from the eigenvalues of its
data matrix. Reviewing the data of Claremont, it has been found that this data includes only 38 sample
rows, which apparently is not enough for a reliable muitivariate analysis. The Riverside data gives three
clearly separated factors from their resulting eigenvalues. The third potential source is strongly associated
with the first two, and a biased analysis will result from the 2-D model if the existence of the third factor is
ignored. Therefore, this data set is not two-dimensional, and the 2-D model is certainly not applicable.
After the previous data screening, there are only 4 elements in the San Nicholas Island data. Based upon
these four elemental concenirations, the two particulate sources cannot be well apportioned because only
the four elements cannot provide enough varieties to recognize the difference between the two analyzing
particulate sources. Therefore, the data from Claremont, Riverside, and San Nicholas Island are excluded
from this analysis. The principle component analysis resulting from the rest of the six data matrices have
shown two significant factors according to their eigenvalues. The six sampling sites left for analysis are:
Anaheim, Azusa, Burbank, Central LA, Hawthorne; and Long Beach.

42.2 Determination of the Feasible Region

The first two orthogonal eigenvectors from the singular value decomposition (SVD) of the data
now can be utilized to compose a new analysis space. In order to ensure this source apportionment resuits
to be physically meaningfu!, two additional physical constrains must be applied to limit the solution region:

e the source composition estimates must be positive; and,
e estimates of contribution of the two sources must be positive.

These two constraints can be expressed as two sets of lines in the eigenvector plane (Lawton and
Sylvestre, 1971). This is shown in Figure 4-2 for the Anaheim data set, which shows the plot of the first
two principal component scores for each data point. All source compositions with all positive vatues must
lie above the solid lines in the Figure. All source compositions that give positive source contributions lie
below the dotted lines in the Figure. These two constraints are satisfied in two regions of the Figure lying
between the solid lines and the dotted lines. The left hand region is the contains all possible roadway
source compositions, and the right hand region contains the possible soil compositions.

The determination the roadway and soil source compositions comes down to picking a point in
each region. This is done in two parts, first the direction of the point is determined; this gives the relative
source composition, i.e., the composition up to an arbitrary scale factor. The scale factor is determined by
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the additional physical constraint that the model must explain the total mass. A graphical method for
finding the directions and scale factors is given next.

4.2.3 Determination of the Source Compositions

Some additional physical or mathematical constraints are needed to determine the direction of the
roadway and soil source vectors. Physically, the soil should have no or very little elemental carbon. The
constraint that elemental carbon is zero is satisfied by all points on the right hand solid line. Thus, the soil
source vector must lie along this direction. The roadway source vector is chosen to lie along the left hand
dotted line. This line gives a roadway source that has 2 maximum amount of the soil elements, Si, Al, Fe,
Ca, Ti, and Fe. Thus, this choice maximizes the amount of PM-10 explained by roadway. Also, this
choice makes the two source vectors almost perpendicular, and, therefore, almost statistically independent.

Both the optimal directions of soil-dust and roadway have been decided above. However, scale
factors need to be determined in order to obtain the final composition of the two source profiles. The
procedure of determining the scale factors can be separated into two steps that ensure that the two sources
explain a maximum of the observed total mass. Since sulfate, nitrate, and ammonium are significant parts
of the total mass but are not explained by the two sources of interest, the reduced total mass is defined as
the observed total (PM-10) mass minus the concentrations of these three species. Figure 4-3 is a plot of the
unscaled roadway source contributions versus the observed reduced total mass. The slope of the lower
edge of this plot, ignoring any outliers, is the required scale factor. The lower edge is used to account for
the contributions of other sources 1o reduced total mass.

The scale factor for the soil source is determined by subtracting the roadway contribution from the
reduced total mass and plotting this against the unscaled soil source contributions. The result is found in
Figure 4-4. As with the roadway source, the slope of the lower edge of this plot (ignoring outliers) defines
the scale factor for the soil source.

4.3 Results of Source Apportionment

The source composition estimates of the roadway and soil dust sources of PM-10 as estimated for
five sites is given in Table 4-VIL In general, the source compositions are remarkably consistent between
sites. Since the results for each site are estimated completely independently, this consistency is a measure
of the validity of the modeling approach.

The source contributions, expressed as a percentage of the average, total PM-10 at each site is
given in Table 4-VIII. Overall, the sum of roadway and soil explains about 50 percent of the PM-10,
secondary inorganic species are about 35 percent and the remaining 15 percent is probably mostly
secondary organic particulate matter.

43.1 Other Modeling Results

Limitations of the SAFER model can be best judged by comparing Tables 3-1 and 3-2 from South
Coast Air Quality Management Report’s PM10 Modeling and Visibility for the South Coast Air Basin
(1994). These provide more detailed analysis and more specific sources such as motor vehicles instead of
roadway and marine sources. These types of analysis require less intense data gathering efforts and seem
to provide information more useful to control strategy planning.

4.4 Conclusions

Multivariate receptor modeling of the PM-10 particulate composition data showed:

e The PM-10 composition data for five sites from the summer intensive, Anaheim, Azusa, Burbank,
Hawthome, and Long Beach, is amenable to multivariate receptor modeling.



Two source types, roadway and soil, account for most of the non-secondary PM-10. Roadway is
defined as all PM-10 emissions from roadways, including direct tailpipe emissions and reentrained
road dust. Soil is defined as all crustal material not directly associated with roadway emissions.

As determined by multivariate receptor modeling, the composition of roadway and soil sources
varies little between the five sites.

The average PM-10 source apportionment allocates 30 percent of the total PM-10 to roadway, 18
percent to soil, 35 percent to inorganic secondary species, and the remaining 17 percent is, by
process of elimination, an upper limit on the amount of secondary organic particulate matter.



Tables

Table 4-1 Abbreviations of Site Names

Sampling Site Abbreviation

ANAHEIM ANAH
AZUSA AZUS
BURBANK BURK
CLAREMONT CLAR
DOWNTOWN LA DOWN
HAWTHORNE HAWT
LONG BEACH LONG
RIVERSIDE RIVR
SAN NICKOLAS IS. SNIC

Table 4-1 Species Included in the PM-10 Analysis for Each Site

Element ANAH AZUS BURK CLAR DOWN HAWT LONG RIVR SNIC

Na
Mg
Al

Si

P

Cl
K
Ca
Ti
Mn
Fe X
Zn

Ba X X X

bad

X X X

X X

X X

Gj—oscooo-qmmhwm-a
X X X X X ¥ X X
XX X X X X X X X X
X X X ¥ X X x xX %

X X X X X X X X
x x %X X X X X X

X X X X x
x X X X x X X X
x X X X X X X X X X X

N
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Table 4-13[ Non-uniform Deposit Correction Factors for PM-10

Element Conversion No. Element Conversion

Factor Factor
1 Na 1.13 8 Ca 2.09
2 Mg 113 9 Ti 2.09
3 Al 1.13 10 Mn 1.00
4 Si 1.13 11 Fe 2.09
5 P 1.00 12 Zn 2.09
6 Cl 1.00 13 Ba 1.00
7 K 2.09

Table 4-1% Number of Samples in the Fall PM-10 Data

Sampling Site No. of Rows
ANAH 27
BURK 30
DOWN 28
HAWT 30
LONG 24
RIVR 29

Table 4-V Species Included in the PM-2.5 Data Sets

No.  Element ANAH AZUS BURK CLAR DOWM HAWT LONG RIVR SNIC

1 Na X X X X X X

2 Mg X X X X X X X X
3 Al X X
4 Si X X b X X X
5 P X X X X X
6 K X X X X X X X X
7 Ca X X X X X
8 Ti X X X X
9 Fe X X X X X X
10 Zn X X X

Count 46 44 41 42 A4 43 50 47 N/A
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Table 4-VI Species Included in the Final Summer PM-10 Data Sets for 2D-SAFER Modeling

Element ANAH AZUS BURK CLAR DOWN HAWT LONG RIVR SNIC
El.C X X X X X X X X X
Al X X X X X X X X X
Si X X X X X X X X X
Ca X X X X X X X X
Ti X X X X X X X X
Fe X X X X X X b 4 X X
Mn X X X
No.of Obs. 50 43 47 38 41 44 41 45 44
Table 4-V1I Source Composition Estimates for Summer PM-10.
Anaheim Azusa Burbank
Roadway Soil Roadway Soil Roadway Soil
Element Wit% Wt% Wt% Wt% Wit% Wit%
ELC 13.61 o] 7.72 0 13.98 0
Al 322 5.12 3.22 5.34 2.53 3.62
Si 7.58 1523 7.58 14.29 6.34 10
Ca 1.98 405 1.72 2.91 1.6 2.89
Ti 0.27 0.42 0.22 0.39 - 0.23 0.51
Fe 2.28 4.57 2.38 4.04 2.29 3.57
Hawthorne Long Beach Average
Roadway Sail Roadway Soil Roadway Sail
Element Wit% Wit% Wt% Wit% Wt% Wit%
EL.C 10.9 0 12.73 0 11.79 0
Al 3.11 3.78 2.07 574 2.83 472
Si 6.37 11.67 4.34 15 6.44 13.24
Ca 1.27 325 1.59 321 1.70 3.26
Ti 0.18 0.37 0.14 0.61 0.21 0.46
Fe 1.65 343 1.58 4.34 2.04 3.99

Table 4-VIII Source Contribution Estimates for Summer PM-10

Anaheim Azusa Burbank Hawthorne Long Beach Average

Source Wit% Wi% Wit% Wi% Wit% Wit%
Roadway 23 49 34 20 25 30
Soil 16 22 15 18 20 18
Sulfate 16 10 14 23 20 17
Nitrate 14 12 14 1 11 12
Ammonium 6 5 7 8 6 6
Other 25 2 16 20 18 16

4-8



TECHNICAL REPORT V-C (PART!)

TABLE 3-1

Anmal Average PM10 Source Contribution Estimates (pg/m?)

DLAPL = BURK LGBH LENX ANAH
Ammonium Sulfate 6.7 (113) 6.4 (11.5) 73 (146) 72(153) 63 (120
Ammonium Nitrate 112(188) 102(184) 83 (16.7) 73 (16.7) 9.9 (18.8)
Secondary Carbon 78 (13.1) 8.0 (14.5) 55(112) 550117 5.4 (102)
Motor Vehicle 69 (11.5) 6.2 (11.3) 48(9.7 46 (9.8) 3.5(6.7)
Geological 230(386) 212(384) 19.2 (38.6) 164 (349) 235 (44.6)
Residual Oil 13(22) 11(20) 15(33) 16(34) 10 ( 2.0)
Marine 27(45) 22 (39) 3.0(6.1) 38(81) 30(57)
Total Mass Predicted 595 +-25 552 +-22 496 +20 469+23  527+-25°
Total Mass Observed 602+-36  56.6+-36 502+-29 47.0+-30 521+-31
RUBI UPLA TAFT SANI DLAF*
Ammonium Sulfate 6.1(69) 59 (103) 43 (149) 2.0 (12.1) 6.6 (18.9)
Ammonium Nitrate 27(254)  144(249) 39 (122) 20 (11.8) 63 (18.0)
Secondary Carbon 62(79) 52(9.1) 49 (152) 17(99) 9.4 (26.9)
Motor Vehicle 68 (1.7 3.6 (62) 2.1 (64) 05(3.) 8.6 (248)
Geological 376 (421) 261 (453) 133 (415) 39 (23.1) 2.8 (8.0)
Residual Oil 0.7 (08) 038 (14) 20(63) 05(2.7) 09 (26)
Marine 20(22) 1.6 (29) 11(35) 62 (373) 03 ( 0.9)
Limestone 70(79)
Total Mass Predicted 892+-4.0 §77+-31  321+-15 168+-09 34.8+-13
Total Mass Observed 85.1+-6.0 58.0+-47 31.9+-25 211+-19 354+-2.1

PM10 at downtown Los Angeles

ZValues in parentheses indicates % of total mass predicted.
3Mean + standard error

4PM2.5 at downtown Los Angeles



CHAPTER3 PRIORCMB MODEL RESULTS

TABLE 3-2 .
Maximum 24-hr Average PM10 Source Contribution Estimates (1 g/m?)

DLAP!- BURK LGBH LENX ANAH
Ammonium Suifate 38(21)  21(12) 289(286)  79(54) 3.4 (29)
Ammonium Nitrate 673(376) 694(P1)  192(191) 633(432)  49.1(4L0)
Secondary Carbon 152(84) 200(113) 156(155) = 166(113)  93(81)
Motor Vebicle 211 (1L7) 308 (17.4) 74(74)  196(134) 140(1017)
Geological 686(381) S27(297) 270(268)  328(224)  40.7(339)
Residual Oil 20(11) 14(038) 26 (26) 36 (25) 12(10)
Marine 16(09) . 12(07) 0.0 ( 0.0) 28 ( 1.9) 18 (15)

Total Mass Predicted 1803+-92 1775+-94 100.8+-4.6 146.6+-79 1199+-63°
Total Mass Observed 186.9+-33 1873+-32 131.0+-30 1458 +-3.1 129.7 +-3.0

Date Dec.4,'86  Dec.4,'86 Mar.27,86 Dec.4,'86 Dec. 4,86

RUBI UPLA TAFT SANI DLAF*
Ammonium Sulfate 260 (100) 200 (109) 9.7 (14.7) 12(39) 39(2.9)
. Ammonium Nitrate 1243 (477)  865(473) 139 (211) 28(93) 693 (52.9)
Secondary Carbon 188(72) 155 (8.5) 146 (221) 0.0 (0.0) 19.1 (14.4)
Motor Vehicle 182 (7.0) 15(63) 102 (15.4) 14 (45) 325 (24.6)
Geological 618 (23.7) 466 (25.5) 15.9 (24.0) 2.4 (74.7) 58 (4.4
Residual Oi 16 (05) 25(14) 18(27) 11(38) 10 (0.8)
Marine : 0.7 (03) 02 (0.) 0.0 (0.0) 11(38) 0.7 (0.5)
Limestone 92(39) ‘

Total Mass Predicted 2606+-108 182.8+-104 66.0+-3.1 300+-1.1 1323+-10.7
Total Mass Observed 298.7+-3.6  208.7+-32 T51+-27 848+-33 1388+-38
Date Oct. 29,86  Oct. 29,86 Oct. 29, '86 Jan. 26,86 Dec. 4,'86

1 PM10 at downtown Los Angeles

ZValues in parentheses indicate % of total mass predicted
5Mean + standard error

4PM2.5 at downtown Los Angeles
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Figure 4-1 Plot showing different behavior of summer and fall elemental composition data.

4-11



First Principal Component

Second Principal Component

Figure 4-2 2-dimensional SAFER plot for Anaheim summer PM-10 data. The region below the left hand solid line
tepresents source compositions with one or more soil element less than zero. The area below the right hand line
represents source compositions with elemental carbon less than zero. The left hand region berween the solid and
dotted lines contains all feasible roadway source vectors and the right hand region contains all feasible soil
composition vectors.
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Figure 4-3 Roadway source versus reduced total mass (PM-10 total mass minus sulfate, nitrate, and ammonium).
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Figure 4-4 Unscaled soil source contributions versus reduced total mass minus the roadway source
contribution estimates.
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5. Hybrid Source — Receptor Modeling

5.1 INTRODUCTION

Hybrid source — receptor models use observed concentrations (like receptor models) and
meteorological observations (like source — oriented models). The existence of the wind fields developed
for the intensive study days of the SCAQS lead to the attempt to apply the Source Identification Through
Empirical Orthogonal Functions (SITEOF) hybrid source — receptor model. Like all receptor modeis this
model is at heart a mass balance model that seeks, with the aid of winds and mixing heights, to determine
the source emission rate of a pollutant, less any sinks that pollutant may have. The mathematical details
are described in the first section of this report.

The attempt was made to apply SITEOF to carbon monoxide and nitrogen oxide concentrations
during the fall intensive days. Concentrations of carbon monoxide are too low during the summer 0 apply
the model. Previous experience implied that at least one month of hourly data was needed to apply
SITEOF successfully. In this case, only six of the fall intensive days had wind data that could be used.
The decision was made to try to apply the model anyway. The final results, however, of applying the
model to CO and NOX data was disappointing. No physical sense could be made of the results, the
numbers were either much too big or much too small.

The following section details the considerable work that was put into obtaining correct wind fields
and mixing heights.

5.2 DATA

52.1  Air Quality Data

Carbon monoxide and nitrogen oxide data from the fall intensive sampling periods of the SCAQS
was used because the concentrations of carbon monoxide and the nitrogen oxides were higher in the fall.
The requirements of SITEOF, described below, allowed us to choose 18 sites which would be useful in the
analysis. The sites chosen along with their UTM coordinates are given in Table 5-L.

522 Meteorological Data

The wind fields used for this analysis were prepared by Systems Applications [nternationai (1991)
for the California Air Resources Board . The wind fields used were hourly, gridded wind fields for each of
the six fall intensive sampling days. The wind fields were available at six altitudes 10, 100, 300, 600,
1000, and 1500 meters above ground level. In general, the three lower levels were used for reasons related
to the mixing height.

Mixing height data were supplied by the Air Resources Board. This data was not found to be
sufficient and mixing heights were developed as outlined below. The mixing heights were developed using
a method developed for this study. Temperature profile data provided by the California Air Resources
Board was used to determine the mixing heights. The sites where data were made available and their UTM
coordinates are given in Table 5-11.

53 METHODS

53.1  Mixing height fields

Mixing heights were determined by plotting the temperature profile data for the sites given in
Table 5-I1. After the temperature profile was plotted, the mixing height was determined by inspecting the
resulting plot and looking for temperature inversions. Additionally, when the temperatures were near the
adiabatic lapse rate, if there was no appreciable driving force to increase the mixing height, the mixing
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height was set to be near where the temperature profile was hours before. [t was found that by comparing
the plots at different times of the day against each other, the mixing height could be determined from the
plot. During the early moming hours and the late evening, about 2100 hours to 0700 hours the mixing
height was found to be around 50 meters or less. The mixing height was set to 50 meters as a minimum
mixing height.

532 Emission Rates and Locations Estimated from SITEOF

Emission rates were determined by using the SITECF model applied to carbon monoxide and
nitrogen oxides. SITEOF as described by Henry et. al. (1991) uses air quality data along with
meteorological data to determine the average balance of sources and sinks of a species within a well
defined area. Briefly some requirements of SITEOF are:

1) Time resolved air quality data given as an average over some time period (in this case hourly
air quality data was supplied at various sites)
2) Time resolved wind fields (in this case hourly gridded wind fields were supplied)

with these two types of data defined one can find a rate of change in concentration/time period in a defined
area. To determine absolute amounts over an area-region, the mixing height is needed. Thus another
requirement is:

3) Gridded mixing heights or the ability to determine them.

54 RESULTS AND DISCUSSION

For CO the SITEOF estimates the area source emission rates since, on an urban scale, the sinks of
CO are very small. For NOX, the SITEOF results would be affected by the substantial sinks of NOX as it
is chemically converted in the atmosphere. However, for both NOX and CO, the SITEOF results did not
make physical sense. The estimated results were too small, too large, or even negative, depending on the
geographical region. The failure of SITEOF in this case could be caused by a number of factors, the most
likely being the small number of days of data. SITEOF relies on the cancellation of errors that comes with
calculations averaged over a long time period. In this case, six days may be too few for this to happen.
Also, the possibility exists that, despite the best efforts of all involved that the wind fields were inaccurate.
SITEOF is especially sensitive to poor wind input if there are only a few days of data, as was the case here.
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Tables

Table 5-I Sites Used in the SITEOF Analysis

Location Symbal i UTM Coordinates(km) ;Location

Easting | Morthing |

ANAH 4150 3742.0jAnaheim

AZUS | 414.9| 3777.4 Azusa

BURK \ 379.5 3783.0|Burbank

CELA . 386.9 3770.1 Central Los Angeles
COST ! 413.8 3724 .2|Costa Mesa

HAWT i 3734 3754.3 Hawthom

LA AV 398.01  3737.0|Los Angeles Rover
LAHB C 4121 3754.2\La Habra

LBCC ; 394.7! 3743.7!Long Beach City College
LGBH . 390.0 3743.0/Long Beach

LYNN | 388.2! 3754.8!Lynwood

PASA T 396.1] 3777.3 Pasadena

PICC 402.3 3764.1|Pico Rivera

POMO | 430.7! 3769.6/Pomona

RESE ‘ 3568.7| 3785.1|Reseda

TORO 4320 3725.2|E! Toro

WHIT 3 405.3 3754.0!Whittier

WSLA | 365.7! 3768.6/West Los Angeles

5-3



Av00s Jodiy jeuoijewsiu) oUel0 | 067 ' 89/8 91§ INO
qvnos|  Bpig Bubug-Ausiaaun wnowhie ejodotigy P O9IE LIz YA
1 awoos|_ .. ebeonAwpuoesgBuonl/l . AERLE. o Lvee | ..0081
ayJ0s pie A soueugiulely 30S-uoleing |0 [SWATA [9A N 4 YN
gv0os Jeisie ) geG6-olIoW |3]9L 00LLE LZ0k YOowa
_8v00s| _ Jodny euapesedeepusiopueqingiogz ose/e __lape | dNg
BuyoN Bunse
adA uoneoso] (w) spnigyy | (w)ssjeulpioed WIQ Joquig uoyeso

sy Srapy Suixpy parownisg vio(] Butpunog 4ty Jaddpy asaym sang J1-¢ 21904




Conclusions
The primary conclusions for VOCs are:

VOC data from the various sites from the SCAQS fall intensive can be consolidated into a single
data set, i.e., all sites seem to be affected by the same sources. This is not true for summer VOC
data.

TNMHC and most of the individual VOC species are well explained by three vehicle-related
sources: roadway emissions (direct exhaust and running evaporative), gasoline, and gasoline
vapor.

The three source SAFER model was validated by its success in explaining VOC species that were
not use to develop the model.

On average, 60 percent of the TNMHC was apportioned to roadway emission, 19 percent from
whole gasoline, 15 percent from gasoline vapor, and 6 percent unexplained or background..

There was a significant difference between the morning and afternoon source apportionment. In
the morning, 71 percent of the TNMHC was apportioned to roadway emission, 14 percent to
whole gasoline, 11 percent to gasoline vapor, and 4 percent were unexplained. In the afternoon,
44 percent of the TNMHC was apportioned to roadway emission, 27 percent to whole gasoline, 20
percent to gasoline vapor, and 10 percent were unexplained.

The source composition for roadway emissions as determined by the SAFER model is similar to
the composition of roadway emissions seen in other studies. However, the SAFER profile shows
some differences that are specific to the SCAQS data set.

The composition of gasoline and gasoline vapor as estimated by SAFER is in general agreement
with source samples. The SAFER estimate of the nbutane fraction of these sources is probably
inaccurate since nbutane is over predicted. This may be the result of variations in nbutane
composition of gasoline made by refiners to adjust the cold start characteristics of the gasoline.

Ethane and propane were not well modeled by the three source model. They probably have
significant non-vehicle related sources.

Multivariate receptor modeling of the PM-10 particulate composition data showed:

The PM-10 composition data for five sites from the summer intensive, Anaheim, Azusa, Burbank,
Hawthorne, and Long Beach, is amenable to multivariate receptor modeling.

Two source types, roadway and soil, account for most of the non-secondary PM-10. Roadway is
defined as all PM- 10 emissions from roadways, including direct tailpipe emissions and reentrained
road dust. Soil is defined as all crustal material not directly associated with roadway emissions.

As determined by multivariate receptor modeling, the composition of roadway and soil sources
varies little between the five sites. ’

The average PM-10 source apportionment allocates 30 percent of the total PM-10 to roadway, 18
percent to soil, 35 percent to inorganic secondary species, and the remaining 17 percent is, by
process of elimination, an upper limit on the amount of secondary organic particulate matter.

The primary conclusions from the attemapted SITEOF hybrid source — receptor modeling are:’

Six days is not enough time for SITEOF to overcome limitations in real world data. To use SITEOF
more time would have to be devated to sampling- around 30 days.
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e No conclusions as to the carbon monoxide or nitrogen oxide emissions can be made from this study.

e A new method of determining mixing heights was developed.
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