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ABSTRACT

An extensive series of tests have been performed to quantify the error and uncertainty
propagation in the CALGRID model and its modules. Further tests have been performed
on calculating the sensitivity of aspects of the calculations (e.g. chemical kinetics,
horizontal transport). Also, coding checks have been conducted both computationally
and manually. Recommendations of specific changes have been made, and implemented,
to improve and understand model performance (e.g. the chemical ODE solver, the use of
a filter in the transport algorithm, vertical transport, etc.). Many of the tests performed
are unique to this project. For one, effort has been expended to test system modules
within the CALGRID modeling framework when ever feasible. In addition, some new
methods to test error and uncertainty propagation have been applied. Also, new tests
have been conducted on specific modules as applied to an actual simulation.

It was found that the horizontal transport algorithm used is a source of significant error
when concentration gradients are high. This was tested in three ways. First, the standard
rotating puff test, with solid body rotation was used. This analysis, and looking at the
basic formulation of one-dimensional operators applicd to that test, suggested that a more
severe test was desirable. An extension of that test was developed and applied to the
CALGRID model. A final, very telling, test was to compare three different transport
algorithms as applied to the Southern California Air Quality Study (SCAQS) data. Each
of these tests suggested that the error arising from the horizontal transport solution could
be of the order of 20 to 40%.

Similarly, an in situ test, along with more standard tests and formal sensitivity analysis
techniques, was used to quantify the effect of the choice of chemical kinetics solvers was
tested. In general, after modifications to the original scheme used in CALGRID, the
solvers provided much less error than the transport algorithm chosen.

A unique contribution of this research is the introduction of some new computational
procedures for assessing error propagation. These methods, making use of stochastic
finite elements, show considerable promise as a way to quantitatively follow the effects
of parameter errors. Using the vertical transport code used in CALGRID, it was found
that vertical diffusivity errors and uncertainties were more significant than dry deposition
and chemical conversion errors.
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In summary, CALGRID can be an effective air quality model, with errors typical of most
of the photochemical models currently in use. The horizontal transport algorithm is
likely the largest source of error and uncertainty propagation, and the use of the non-
linear filter will likely over-diffuse the emissions from some point sources. On the other
hand, the transport algorithm is less diffusive than others currently in use. The code itself
is relatively portable, though some non-standard FORTRAN statements were found.
CALGRID should provide acceptable performance on most computational platforms, in
terms of algorithm accuracy and efficiency, for use in typical photochemical air quality
model applications.

Acknowledgments:  The California Air Resources Board Research Division, its chief
Dr. John Holmes and Mr. Bart Croes have contributed immeasurably to the success of
this venture. Dr. Kit Wagner and Mr. Paul Allen of the Technical Services Division,
have, as usual, contributed significantly to the progress of this project. This personal
support as well as the financial support for this research, provided by the California Air
Resources Board under Contract Number A932-0911, is greatly appreciated.

I pisclaimer: A requirement of these contracts is that the following disclaimer be inserted. "The statements
and conclusions of this report are those of the Contractor and not necessarily those of the State Air
Resources Board. The mention of commercial products, their source, or their use in connection with
material reported herein is not to be construed as either an actual or implied endorsement of such products.”
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LIST OF KEY SYMBOLS?

Concentration vector = (¢1,....¢n)

Emissions of species

Nonlinear right hand side vector for numerical solution
Heat flux

Nonlinear operator equation

Height of the model domain

Hermite polynomial

System Jacobian

Reaction rate constant

Vector of parameters = (k1,....km)

Turbulent eddy diffusivity tensor or cumulant for moments
Vertical component of the eddy diffusivity tensor
Transport operator

Kolmogorov length scale

Diffusion length scale

Matrix of coefficients associated with a particular numerical scheme
Initial mass of material in a vertical column
Damkohler number (molecular scale)

Pressure

Probability density function

Heat flux

Forward reaction rate

Overall species reaction rate

Relative humidity

Matrix of coefficients or sensitivity matrix
Temperature

Kolmogorov time scale

Time

Velocity vector = (u,v,w) or state variables in sensitivity studies
Species deposition velocity

Covariance matrix

Poistion vector = (X,y,z)

Mixing height

Special Symbols

P
(]
Az

L]
<>

]

Density
Standard deviation
Mesh Spacing

Angular velocity
Ensemble average brackets
Concentration

2Most symbols are defined after their first use in the text. The variables used in the list are some of the
more commonly used terms.






1. Introduction

Photochemical air pollution or, as it is more commonly known, smog, is an
environmental problem that is both pervasive and difficult to control. An important
element of any approach directed at attempting to improve the situation is a reliable
means for predicting the air quality impacts of alternative emissions control measures.
While many different methods have been developed, the most comprehensive and
technically defensible approach has been to use mathematical models that describe, in
detail, the physical and chemical processes responsible for oxidant production in the
atmosphere. Typically these models are based on the principle of conservation of mass
expressed in the form of differential equations that describe the concentration dynamics
of both inert and chemically reactive pollutants. Figure 1.1 illustrates how the model
forms an integral component of the air quality planning process.

{ AR quaLITY GoaLs AIR QUALITY IMPACTS

¢ Technical Feasibllity « Heslth and Welfare
« Economic Issues + Secondary Impacis
+ Robustness « Popuiation Exposure

Atmospheric
Chemistry
Control
Strategy Emissions I - Pollutant
Design Distributions Distributions

Figure 1.1  Schematic representation of the elements of the air quality planning process
and the role of mathematical models.
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If the models are to be of value in the air quality planning process, they need to account
for the key processes occurring over the airshed of interest, including emissions,
transport, turbulent diffusion, chemical reaction and removal, etc. An inevitable
consequence of using models, however, is that approximations are involved and these in
turn lead to uncertainties and the possiblity of errors in predictions. A critical question
currently facing air pollution agencies that use the models to develop control strategies is:
What are the effects of uncertainties and errors on predicted levels of control? From a
practical point of view, what is needed is a clear understanding of how errors arise and
how they propagate through the modeling system and, ultimately, how they affect the
results of various types of calculations.



The uncertainties or sources of error may take one of five possible forms:

Physical Processes Incompleteness in the conceptual description of the
physical processes.

Structural Errors or uncertainties in the mathematical description of
the processes occurring in the atmosphere.

Algorithmic Inaccuracies or errors that arise in the numerical solution of
the governing equations.

Computational Uncertainties that may arise from the use of different
computer systems and/or operating systems.!

Data Related Errors that arise from the data used by the model. The data
may be specific to the airshed of interest, for example
emissions and meteorological information, or it may be in
parameters incorporated into the model itself (for example
kinetic rate constants, stability parameters, etc.).

Human Related Errors that arise from the misapplication of the model to
conditions other than those implicit in the formulation of
the model.

In some cases the distinction between error and uncertainty is not as simple as it might
seem. For example, even with exact data and a correct formulation of the model, errors
can arise because it is possible to represent only grid cell averages in numerical solution
procedures. Some other dimensions of the problems are illustrated in Figure 1.2 where it
can be seen that the goal is to determine the magnitude of the uncertainties and errors in
model predictions and how they compare against the errors in observed air quality
measurements. One desirable result, and the focus of much of Chapter 4, is to identify
the major sources of errors in such a way as to provide information about how to correct
them. The basic goal of this research is to develop meaningful tests to assess the
magnitude of the errors generated by airshed models. This information can then be used
to interpret model performance and in particular give insight about the range of likely
discrimination between alternative emissions control strategies. While this report is

1 Wwith modern 32- and 64-bit computer systems, adherence to IEEE standards for representation of
floating point numbers and the use of FORTRANT77 leads to differences in predicted concentration
peaks that are typically much less than 0.1%. The differences, when they do occur, usually arise from
different compilers and the level of code optimization.



focussed on errors in the model predictions, it is important to point out that equal
attention needs to be given to assessing the effects of errors in the measurements
themselves. Without a measure of the uncertainty in the air quality data, it is not possible
to develop statistically meaningful comparisons between predictions and observations.

Errors in Model
«input data
Model form

Errors In Emissions
+ Spatlal/Temporal
» Composition

Errorsin
« Measurements
« Averaging

Alr Quality
Criterla

Time or space varlable

Figure 1.2: Comparison between a model prediction and observational data

In summary the key question is: What are the magnitude of the errors in the model
predictions? As might be expected, there are no simple answers to this question.
However, it is worthwhile to look at how the models are used in practice, and how their
predictive performance can be tested. There are two critical steps in building some
confidence in the performance of the model; one is to assess the level of accuracy of the
basic formulation and the other is to characterize the effects of and errors uncertainties in
input data. This report presents the results of how errors arise and propagaie through a
comprehensive photochemical airshed model that was developed for the California Air
Resources Board (CALGRID) (Yamartino et al. 1989, 1992; Scire et al. 1989). While the
methodologies have been tested using the CALGRID model, it is important to note that
the procedures are applicable to other models used in air quality planning.

1.1 Research Tasks
In the original proposal to the California Air resources Board six tasks were proposed and

they included:

Task 1: An initial project meeting to finalize the work statement with CARB
staff. (This meeting was held in Sacramento on May 10, 1990.)



Task 2: Software evaluation: Several approaches to the problem were to be
considered: coding level checks, module evaluation tests and data
independent system integrity checks.

Task 3: Review and development of techniques to characterize the likely range
of errors in the model formulation, numerical solution procedures and
computational implementation. Associated with this task is the
identification of key variables (for example the number of computational
layers, rate constants, turbulence parameterizations, emissions,
deposition velocities, etc) and their associated uncertainties.

Task 4: Application of sensitivity and uncertainty procedures to the CALGRID
model.

Task 5: Model performance evaluation using SCAQS data sets.

Task 6: Preparation of the final report

During the module testing phase particular attention was given to characterizing the
accuracy of the numerical integration procedures. Two steps were involved. The first was
a formal error analysis to ascertain the orders of the schemes and to characterize the
truncation errors. This information is needed to evaluate the performance of the modules
and their ability to maintain the following properties: conservation, causality,
reversibility, positivity and accuracy. Many of these techniques are described in Oran and
Boris (1987) where particular attention is given to reactive transport problems. Each of
the core numerical solution routines was tested, where possible, against analytic solutions
or against very accurate methods. For example the chemical solver was checked against a
very robust implementation of the Gear integration routine (the code used was LSODE;
Hindmarsh, 1980). In evaluating the transport schemes, particular attention was given 1o
characterizing the truncation error as a function of mesh size.

A unique feature of the research discussed in this report is the use of system level
integrity checks:. One way to evaluate the performance of the system as a whole is to
devise a set of tests that are independent of the quality of the input data. For example the
underlying convective diffusion equation is based the principle of conservation of mass.
By using emissions inventories of known composition and turning off the chemistry it is
possible to assess the quality of the conservation property.

In addition to the tasks outlined in the original proposal several additional studies were
carried out. For example, a detailed study was carried out to assess the validity of the K-
Theory of turbulent transport in a reacting fluid. Several computational experiments were
conducted to evaluate the resolution needed to resolve vertical concentration gradients.



model. The additional work was carried out to ensure that the CALGRID model
provided an essentially valid description of the physical and chemical processes occurring
in the atmosphere. These steps were necessary in our view because of the importance of
airshed models in the air quality planning process.

Quite apart from the error analysis of the CALGRID model itself the research has
resulted in several unique innovations. A suite of new test problems have been developed
to evaluate numerical solution procedures. Data independent tests have been devised to
evaluate the system as a whole. This study is also the first to use the Southern California
Air Quality Study (SCAQS) data sets as a way to evaluate different numerical algorithms.
Several new procedures for combined error and uncertainty analysis have also been
developed. The new algorithms are many orders of magnitude more computationally
efficient than existing techniques. During the course of the project a new version of
CALGRID became available to the principal investigators, Because of the importance of
the project we repeated many of the error evaluations. The extra effort was very
worthwhile for some of the tests. For example, the revisions to the Quasi Steady State
Approximation (QSSA) numerical procedure, used to solve the chemical kinetics, were
tested and found to be significantly better than the original version described in
Yamartino et al. (1989).

1.2  Structure of the Report
The subsequent sections of this report are organized into seven major sections:

* An evaluation of the mathematical formulation of CALGRID and its computer
implementation (Section 2).

* A detailed discussion of the issues associated with model evaluation and the
use of sensitivity and uncertainty analysis procedures to study error
propagation (Section 3)

« Evaluation of the key modules that form the CALGRID model: horizontal and
vertical transport, solution of the chemical kinetics, and finally coupled
chemistry and transport (Section 4)

» Development and application of a new sampling methodology for uncertainty
propagation through the atmospheric diffusion equation. (Section 5)

« Development and application of a direct stochastic approach to solution of the
atmospheric diffusion equation. (Section 6)

« Application of CALGRID and Component Testing Using Southern California
Air Quality Study (SCAQS) Data. (Section 7)



* Application of CALGRID and Component Testing Using Southern California
Air Quatity Study (SCAQS) Data (Section 7).

» Summary and conclusions (Section 8).

In addition to the body of the report two appendices, which contain more detailed
discussions, have been included. The appendices are:

Appendix A: A comparison of fast chemical kinetic solvers for air quality
modeling (Atrmospheric Environment, in press).

Appendix B: Use of Sensitivity Analysis to Compare Chemical Mechanisms for
Air Quality Modeling, (Environmental Science and Technology,
in press).

The detailed diagnostics and analysis of the CALGRID FORTRAN code are too
voluminous to reproduce in this report and has been supplied as an accompanying set of
computer disks. A companion report, Kumar et al. (1992) describes the incorporation of
the Carbon-Bond 4 reaction mechanism into the CALGRID model.



2. The CALGRID Model Evaluation

This chapter has been designed to introduce the CALGRID mesoscale model for
photochemical air pollution, to evaluate several of the key assumptions used in its
formulation and to assess the associated FORTRAN computer code. At the outset it is
important to point out that the model described in Yamartino et al. (1989, 1992) and
Scire et al. (1989) does represent the state-of-the-art for air quality models at the time of
its formulation both in terms of its parameterizations of the physical processes and its
computational implementation. The CALGRID model was a result of a project initiated
by the California Air Resources Board in 1987 to upgrade and modernize the Urban
Airshed Model (UAM), and is a success in that endeavor.

2.1 The CALGRID Mathematical Formulation

The CALGRID model is based on the species conservation equation for
chemically reacting flows in the atmosphere. Neglecting the effects of molecular

diffusion the species continuity equation is of the form
% + V- (u¢)=Rilcr-¢cn; Tt 2.1.1)
ot
where cj(x,t) is the concentration of species i =1,2,...,n, u(x.,t) is the three-dimensional
velocity field, R; is the net rate of chemical reaction, T the temperature at t time and
position x = {x,y,z}. A key assumption in developing the CALGRID model is that (2.1.1)
can be decoupled from the equations that describe the dynamics of the bulk fluid. These

equations are of the form:

% V. (wp)y=0 2.1.2)
dt
ag-—u-i- V- (uu p)+2qu=—Vp-pg+pV2u (2.1.3)
t
_B_S_E+ V.- (uEp + FH.kVT) =Qu-pV- u (2.1.4)
t

The equation for conservation of momentum (2.1.3) is an expression of Newton's second
law and incorporates the effects of Coriolis forces, pressure gradients, buoyancy and
viscous dissipation. While there are several ways to express energy conservation, a
common form is (2.1.3) where the key terms are the radiative exchange with the
surroundings FH, heat exchange by molecular conduction and heating due to phase



change Qy. Closure of the model system is obtained by specifying the equations of state,
and the appropriate set of initial and boundary conditions.

In practice the species equation (2.1.1) can be decoupled from the momentum and energy
equations (2.1.2-2.1.4). The validity of this assumption has been assessed in McRae et al.
(1981) where it is shown that, under typical conditions, the pollutant species are present
at such low concentration levels that they do not influence the dynamics of the carrier
fluid which in this case is air. The fact that the air flow dynamics can be decoupled from
the species conservation results in a major simplification. The velocity, temperature,
humidity and pressure fields can be generated separately from the species continuity
equation. There are a variety of ways of producing the fields and they are described in
McRae et al. (1981) and Yamartino et al. (1992) and summarized in Figure 2.1.1.

Approaches for Generating Flow Fields

HPPPRLPR RS PP RIS LIS S

IC.'s [Objective Analysis Applied to

.C
— B.C. Field Measurements
Basic Equations of Motion
{Mass, Momentum, Energy) gooseossoose

-
'

v Direct Interpolation Interpolation
Averaging for with mass constraint
Turbulent Flows

RRRRRNNNY,

/Illllll"’l’!lllt‘lllll(ll’ Variational AdeStment
: =’ to Satisfy Mass
K-Theory Closure /{’ Conservation

Figure 2.1.1 Summary of Procedures Currently Used to Generate Flow Fields for Air
Quality Modeling

The only requirement in developing the velocity fields for use in the CALGRID model is
that the flows are divergence-free, i.e.,

V-u=0 (2.1.5)
Unlike boundary layer flows encountered in other disciplines, the location of the mixed
layer is often known from atmospheric measurements. Typically the elevation of the
mixed layer Zj(x.t) is determined a priori by interpolation of observed mixing height

data.



In the atmosphere the fluid flows are typically highly turbulent and as a result the reacting
species are advected by a turbulent velocity field that is usually characterized in terms of

a mean and fluctuating quantity, i.e.,
u=u+u’ (2.1.6)

The fluctuating component u' represent those time scales of velocity variations that are
typically shorter than the smallest time step. The fluctuating velocity field also induces
turbulent variations in the concentrations of the form

[c] = [€] +[c'] 2.1.7)
resulting in the classical turbulence closure problem. If (2.1.6) and (2.1.7) are substituted
into (2.1.1) and the Reynolds averaging rules are applied the resulting system of

equations is of the form

9<C> | v (@<c>) =- V- <u'c> + <Rifey - cn; Toil> 2.1.8)

ot

The emergence of terms like <u’ ¢;> results in the classical turbulence closure problem. In
(2.1.8) the brackets < > denote ensemble averages. In the CALGRID model a K-theory
model is used to close the equations. In this approach the turbulent transport model is
assumed to be analogous to the simplest molecular models in which the flux is assumed
to be proportional to the linear mean gradients. The model for a non isotropic flow is of
the form

< ¢>=- K- V<¢;> (2.1.9)
where now K is a second rank eddy diffusivity tensor that is usually assumed to be of
diagonal form. Since Yamartino et al. (1992) describe the parameterization of the terms
of K the details the formulation will not be repeated here.

One of the key assumptions used in the CALGRID model is that the term
<Rj[cy- - «Cp; T,t]> in (2.1.8) can be approximated by ensemble average reaction rate that
is equivalent to the rate based on the ensemble species concentrations. i.e.
< Ri[cy - -cn] > = Rij[<cy1> - -<Cp>] 2.1.10)

The basis for the validity of this assumption is discussed in Section 2.2. Accepting for the
moment (2.1.10) the final model is the so-called atmospheric diffusion equation

a<Ci>

ot

If the ensemble averaging brackets are dropped the resulting form is the basic model used
in the CALGRID model, i.e.,

+ V. (u<c;>) = V- KV<e> + Ri[<Cy» - -<cy>; Tot] (2.1.11)




TV @c-K- V) = Riley--cn; Totl (2.1.12)

The validity of this model for typical urban scale flows is discussed in considerable detail
in McRae et al. (1981) and will not be repeated here. Two issues however deserve more
detailed discussion. One is the assumption (2.1.10) and the other is the question of the
number of vertical computational cells needed to provide adequate resolution of the
concentration gradients. Both topics are discussed in the next sections.

2.2 Interaction between Diffusion and Chemical Reaction

One of the key assumptions used in formulating the CALGRID model is that K-theory
provides an adequate description of the turbulent transport occurring in the atmosphere.
Since many of the reaction steps in the photochemical mechanism are very fast relative to
the mixing times it is important to assess the relative importance of the interplay between
the fluid turbulence and the chemistry. Turbulence modeling itself is a very difficult
subject let alone addressing the effects of chemistry. Georgopoulos and Seinfeld (1986)
provide a comprehensive review of the subject. The discussion below is intended to show
how the varicus mixing processes affect the chemistry.

With regard to the specific question about whether reactions are rate or diffusion limited,
it is useful to introduce some more precise definitions into the discussion. Consider a

bimolecular reaction of the form:
A +B X Products ' (2.2.1)

where k is the reaction rate constant. If the concentrations of A and B are denoted by [A]
and [B], then the forward rate for (2.2.1) is given by: '
r = k [A] [B] 2.2.2)

As described in the previous section the reacting species are advected by a turbulent

velocity field that is usually characterized in terms of a mean and fluctuating quantity i.e.
u=u+u’ 2.2.3)

The fluctuating component u' represent those time scales of velocity variations that are
typically shorter than the smallest time step. The fluctuating velocity field also induces
turbulent variations in the concentrations of the form

[A] = [A]+[A") (2.2.4)
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Where now [A] is the mean concentration and [A'] is the fluctuating component. When
the Reynolds averaging rules are applied to the forward rate (2.2.2) the resulting turbulent

form of the reaction rate is:
7 =k [A][B] +k [A")[B'] (2.2.5)

The appearance of the term k [A'][B'] presents the classic closure approximation. In
most atmospheric modeling studies a key assumption that is made is:

[A][B] >> [A'][B"] (2.2.6)

so that the mean concentrations can then be used to determine the overall reaction rates.
The key question, of course, is under what circumstances is (2.2.6) true, and is the bulk
reaction diffusionally or kinetically limited?

The relative importance of diffusion and chemistry can be expressed in terms of the
dimensionless Damkohler Number ND:

_ Dispersion Time Scale _ k( [A] +[B]) 12 (2.2.7)

D = "Reaction Time Sale 2D

where L4 is a measure of length scale across the reaction front and D is the molecular
diffusivity of the species in air. When ND >>1 (corresponding to very fast chemistry) the
characteristic time for chemical reaction is short compared to that for mixing, and the
phenomenon is governed not by the reaction kinetics but by the rate at which reactants are
brought together at the molecular level by dispersive processes. When ND <<'1
(corresponding to slow chemistry) concentration fluctuations are dissipated before they
can effect the kinetics. One important point to note is that if one of the species is in great
abundance, or well mixed, then the reaction is kinetically limited.

There are two key points to keep in mind for atmospheric flows. One is that the nature of
the turbulence is related to the fact that production and dissipation are not happening at
the same scales. Buoyancy is feeding only the largest scales and dissipation is acting on
only the smallest scales. The second key point is that typical photochemical reaction
mechanism have many steps, and conclusions based on looking at individual steps in
isolation can be very misleading. We will return to this point later.

To give some sense of the order of magnitudes of the relevant scales in the atmosphere

consider first the smallest turbulent scales:

11



Lk=(-"£—F.=2mm (2.2.8)

1
Ty = [‘-’Jz ~ 0.3 seconds (2.2.9)
€

where L and Tk are known as the Kolmogorov length and time scales, respectively, and
are expressed in terms of the dissipation rate per unit mass € and the kinematic viscosity e
(see Tennekes, and Lumley, 1972). A measure of the time scale for micromixing using

typical atmospheric values is:

= (.4 seconds - 2.2.10)

o5

TMicromixing =

By comparison the time scales for turbulent transport by buoyancy and mechanical

generation is
2

Z
TTumbutent Diffusion = f('l_] = 5 - 60 minutes 2.2.11)
zz

The basis for this diffusion time is developed in McRae et al. 1981, pp. 175-188 where its
is shown how these rates can be derived from SFg tracer studies). Similarly, the time
scales for source injection and mixing are O(10 minutes). The latter estimate 1s based on a
typical source strength of ~2 ppm-m/min, a concentration level of 1 ppm and a length
scale of 25 mi.e.

Tsource Injection = % = 12 minutes (2.2.12)
The next question is whether the molecular diffusion is rapid within the turbulent eddies

compared to the mixing time of the eddies themselves? This time scale is given by

L

T frsion = =8 =_2x10%m
Molecular Diffusion = D = 2 x 10‘5m2/s

=V ]

=2 x103 seconds (2.2.13)

which is quite fast. In other words, the concentrations are very uniform within the small
eddies, and there are no distinct molecular gradients within the eddies. The key

implication of the time scale analysis is that:

Tsource Injection » I Tubulent Diffusion O(5-60 minutes) >> Tnicromixing O(0.4 seconds)
(2.2.14)

and

12



TMicromixing O(0.4 seconds) >> TMolecular Diffusion O0.002 seconds)
2.2.15)

In other words the reacting species are all very well mixed at the microscale (both the
molecular levels and the small eddy regimes) relative to the macroscale and there is no
reaction front of the type that is often seen in flame combustion. Thus the approximate
length scale in the Damkohler Number calculation is the measure of molecular spacing or
the mean free path. Since in air the mean free path is O(8 x10-8 m) we have Np << 1..
The one remaining issue is the influence of fast chemistry.

In order to illustrate some of the issues consider the following simple mechanism
involving the reactions of NO, NO; and HCHO. When used in an atmospheric dispersion
model the reaction steps might be of the form

NO; + hv L5 NO + 0GP) (2.2.16)

OGP)+ 0,+ MX2 50, + M 2.2.17)

NO +0; X35 NO, + 0, (2.2.18)

HCHO + hv X425 2 HO, + CO 2.2.19)
HCHO +hv X5 H, + CO (2.2.20)

HCHO + OH XS5 HO, + CO +H,0 2.2.21)
HO, + NOX6_> NO, + OH (2.2.22)

NO, + OH X7_> HNO; (2.2.23)

If the mechanism is examined closely it might seem that stoichiometric balance is
violated, for example, in (2.2.19). The photolysis step is in fact a lumped reaction that is
derived from the combination of two elementary steps involving atomic hydrogen (H)
and the formy! radical (HCO):

HCHO +hv X425 HCO +H (2.2.24)
HCO +0, X425 HO, + CO 2.2.25)
HO +0, X42" 5 HO, (2.2.26)

The key point to note about these reaction is that both HCO and H react extremely
quickly with molecular oxygen (O2) Using typical concentration values and reaction rate
constants it is easy to see that Np << 1 and so it would seem that the chemistry is

kinetically limited.
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The next question is the impact of the turbulence on the largest scales of motion, i.e., is
(2.2.6) violated or not? Consider the forward rate of (2.2.25)

r; =k[HCO][0] +k [HCOJ [0 (2.2.27) .

In the lower atmosphere the concentration of oxygen is approximately 210,000 ppm and
to a first approximation it is also uniform throughout the mixed layer. Since the
perturbation [O3]' from (2.2.25) is O(2 x 10-6 ppm) the fluctuations [O7] relative to the
mean is negligible so that the rate is in fact given by

r; =k[HCO] (0] (2.2.28)

In other words while (2.2.25) and (2.2.26) are formally bi molecular they can in practice
be treated as is they were unimolecular because the oxygen concentration is constant.
Most of the fast radical production chemistry involves reactions with molecular oxygen.

There are however several species and reaction steps that do not directly involve reactions
with molecular oxygen. Consider for example, two of the key reactions (2.2.18) and
(2.2.22). Shown in Table 2.2.1 are the reaction Damkohler numbers for some typical
atmospheric conditions.

Table 2.2.1

Damkohler Numbers of Two Critical Reactions

Reaction Rate Constant (ppm units) [A] [B] ND
NO + 03 23.9 0.045 0.069 3.33
NO + HO? 12000.0 0.045 1.56x10-6  662.

At first glance it would seem that the reaction NO + HOz is dominated by very fast
chemistry. Without a more detailed understanding of the mechanism as a whole it is easy
to reach the wrong conclusion that gradient transport theories are likely to be
inappropriate. If we look at the simple mechanism it is a straightforward task to derive
the steady state expressions for the two key radicals, hydroxyl (OH) and hydroperoxyl

(HO2):
[OHJss = 2 K4alHCHO] (2.2.29)

k7[NO2]
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and

[HOzJss = 2 k4a

[HCHO] (1 4+ ks[HCHOJ (2.2.29)

k¢[NO] k7[NO;

Both of these steady state expressions establish themselves in about 0.1 seconds which is
slow compared to the mixing times at the molecular level and fast compared to the large
scale transport times. The implication of these expressions are quite important because
they show that the concentration of the radicals are in fact set by the time scales for
reactions of the slowly reacting species. For example the time scale for HCHO photolysis
is O(200 minutes). The net effect of the slow reactions of the primary species is a
reduction of the overall reaction rate of steps like (2.2.22).

In summary, all of the reactions that are used in atmosp‘heric diffusion modeling are not
rate limited by either microscale turbulent diffusion or molecular diffusion. The
concentration dynamics of those species that have very high kinetic rates are in almost all
cases controlled by more slowly reacting species. In the air shed model the grid spacing
has been chosen to reflect the gradients of these species. As a result there is no need to
consider the incorporation of second order turbulent correlations in atmospheric reaction
chemistry. The only exceptions are when some of the reactions take place in regions of
high concentration gradients near stack exits and even in these cases the corrections to the
net rates are negligible. (See Georgopoulos and Seinfeld; 1986).

2.3 Vertical Resolution of Computational Mesh

In the case of the horizontal resolution adopted by the CALGRID model it is-
possible to determine the minimum grid resolution in terms of the Lagrangian time scale
of the turbulence. (See for example Tennekes and Lumley, 1972). As was shown in the
previous section there is a complex interplay between the mixing and the chemical
reaction rates. The critical question is of course is: How many layers are needed to
resolve the vertical concentration profiles? There are several ways to address the problem.
The simplest is just to solve the model with varying number of layers and look for the
asymptotic limit where adding additional cells no longer produces a changes in predicted
concentrations. Consider a Lagrangian version of the CALGRID model. The
concentration dynamics of species ; for an airshed of height H (see McRae et al. 1981 for

further details of such a formulation) is given by:

i _ 9 g i\ picrr- cnTit] 23.1)

ot o9z oz
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Where as before R; is the chemical reaction term and K,, the vertical diffusivity. The
lower level boundary conditions accounting for emissions E; and surface removal by dry
a deposition velocity vig are given by: -
vic; - Kuéﬁ =E;[x,t] ;z=0 2.3.2)
oz
At the top of the airshed, well above the mixed layer Z; the boundary condition
corresponds to the zero flux condition:

aCi
7r—

K =0 ;z=H 2.3.3)

oz
Closure of the system of equations requires the specification of the initial concentration
profile:

ci(z,0) = ¢? (2.3.4)
Since under most practical situations the systems of equations are nonlinear, a numerical
solution procedure must be used and the resulting set of ordinary differential equations,
after discretization, are of the form

M‘%‘L +8 C;=1;[Cy,+Cr: 1] (2.3.5)

where now the vector C; represents the concentration of species i at each of the n,
computational mesh points in the vertical direction. If the forcing term fj is a function of

time only then the analytic solution of (2.3.5) is given by

Ci(t) = exp[-M1S 1] + f exp[- t- ) M1S | S-Ifi(t)ydt (2.3.6)

or if we assume first order chemistry, fixed diffusivites and constant deposition velocities
then the predictions can be compared against the analytic solution (see for example
Carslaw and Jaeger, 1986; Nawrocki and Papa, 1963). Using the analytic solutions it is
possible to bound the error in the numerical solution process. For the full nonlinear
system with chemistry, the solution procedures embedded in CALGRID (an exponential
solver and a hybrid integration technique) can be compared against highly accurate (but
expensive) stiff solvers based on Gear's method. Such comparisons are included in

Chapter 5 of this report.
Given an accurate solution procedure the next step is to see what happens if the number

of layers is changed. Figure 2.3.1 shows two ways to approximate the vertical
concentration profile for a fixed number of layers. In case (b) the mesh spacing in fixed.
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Case (c) is more useful in practice because the resolution is greatest in the regions where

the concentration profile is changing most rapidly.
4 A 4

(a) (b) (©)
Figure 2.3.1 Vertical Concentration Profile (a), A Fixed Mesh (b) and Variable Mesh (c)

Considerable care must be exercised when studies of this form are carried out to ensure
that the same mass of material is present in the column of cells at the start of the
integration. If M;jO is the initial mass then the vertical mass distribution for each case

must satisfy

H
M= ] Ciz,0)dz= D, Ci(Az;,0)Az (2.3.7)

P=1

where nz is the number of vertical layers and

Nx

> Az,0)=H (2.3.8)

i=1
The results of such a calculation for a 24-hour simulation are shown in Figure 2.3.2. In
this case the initial profile was uniform up to the top of the mixed layer and at
background level from Zj <z <H.
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Figure 2.3.2 Predicted Surface Concentrations as a Function of the Number of Vertical
Layers

Table 2.3.1 summarizes the statistics for the predicted peak concentrations for the species
CO, NO» and O3 where it can clearly be seen that the incremental change in surface
concentrations after 5 cells is quite small. This table is a typical example of the results for
the photochemical models, such as CALGRID.
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Table 2.3.1

Predicted Surface Concentrations as a Function of the Number of
Computational Cells used in the Vertical Direction
[Model based on (2.3.1)]

Number of Layers CO (9 am) Peak O3 Peak NO2
2 3.56 0.210 0.070
3 3.52 0.230 0.067
5 3.46 0.162 0.062
10 3.38 0.168 0.060
25 3.50 0.165 0.059

The point of the calculations presented in this section is that if the number of vertical cells
is five or greater then the concentration gradients can be accurately resolved. Under
strong convective mixing conditions of the type encountered in the middle of the day the
vertical variation of the concentrations below the mixed layer is quite small. At night the
diffusivities are so low that in effect the individual layers are uncoupled.

2.4 Computer Implementation of the CALGRID Model

The source code, input files and the output from a test case for the CALGRID model were
received from the California Air Resources Board. The names of the FORTRAN files on
the distribution tape are shown in Table 2.4.1 together with the INCLUDE files shown in
Table 2.4.2. Further details of the function of each of the modules are contained in the
User's Manual (Scire et al. 1989). The code has been subjected to a number of stringent
tests, and apart from a few minor violations of the ANSI FORTRAN77 standards it is
well written and easy to follow. The authors of the CALGRID code have made
considerable efforts to include sufficient comments in each module so that the variable
names, and processes occurring inside each module are quite clear.
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Table 2.4.1
Names of FORTRAN Codes that define the CALGRID Model

BLDUP.f RDHDEMY4 . £ diffvs.f output.f setcom.
BLOCKDATAL.f RDMOD. £ dow.f partit.f setdec. f
CHMRXN. £ RDPRM. £ dryi.f pres3d.f setout.f
CONSTR.f RDTIEM2.f fin.f pressz.f setup.f
DIFUN.f RDTIEM3.f grday.f prise.f setvar.f
EMATRIX.f RESPHK. £ hadvi.f gssa.f svbe. £
EMQA.f SAVPHK.f horiz.f rdbcon. £ text.f
ERF.f SOLPHK.f iaddrs.f rdhdlbe. £ timeav.f
INTEGR. £ VRTPHK. £ iarlen.f rdhdtbe. £ under0Q. £
MAIN. £ WATCON. £ incr.f rdild.f units.f
NEWPHK. £ abrdirec.f initar.f rdizd.f vadvi.f
NEWRK.f allcap.f inpga.f rdicon.f vdcomp. £
CPENEM1.f altonu.f julday. f rdirec.f vdp.f
PHKINI.f arrpar.f kh2.f rdlbc. £ vdpl.f
QCHECK. chapvs.f kz.f rdmet . f windgrd.f
QGRID.f chem. f makez4.f rdrid. £ wrdat.f
RDEM1.f chemi.f makezf.f rdr2d.f wroutl.f
RDEM2.f comp.f makzeq. f rdtbe. £ wrt.f
RDEM3.f compz.f metl.f rdtcon.f wrt2. f
RDEM4 . £ datetm.f metqga.f rdvd. £ zjump. £
RDEMREC. £ deblnk.f openfl.f readcf.f zmatrix.f
RDHDEM1 . £ deltt.f openot.f readin. f zshufl.f
RDHDEM?Z . £ depvel.f opsplt.f relhum. £ ztrans.f
RDHDEM3 . f diff.f out.f rinicon.f

Table 2.4.2

INCLUDE Files used in the CALGRID FORTRAN Source Code

datehr.h eml.h gen.h modlspe.h vertflg.h
difcom.h em2.h grid.h outpt.h

drydep.h em3.h lbc.h params.h

drygas.h emd.h master.h ga.h

drypart.h flags.h methd.h tbc.h
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The CALGRID model was compiled and executed on three different operating systems,
VAX VMS, DEC Unix and Cray UNICOS. The Unix make file used to execute the code
is shown in Table 2.4.3.

Table 2.4.3
Unix Make File used to Compile the CALGRID Model

#

# Standard UNIX Makefile to compile, link and create an executable file for the CALGRID model.
# Created by Gregory J. McRae and Naresh Kumar.

#

IBF = -1F77 -1I77 -1U077

L]

L Define the list of subroutines that need to be loaded

L]

LIST = allcap.o altonu.o arrpar.c BLDUP.o chapvs.o chem.o chemi.o CHMRXN.o
comp.c compz.o CONSTR.o datetm.o deblnk.o deltt.c depvel.o diff.oc diffvs.o
DIFUN.o dow.o dryi.o EMATRIX.o EMQA.o ERF.o fin.o grday.o hadvi.o horiz.o
iaddrs.o iarlen.c incr.o initar.o inpga.o INTEGR.o Jjulday.o kh2.o kz.o MAIN.o
makezd.o makezf.omakzeq.o metl.ometga.o NEWPHK.o NEWRK.o OPENEMl.o openfl.o
openot.o opsplt.o out.o output.o partit.o PHKINI.o pres3d.o pressz.o prise.o
OCHECK.o QGRID.o gssa.o rdbcon.o RDEMl.o RDEM2.o RDEM3.o RDEM4{.o RDEMREC.o
RDHDEM1 .o RDHDEM2.c RDHDEM3.o RDHDEM4 .0 rdhdlbc.o rdhdtbec.o rdild.o rdi2d.o
rdicon.o rdirec.o rinicon.o abrdirec.o rdlbe.o rdmet.o RDMOD.o RDPRM.c rdrld.o
rdr2d.o rdtbc.o rdtcon.o RDTIEM2.c RDTIEM3.o rdvd.o readcf.o readin.o relhum.o
RESPHK.o SAVPHK.o setcom.o setdec.o setout.o setup.o setvar.o SOLPHK.o svbec.o
timeav.o under(0.o units.o vadvi.o vdecomp.o vdp.o vdpl.o VRTPHK.o WATCON.o
windgrd.o wrdat.owroutl.o wrt.o wrt2.o zjump.o zmatrix.o zshufl.o 2trans.o

.f.0: ; £17 =c -g -0 $@ $*.f

calgrid.exe: $(LIST)
£77 $(LIST) $(LIBF) -g -o calgrid.exe

¥
4 Define the dependencies for each of the routines on the parameter files
#
allcap.o : params.h
arrpar.o : params.h master.h
MAIN.o : params.h ga.h flags.h master.h gen.h grid.h eml.h em2.h
em3.h vertflg.h drydep.h drygas.h drypart.h difcom.h ocutpt.h flags.h

chapvs.o : params.h

chem.o : params.h modlspc.h

chemi.o : modlspc.h

CHMRXN. o : modlspc.h

comp. o : params.h gen.h grid.h outpt.h methd.h datehr.h master.h
flags.h

compz.o : params.h gen.h grid.h

deblnk.o : params.h

depvel.o : params.h drydep.h gen.h grid.h methd.h

diff.o : params.h grid.h difcom.h

dryi.o : params.h drygas.h drypart.h drydep.h gen.h
EMQA.o : params.h gen.h grid.h eml.h em2.h em3.h emd.h
fin.o : params.h datehr.h ga.h

grday.o : params.h

horiz.o : params.h vertflg.h

iaddrs.o : params.h master.h

iarlen.o : params.h master.h
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inecr.o : params.h

inpga.o : params.h cutpt.h gen.h grid.h vertflg.h
julday.o : params.h

makez4.o : params.h

makzeq.o : params.h vertflg.h

metl.o : params.h methd.h

metga.o : params.h grid.h methd.h

NEWPHK. o : modlspc.h

NEWRK.o : modlspc.h

OPENEM1l .o : params.h gen.h

openfl.o : params.h

openot.o : params.h

opsplt.o : params.h master.h grid.h gen.h drydep.h outpt.h datehr.h
flags.h

out.o : params.h datehr.h

output.o : params.h grid.h gen.h outpt.h drydep.h datehr.h
partit.o : params.h gen.h grid.h outpt.h eml.h em2.h em3.h methd.h
master.h

PHKINI.o : modlspc.h

QGRID.o : params.h gen.h grid.h datehr.h eml.h em2.h em3.h emd.h
rdbecon.o : params.h gen.h grid.h lbc.h

RDEMl.c : params.h eml.h

RDHDEMl .o : params.h eml.h

RDHDEMZ2.0 : params.h em2.h

RDHDEM3.o : params.h em3.h

RDHDEM4 .0 : params.h emd.h

rdhdlbe.o : params.h gen.h grid.h lbc.h

rdhdtbe.o : params.h gen.h grid.h tbc.h

rdicon.o : params.h gen.h grid.h

rdlbc.o : params.h gen.h grid.h

rdmet.o : params.h methd.h

RDMOD.o : modlspe.h

RDPRM.o : modlspc.h

rdtcen.o : params.h gen.h grid.h

rdtbec.o : params.h gen.h grid.h

rdvd.o : params.h gen.h drydep.h

readcf.o : params.h difcom.h drygas.h drypart.h drydep.h em4.h flags.h
gen.h grid.h methd.h outpt.h ga.h vertflg.h

readin.o : params.h

RESPHK. o : modlspc.h

rinicon.o : params.h master.h grid.h gen.h

SAVPHK.o : modlspec.h

setcom.o : params.h master.h grid.h

setout.o : params.h outpt.h

setdec.o : medlspe.h

setup.o : params.h gen.h grid.h outpt.h em2.h em3.h drydep.h methd.h
master.h ga.h flags.h

SOLPHK.c : modlspe.h

svbc.o : params.h gen.h grid.h

timeav.o : params.h grid.h gen.h outpt.h

vadvi.o : params.h vertflg.h

vdcomp.o : params.h drygas.h drypart.h

vdp.o : params.h

vdpl.o : params.h

VRTPHK. o : modlspc.h

windgrd.o : params.h

wroutl.o : params.h ga.h gen.h grid.h methd.h outpt.h
zjump.o : params.h vertflg.h

zshufl.o : params.h

ztrans.o : params.h vertflg.h
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The particular machines used to evaluate the CALGRID code were a DEC 3100, a DEC
Station 5000/240, a VAX/VMS 6400 and a Cray YMP/864 operating under UNICOS. In
all cases when the sample problem was executed the differences in the predictions were
negligible. Standard software utilities were used to compare the output files. The
maximum observed concentration differences were less than 0.1%. The differences, when
they arose were due to computer word size and the level of compiler optimization. For
example, depending on the requested level of code optimization when using the f77
compiler on the DEC Station 5000, the predicted concentration fields were different in
the last significant decimal digit.

One feature of the CALGRID model that the authors might consider changing is the use
of binary format input/out files. While binary files can reduce the needed storage and the
input output time the benefits are often illusory. There is frequently a need to look at the
files and if they are in binary format they cannot be easily opened and interpreted with a
conventional text editor. A further difficult is that binary files often cause problems when
the are transmitted over telecommunications networks. A final argument for the use of
formatted ASCII text files is that they avoid difficulties when the code and files are
transferred between machines that have different floating point representations. Again as
noted above the use of binary files is not a major problem if the code is to remain resident
on a single computer system. The original version of the model described in McRae et al.
(1981) used binary files, the current version now employs text format.

An additional recommendation about the code is to avoid the use of a single array to hold
all the variables used by the model. On systems that have small physical memories the
use of a single large array can cause an excessive number of page faults.

2.5 System and Coding Checks

Before carrying out a detailed evaluation of the CALGRID model and the
formulation of the individual modules the first step after reproducing the test case on
different computer systems was to examine the computer code itself. Several Computer
Aided Software Environment (CASE) tools were used together with the use of a
structured walkthrough technique introduced by Yourdon (1989). The initial stage
involved the preparation of the data dependency graphs to make sure that the code we
used was consistent with the structure presented in the User's manual (Scire et al., 1989).
These figures enabled the checking for undefined data elements, undefined files, control
blocks, non-referenced data elements. The tools also provide listings of module inputs
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and outputs that can be checked against the CALGRID documentation. Once the data
dependency graphs were developed (see White, 1989 for details) the next step was 10
carry out a structured walkthrough. Basically a walkthrough is a review process designed
to evaluate the quality of computer software. Several approaches to the problem were
considered including compliance of the code with FORTRAN77 standards, checking for
portability, etc. One of the most useful tools used during this process was a public domain
program called £tnchek that is available from the Oak Ridge National Laboratory Netlib!
facility.

Ftnchek (short for Fortran checker) is designed to detect certain errors in a Fortran
program that a compiler usually does not. Ftnchek is not primarily intended to detect
syntax errors. Its purpose is to assist the user in finding semantic errors. Semantic errors
are legal in the Fortran language but are wasteful or may cause incorrect operation.
For example, variables which are never used may indicate some omission in the
program; uninitialized variables contain garbage which may cause incorrect results to
be calculated; and variables which are not declared may not have the intended type.
Finchek is intended to assist users in the debugging of their Fortran program. It is not
intended to catch all syntax errors. This is the function of the compiler.

Ftnchek is invoked through a command of the form:

ftnchek [-option -option ...] output=filename [filename ...]

(The brackets indicate something which is optional. The brackets themselves are not
actually typed.) Here options are command-line switches or settings, which control the
operation of the program and the amount of information that will be printed out. If no
option is specified, the default action is to print error messages, warnings, and
informational messages, but not the program listing or symbol tables. The options
used to evaluate the CALGRID code were:
-declare If this flag is set, all identifiers whose datatype is not declared in

each module will be listed. This flag is useful for helping to find

misspelled variable names, etc. The same listing will be given if
the module contains an IMPLICIT NONE statement. Default = no.

lggnchek can be obtained by sending a message with a title "send ftnchek from fortran” to the Internet
address: "netlib@ornl.gov". The code is automatically returned 1o the sender. All that needs to be done to
implement £tachek is to compile and load the source code. The user sysiem must have a C compiler. The
documentation described above is derived directly from the downloaded file FTNCHEK.DOC.
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-aextern

-£77

-list

~portability

-sixchar

-symtab

-usage

Causes Ftnchek to report whether any subprograms invoked by
the program are never defined, or are multiply defined. Ordinarily, if
Ftnchek is being runon a complete program, each subprogram other
than the intrinsic functions should be defined once and only once
somewhere. Turn off this switch if you just want to check a subset
of files which form part of a larger complete program, or to check
all at once a number of unrelated files which might each contain an
unnamed main program. Subprogram arguments will still be checked
for correctness. Default = yes.

This flag catches language extensions which violate the Fortran
77 standard. Such extensions may cause the program not to be
portable. Examples include the use of underscores in variable names;
variable names longer than six characters; statement lines longer than
72 characters; and nonstandard statements such as the DO ..
ENDDOQ structure. Ftachek does not report on the use of lowercase
letters. Default=no.

Specifies that a listing of the Fortran program is to be printed out
with line numbers. If Ftachek detects an error, the error message
follows the program line with a caret (*) specifying the location of
the error. If no source listing was requested, Ftnchek will still print
out any line containing an error, to aid the user in determining where
the error occurred. Default = no.Print source listing of program.
Default = no.

Ftnchek will give warnings for a variety of non-portable
usages. These include the use of tabs except in comments or inside
strings, the use of hollerith constants, and the equivalencing of
variables of different data types. This option does not produce
warnings for violations of the Fortran 77 standard, which may also
cause portability problems. To catch those, use the -f77 option.
Default = no.

One of the goals of the Ftnchek program is to help users to write
portable Fortran programs. One potential source of nonportability is
the use of variable names that are longer than six characters. List
any variable names which clash at 6 characters length. Default = no.

A symbol table will be printed out for each meodule, listing all
identifiers mentioned in the module. This table gives the name of
each variable, its datatype, and the number of dimensions for
arrays. An asterisk (*) indicates that the variable has been implicitly
typed, rather than being named in an explicit type declaration
statement. The table also lists all subprograms invoked by the module,
all common blocks declared, etc. Default = no. Print out symbol table.
Default = no.

This switch is on by default. It causes Ftnchek to list all variables
which may be used before they are initialized, or which are given a
value but never subsequently used, or which are declared but never
used. Sometimes Ftachek makes a mistake about this. Usually it errs
on the side of giving a waming where no problem exists, but in rare
cases it will fail to warn where the problem does exist. See the
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section on bugs for examples. If variables are equivalenced, the
rule used by Ftnchek is that a reference to any variable implies the
same reference to all variables it is equivalenced to. Default = yes.

-common=n This setting varies the strictness of checking of common blocks. Level
3 is the strictest: it requires that in each declaration of a given
common block, correspondingvariables agree in data type and (if
arrays) size and number of dimensions. Levels 1 and 2 require
only that corresponding memory locations agree in data type.
Thedifference between Levels 1 and 2 is that Level 2 wamns if the
blocks are not equal in total length, while Level 1 does not. Level 0
suppresses all checking. Default = 3.

The output from the Ftnchek program for the CALGRID model is too voluminous to
reproduce here.2 Ftnchek produces four main types of messages. They are portability
warnings, other warnings, informational messages, and syntax errors. Portability
warnings specify nonstandard usages that may not be accepted by other compilers.
Other warning messages report potential errors that are not normally flagged by a
compiler. Informational messages consist of warnings which may assist the user in the
debugging of their Fortran program. A brief summary of the types of error message
generated during the evaluation of the CALGRID code is set out below.

"Warning: file contains tabs. May not be portable.” Ftnchek expands tabs to be
equivalent to spaces up to the next column which is a multiple of 8. Some
compilers treat tabs differently, and also it is possible that files sent by
electronic mail will have the tabs converted to blanks in some way. Therefore
files containing tabs may not be compiled correctly after being transferred.
Ftnchek does not give this message if tabs only occur within comments or
strings. ‘

"nonstandard type usage in expression.” The program contains an operation such as a
logical operation between integers, which is not standard, and may not be
acceptable to some compilers.

"Common block has mixed character and non-character variables”, "Common block
has long data type following short data type.” The ANSI standard requires that
if any variable in a common block is of type CHARACTER, then all other
variables in the same common block must also be of type CHARACTER.
Some compilers additionally require that if a common block contains mixed data
types, all long types (namely DOUBLE PRECISION and COMPLEX) must
precede all short types (namely integer, real, etc.). The following messages are
warning messages:

“"Integer quotient expr converted to real”, "integer quotient expr used in exponent.” The
quotient of two integers results in an integer type result, in which the fractional
part is dropped. If such an integer expression involving division is later
converted to a real data type, it may be that a real type division had been

2 Since the output is over 500 pages the listing is has been stored on a computer readable disk that is
available from the authors.
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intended. Likewise, if it is used as an exponent, it is likely that a real type
division was intended.

"real truncated to intg.” Ftnchek has detected an assignment statement which has a real
expression on the right, but an integer variable on the left. The fractional part
of the real value will be lost. If you explicitly convert the real expression to
integer using the INT or NINT intrinsic function, no warning will be printed.
A similar message is printed if a double precision expression is assigned to a real
variable, etc.

"Continuation follows comment or blank line.” Ftnchek issues this waming message t0
alert the user that a continuation of a statement is interspersed with comments,
making it easy to overlook.

“Declared but never referenced.” Detects any identifiers that were declared in your
program but were never used, either to be assigned a value or to have their value
accessed. Variables in common are excluded.

"Variables used before ser.” This message indicates that an identifier is used to compute
a value prior to its initialization. Such usage may lead to an incorrect value
being computed.

“Variables may be used before set.” Similar to used before set except that Ftnchek is
not able to determine its status with certainty. Ftachek assumes a variable may
be used before set if the first usage of the variable occurs prior in the program text
to its assignment.

"Variables set but never used” Ftnchek will notify the user when a variable has been
assigned a value, but the variable is not otherwise used in the program. Usually
this results from an oversight.

Type has been implicitly defined” Ftnchek will flag all identifiers that are not
explicitly typed and will show the data type that was assigned through implicit
typing. This provides support for users who wish to declare all variables as is
required in Pascal or some other languages. This message is printed only when
the -symtab option is in effect.

*Identifiers which are not unique in first six chars” Warns that two identifiers which are
longer than 6 characters do not differ in first 6 characters. This is for
portability: they may not be considered distinct by some compilers. This
message is printed only if the -sixchar option was selected.

"Subprogram NAME: varying length argument lists:" An inconsistency has been found
between the number of dummy arguments (parameters) a subprogram has and the
number of actual arguments given it in an invocation. Ftnchek keeps track of all
invocations of subprograms (CALL statements and expressions using functions)
and compares them with the definitions of the subprograms elsewhere in the
source code. The Fortran compiler normally does not catch this type of error.

“Subprogram NAME. argument data type mismatch at position n " The subprogram's nth
actual argument (in the CALL or the usage of a function) differs in datatype
from the nth dummy argument (in the SUBROUTINE or FUNCTION
declaration). For instance, if the user defines a subprogram by
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SUBROUTINE SUBA(X)
REAL X

and elsewhere invokes SUBA by
CALL SUBA(2)

Ftnchek will detect the error. The reason here is that the number 2 is integer,
not real. The user should have said

CALL SUBA(2.0)

When checking an argument which is a subprogram, Ftachek must be able
to determine whether it is a function or a subroutine. The rules used by Ftnchek
to do this are as follows: If the subprogram, besides being passed as an actual
argument, is also invoked directly elsewhere in the same modaule, then its type
is determined by that usage. If not, then if the name of the subprogram does not
appear in an explicit type declaration, it is assumed to be a subroutine; if it is
explicitly typed it is taken as a function. Therefore, subroutines passed as
actual arguments need only be declared by an EXTERNAL statement in the
calling module, whereas functions must also be explicitly typed in order to
avoid generating this error message.

"Subprogram NAME: argument usage mismatch” Ftnchek detects a possible conflict
between the way a subprogram uses an argument and the way in which the
argument is supplied to the subprogram. The conflict can be one of two types, as
outlined below.

*Dummy arg is modified, Actual arg is const or expr” A dummy argument is an
argument as named in a SUBROUTINE or FUNCTION statement and used
within the subprogram. An actual argument is an argument as passed to a
subroutine or function by the caller. Ftnchek is saying that a dummy argument is
modified by the subprogram, i.e. its value will be changed in the calling module.
The corresponding actual argument should not be a constant or expression, but
rather a variable or array element which can be legitimately assigned to.

"Dummy arg used before set, Actual arg not set.” Here a dummy argument may be used
in the subprogram before having a value assigned to it by the subprogram.
The corresponding actual argument should have a value assigned to it by the
caller prior to invoking the subprogram.

"Common block NAME: varying length” A common block declared in different
subprograms has different numbers of variables in itin different declarations.
This is not necessarily an error, but it may indicate that a variable is missing from
the list.

“Common block NAME: data type mismatch at position n” The nth variable in the
common block differs in data type in two different declarations of the
common block. By default (common strictness level 3), Ftnchek is very picky
about common blocks: the variables listed in them must match exactly by data
type and array dimensions. That is, the legal pair of declarations in
different modules:
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COMMON /COM1/ AB
and
COMMON /COM1/ A(2)

will cause Ftnchek to give warnings at strictness level 3. These two
declarations are legal in Fortran since they both declare two real variables. At
strictness level 1 or 2, no warning would be given in this example.

Variable names may be longer than six characters. The standard specifies six as the
maximum. Variable names may contain underscores, which are treated the
same as alphabetic letters. The VAX version of Ftachek also allows dollar signs
in variable names, but not as the initial character.

2.6 Application of the forchek System to CALGRID

With the £tnchek system it is a straightforward task to check the FORTRAN of the
CALGRID code. The actual output from ftnchek, including the individual program
listings is over 500 pages and, for obvious reasons is not reproduced here. The complete
output is available from the authors as a computer readable file CALGRID.LIST. In order
to illustrate the use of £tnchek consider two of the CALGRID routines:

QSSA.F which integrates the chemical kinetic differential equations using the
quasi-steady state approximation

RDHDLBC. £ which reads the header records from an unformatted lateral boundary
condition {(BCON) file.

The programs were chosen at random to illustrate how £tnchek works. In the listings
below the highlighted areas correspond to those points in the module where possible
problems might occur. The first code is a key one for numerical integration of the
chemical kinetics. The first potential error that is flagged by ftnchek is the fact that the
variable 'nflc’ in the argument list is not used in the code itself. The variable is probably a
remnant of an earlier testing phase. The fact that the variable 'nflc’ is defined but not used
does not effect the correct execution of the code. The next coding problem detected
occurs on lines 10-11 and 19-22 where there are embedded tab stops that are denoted by
*'_ The fact that the tabs occur in comment statements ensures that there will be no
compiler errors but again the point of using Ftnchek is to avoid problems associated with

portability issues or incompatibilities between compilers.
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Further down in the code at lines 41 and 57 there are examples of poor programming
practice. At line 41 if the concentration is negative or less than 10-1? then it is reset to the
floor value of 10-19. A similar problem occurs on line 57 where in this case the floor
value is 10-15. There is no justification for this choice in the documentation manual or in
the code itself. Such constants depend on the units being used, the machine precision and
the desired accuracy of the solution.

FTNCHEK Version 2.5 January 1992

File gssa.f:

'SUBROUTINE: QSSA (NSP, DT/ CON, FORM, LC8S

--= CALGRID VERSICON: 1.2 LEVEL: 880531 QSSA

AR R ARk Ak kAR AAER R AR AR AR R ARk Ak ke ARk ko kb kkkkdk kdkhhhokdnddk

THIS SUBROUTINE INTEGRATES THE DIFFERENTIAL EQUATIONS
USING QUASI-STEADY-STATE APPROXIMATION METHOD

12 C
13 CRRrRAR R ARk ARk k kAR R A kAN A KRR AR KR AR A AR RN KA AL F N AR R AR NI A IR AR Ak
14 C
is C ARGUMENT VARIABLES
C
C
C

23 C
24 C --~ QSSA CALLED BY: CHMRXN
25 C --- QSSA CALLS: NONE
26 Cmmm e e e e e e e M= — oo
271 C
28 REAL UPLIM, LOLIM,CON(*),FORM(*),LOSS (*)
29 C
30C SET THE UPPER AND LOWER LIMITS WITH PREDISCRIBED DT = 0.5 MIN
31 C
32 PARAMETER (UPLIM =20. , LOLIM = 0.02)
33 C
34 C 1OCAL FUNCTION DECLARATION
35 FUNC (AA,BB,CC,TT) = (-(— AR * CC+BB) * EXP(-2A * TT) + BB) / AA
36 ia=0
37 ib=0
38 ic=0

od

DO 1 IR =1 , NSP
iF{con{iz :
if{nflc.eq.l)then

43 ¢ write (88, *)ir, form(ir),loss(ir)
44 c endif
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Module QSSA: subr

External subprograms referenced:
EXP: intrns

Statement functions defined:

FUNC: real*

Variables:
Name Type Dims Name Type Dims Name Type Dims
AR real* BB real* CC real*
DT real”* FORM real 1 IA intg*
IC intg* IR intg* LOLIM real
NFLC intg* NSP intg* TT real*

* Variable not declared. Type has been implicitly defined.

Variables declared but never referenced in module QSSA:
NFLC*
* Dummy argument

Identifiers of undeclared type in module QSSA:

AR BB oles
FUNC IA IB
IR NFLC NSP

Warning: file contains tabs., May not be portable.

0 syntax errors detected in file gssa.f
1 warning issued in file gssa.f

46 IF (LOSS(IR) .LT. LOLIM} THEN
47 C
48 C SIMPLE EULER FORMULA
48 C
50 CON(IR) = CCN(IR) + (FORM(IR) - LOSS(IR) * CON(IR)) * DT
51 ia = ia +1
52 ELSE IF(LOSS{(IR) .GT. UPLIM) THEN
53 C
54 C EQUILIBRIUM FORMULA
55 C
56 ¢ write(6,*)ir, form{ir),loss({ir)
it {form 15y formiicy=
58 CON(IR) = FORM(IR) / LOSS(IR})
59 ib=ib+1
60 ELSE
61 C
62 C ANALYTICAL FORMULA )
63 ¢ write(6,*) 'loss, form,con',loss{ir),form(ir),con(ir)
64 C
65 CON (IR) = FUNC(LOSS(IR),FORM(IR),CON({IR),DT)
66 ic=ic+l
67 ENDIF
68 1 CONTINUE
69 RETURN
70 END

Name Type Dims
CON real 1
IB intg*
LOSS real 1

UPLIM real

DT
IC
T
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Subprogram QSSA never invoked
defined in module QSSA line 2 file gssa.f

The second example illustrates the bulk of the diagnostics developed by ftnchek in
processing the CALGRID code. In this case the warning messages are indicative of
relatively minor problems. There are four minor violations of the ANSI FORTRANT77
standard. In the case of the include statements in lines 34, 35, 36, 37 the problem is the
use of lower case letters for 'include’, for most modern compilers this is not an issue even
though the standard require the upper case form ‘INCLUDE'.

Lines 79-84 are an example of a more subtle problem. In this case some previous parts of
an if test condition have been effectively removed by changing them to comment records.
The warning is again a pointer to poor programming practice as it is possible to forget the
need for additional statements after line 79 containing the beginning of the TF test. At
the end of the listing are several other warning messages. One set refers to the fact that
two of the common blocks, set by using the include statements on lines 35 and 37, have a
mismatch in variable type. Normally this is not a problem but on some computer systems
there can be problems with half word alignment. The final set of warnings are that there
are seven variables referenced in the routine (see for example lines 91-93 where the
names are longer than the 6 character ANSI standard. Again this is not a problem on most
compilers but there are some that only use the first six characters. In the is case the first
six characters are all unique and so there is no chance of a problem.

FTNCHEK Version 2.5 Januvary 1992

File rdhdlbe.f:

record data (F=suppress, T=print)

Common Block /GEN/ variables:
NSA, CSPEC (mxspec)
Common Block /GRID/ variables:

1 Eommmmmmmmmmm—m e — e —m—————S=e—————— - - T T T T
2 subroutine rdhdlbc(iunit,lprt)
B e e e e e S S SS e SSS ST mE s
4 ¢
$ ¢ =--- CALGRID Version: 1.4A Level: 890630 RDHDLBC
6 c J. Scire, SRC
7 ¢
8 ¢ ——- PURPOSE: Read the header records from an unformatted lateral
9 ¢ boundary condition (BCON) file
10 ¢
11 ¢ --- INPUTS:
12 ¢ IUNIT - integer - Fortran unit number of BCON file
13 ¢ LPRT - logical - Flag controlling printing of header
c
<
c
[+
c
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19 ¢ IGTYPE, IVGTYP, NX, NY, N2, DGRID, XORIG, YORIG, IUTMZN
20 ¢ Parameters:

21 ¢ I06, MXSPEC, MXNZFP1

22 ¢

23 ¢ --- OUTPUT: N

24 ¢

25 ¢ Common Block /LBC/ variables:

26 ¢ FNAMEB, IGTYPB, IVTYPB, NXB, NYB, NZB, DELXB, DELYB,

27 ¢ XORIGB, YORIGB, IUTMZB, NSAB, IBDATB, IBTIMB,

28 ¢ IEDATB, IETIMB, VRSB, LABELB, CSLSTB (mxspec)

29 ¢

30 ¢ --- RDHDLBC called by: RDBCON

31 ¢ --- RDHDLBC calls: none

3 O e e e e e e e e e T e ——
33 ¢

34 include ‘params.h’

Warning near line 34 col 7: Nonstandard syntax

Including file params.h:

] C=——m e e e e e e e e —— e m oo —os— o oo
2 ¢ ——— PARAMETER statements CALGRID
3 O e e e e e e e e e e e e e
4 ¢ (listing off)
35 include ‘'gen.h’
Warning near line 35 col 7: Nonstandard syntax
Including file gen.h:
] G e e e e e e e e e e T o —
2 ¢ --- COMMON BLOCK /GEN/ -- General run control information, CALGRID
3¢ file types
§ o e e T S C oo —— s e———
(listing off)
36 include ‘grid.h’
Warning near line 36 col 7: Nonstandard syntax
Including file grid.h:
] O e e e e e e e e e
2 ¢ --- COMMON BLOCK /GRID/ -~ Grid parameters CALGRID
3 O e e e e e e e e e e e e e e  — —— —— — ——m m e —
(listing off)
37 include °'lbc.h’
-
Warning near line 37 col 7: Nenstandard syntax
38 ¢
Including file lbc.h:
] Qo e e T e TS S S — e
2 ¢ --- COMMON BLOCK /LBC/ -~ Lateral boundary condition CALGRID
3 c parameters (from unformatted
4 ¢ BCON file)
B O o e e e e e e e e e e e e e e e S — e mm s
(listing off)
39 LOGICAL lprt
40 ¢
41 ¢ --- Header Record #1 - Grid information, beginning & ending
42 ¢ dates/times
43 ¢
44 read (iunit) fnameb, igtypb, ivtypb,nxb, nyb, nzb, delxb, delyb, xorigb,
45 1 yorigb, iutmzb,nsab, ibdatb, ibtimb, iedatb, ietimb, vrsb, labelb
46 c
47 if (fnameb.ne. 'BCON' .and.fnameb.ne. 'bcon’')then
48 write(ic6,10) fnameb, iunit
49 10 format (/1x, 'ERROR in SUBR. RDHDLBC -- file name does not ',
50 1 ‘match expected value'/
51 2 1x, 'Expected file name: BCON or bcon'/
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52 3 1x,* File name read: ',al2/
53 4 1x,* Unit number: °',i4)
54 stop
55 endif
56 ¢
57 if (nsab.gt.mxspec)then
58 write(io6,12)nsab, mxspec
59 12 format (/1x, '"ERROR in SUBR. RDHDLBC -- No. advected species ',
60 1 * in BCON file is greater than current array dimension'/lx,
61 2 ' No. advected species in file: ',i5/1x,
62 3 'Current Array dimension (MXSPEC): ',i5)
63 stop
64 endif
65 ¢
66 ¢ ——— Header Record #2 - Species list
67 read(iunit) (¢slstb(n),n=1,nsab)
68 ¢
69 ¢
70 ¢ ~-—emmm - ————————— e ————
71 ¢ --- OB checks on header record variables
T2 ¢ === —— et e e e e
73 ierr=0
74 ¢
75 ¢ ~-- Check that grid parameters are consistent with contrcl file
76 dgridkm=0.001*dgrid
77 xorigkm=0.001*xorig
78 yorigkm=0.001*yorig
79 if ((nxb.ne.nx).or. (nyb.ne.ny).or. (nzb.ne.nz).or,
80 ¢ 1 {abs (delxb-dgridkm} .gt.0.001) .0r.
81 ¢ 2 (abs (delyb-dgridkm) .gt.0.001) .or.
82 3 {abs (xorigb-xorigkm) .gt.0.001) .or.
Warning near line 82 col 6: Continuation follows comment or blank line
83 4 {abs (yorigb-yorigkm) .gt.0.001) .or.
84 5 (iutmzb.ne.iutmzn) ) then
85 ierr=1
86 write(io6,15)
87 15 format {/1x, 'ERROR in subr. RDHDLBC'/)
88 write (io6, *) ‘Mismatch in grid parameters —- NXB = ', nxb,
89 1 * NX = ',nx,' NYB = ',nyb,' NY = ',ny,' NZB = ',nzb,
90 2 * NZ = ',nz,' DELXB = ',delxb,' DELYB = ',6delvb,
91 3 * DGRIDKM = ',dgridkm,' XORIGB = ',xorigb,
92 4 ' XORIGKM = *',xorigkm,' YORIGB = ',yorigb,
93 4 * YORIGKM = *,yorigkm,' IUTMZB =« ', iutmzb,' IUTMZN = ',
94 ] iutmzn
95 endif
96 ¢
97 if((igtypb.ne.igtype) .or. (ivtypb.ne.ivgtyp).or. (nsab.ne.nsa})then
98 ierr=1
99 write(io6,15)
100 write {io6,*) 'Mismatch in grid types cor no. species ',
101 1 ‘'-- IGTYPB = ',igtypb,' IGTYPE = ',6igtype,' IVIYPB = ',k ivtypb,
102 2 ' IVGTYP = ',ivgtyp.' NSAB = ', nsab,’ NSA = ', 6 nsa
103 endif
104 ¢
105 do 20 i=1l,nsa
106 if(cslstb(i) .ne.cspec(i))ierr=2
107 20 continue
108 if(ierr.eq.2)then
109 write({io6,15)
110 write(io6, *) 'Species names and ordering must match that used ',
111 1 ‘in the model'
112 do 24 i=1,nsa
113 write(i06,22)i,eslstb(i}, cspec(i)
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114 22 format (1x, 'Species number: ',i3,3x,'BCON species name: ',al2,
115 1 3x, 'Model species name: ',al2)
116 24 continue
117 endif
118 ¢
119 ¢ --- Terminate the run if any errors encountered
120 if(ierr.ge.l)stop
121 ¢
122 ¢ =-- WRITE CONTENTS OF HEADER RECORDS (if requested)
123 if(lprt)then
124 write(io6,102)
125 102 format (///1x,13('=====m———~ ') //1x, 'Header record data from ',
126 1 ‘the unformatted BCON boundary condition file')
127 write (io6,103) fnameb, igtypb, nxb, nyb, delxb, delyk, xorigb,
128 1 yorigb,iutmzb, nsab, ibdatb, ibtimb, iedatb, ietimb,vrsb, labelb
129 103 format (/1x, 'FNAMEB: ‘', al2/1x,'IGTYPB: ',i6/1x, 'NXB: ‘,i6/
130 1 1x, 'NYB: ',i6/1x, 'DELXB: ',£f10.3/1x,'DELYB: ',£10.3/
131 2 1x, 'XORIGB: ',f10.3/1x,'YCRIGB: °',£f10.3/1x,'IUTMZB: ',ié/
132 1 1x, 'NSAB: ',i6/1x, 'IBDATB: ',i6/1lx,'IBTIMB: ',6ié/
133 2 1x, "IEDATB: ',i6/1x, 'IETIMB: ',i6/
134 3 1x, 'VRSB: ',al2/1x, 'LABELRB: ',al2)
135 write{io6,105)
136 105 format (4x, 'SPECIES"'/)
137 do 110 i=1,nsab
138 write (io6,106)cslstb (i)
139 106 format (1x,al2)
140 110 continue
141 endif
142 ¢
143 return
144 end
Module RDHDLBC: subr

External subprograms referenced:

ABS:

intrns

Common blocks referenced:

GEN

GRID LBC

Common block GEN line 8 module RDHDLBC has mixed

character and non-character variables (may not be portable)
Common block ILBC line 9 module RDHDLBC has mixed

character and non-character variables (may not be portable)

Variables:
Name Type Dims Name Type Dims Name Type Dims Name Type Dims
AREAM2 real* CSLSTB char 1 CSPEC char 1 DELXB real*
DELYB real* DGRID real* DGRIDKM real* DZMIN real*
FNAMEB char I intg* IBDATB intg* IBDY intg*
IBHR intg* IBMO intg* IBTIMB intg* IBYR intg*
IEDATB intg* IEM1REC intg* IERR intg* IETIMB intg*
IGTYPB intg* IGTYPE intg* I010 intg* 1011 intg*
1012 intg* I015 intg* I016 intg* 1017 intg*
I018 intg* 1020 intg* IOS5 intg* I06 intg*
107 intg* 108 intg* IOS intg* IRLG intg*
ISPLST intg* 2 ITBCON intg* ITEM] intg* ITEM2 intg*
ITEM3 intg* ITEM4 intg* ITICON intg* ITTCON intg*
IUNIT intg* IUTMZB intg* IUTMZN intg* IVGTYP intg*
IVTYPB intg* LABELB char LPRT logl METHINT intg*
MX2 intg* MX4 intg* MX5 intg* MXARR intg*
MXBTYP intg* MXCOL intg* MXINT intg* MXIOP intg*
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MXMAIN intg* MXNSNZ intg* MXNXY intg¥* MXNZ intg*
MXNZM intg* MXNZMP1 intg* MXNZP1l intg* MXPDEP intg*
M{SG intg* MXSPEC intg* MXSS intg* MXVAR intg*
N intg* NSA intg* NSAB intg* NSDD intg*
NSE intg* NSPEC intg* NSUBTS intg* NX intg*
NXB intg* NXM1l intg* NXM2 intg* NY intg*
NYB intg* NYMl intg* NYM2 intg* NZ intg*
NZB intg* NZL intg* NZPl intg* NZU intg*
VRSB char XLAT real* XLONG real* XMOL real*
XORIG real* XORIGB real* XORIGKM real* XTZ real*
YORIG real* YORIGB real* YORIGKM real* ZBOTCl1l real*
ZFACE real* 1 ZTOP real* ZTOPC1 real*
* Variable not declared. Type has been implicitly defined.
Identifiers of undeclared type in module RDHDLBC:
AREAM2 DELXB DELYB DGRID
DGRIDKM DZMIN I IBDATRB
IBDY IBHR IBMO IBTIMB
IBYR IEDATB IEMIREC IERR
IETIMB IGTYPB IGTYPE I010
I011 1012 1015 I016
I017 1018 1020 105
106 107 I08 109
IRLG ISPLST ITBCON ITEM1
ITEM2 ITEM3 ITEMA4 ITICON
ITTCON IUNIT IUTMZB IUTMZN
IVGTYP IVTYPB METHINT MX2
MX4 MX5 MXARR MXBTYP
MXCOL MXINT MXIOP MXMAIN
MXNSNZ MXNXY MXNZ MXNZM
MXNZMP 1 MXNZP1 MXPDEP MXSG
MXSPEC MXSS MXVAR N
NSA NSAB NSDD NSE
NSPEC NSUBTS NX NXB
NXM1 NXM2 NY NYB
NYM1 NYM2 NZ NZB
NZL NZP1 NZU XLAT
XLONG XMOL XORIG XORIGB
XORIGKM XT2Z YORIG YORIGB
YORIGKM ZBOTC1 ZFACE 2TOP
ZTOPC1
Names longer than 6 chars in module RDHDLBC (nonstandard) :
DGRIDKM IEMIREC METHINT MXNZMP1
RDHDLBC XORIGKM YORIGKM

0 syntax errcrs detected in file rdhdlbc.f

6 warnings issued in file rdhdlbe.f

Subprogram RDHDLBC never invoked
defined in module RDHDLBC line 2 file rdhdlbe.f

The purpose of the two examples was to point out that there are elements of the
CALGRID code that violate the ANSI FORTRAN77 standard and as a result the code
may not be portable across systems. The experience of the authors of this report is that
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most of the warning messages are just that -- warnings. Most modern compilers can cope
with these differences and as was reported above the code has been successfully compiled
and executed on several different computer systems.

2.7 Conclusions

Based on a detailed evaluation of the model formulation and its computer
implementation it can be concluded that the CALGRID model is a state-of-the-science
representation of the physical and chemical processes occurring in the atmosphere based
on when the model was formulated and initially delivered. While advances have
occurred in the knowledge of physical and chemical processes in the atmosphere,
numerical algorithms (as will be discussed in proceeding chapters), and software
engineering practices since that time, the current version of CALGRID should be
considered a viable tool for conducting air quality modeling studies.
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3. Sensitivity/Uncertainty Analysis and Error Propagation

The key conclusion from the previous section was that the mathematical
formulation of the CALGRID model is an essentially correct theoretical description of the
processes occurring in the atmopshere. Given the mathematical model the next step is to
evaluate how errors in the data, components parts of the process parameterizations and
numerical solution algorithms contribute to uncertainties in the predictions. This section
provides the background needed for the detailed evaluation to be presented in Chapter 4.

Rather than working with the atmospheric diffusion equation it is useful to consider a
more general system of equations of the form

F(u,k)=0 (3.1)
where F is a general algebraic or differential operator, for example the atmospheric
diffusion equation, u is a vector of n output variables {uf,....un) and k = {k1,....km} a set
of m parameters. The parameters of interest could be structural variables that change the
dimension of the model or its numerical approximation, kinetic rate constants, deposition
velocities, emissions distributions, etc. From a practical point of view it is important to
distinguish between the different types of parameter errors or uncertainties. Systematic
errors can occur when the parameters values are either biased high or low relative to their
true value. A typical example of this type of error might be a reaction rate constant
derived from the literature. If the likely range of variation can be established then it is
possible to evaluate the effects of the error. Typically rate constants are reported as mean
values together with estimates of their standard deviations.

In order to assess the effects of errors in the rate constants many different values must be
sampled from the statistical distribution and then used in the model. The ensemble of
predictions resulting from sampling parameter values from the error distribution enables
the determination of the uncertainty in the predictions. As it will be shown in Chapter 6,
systematic errors can induce large uncertainties in the predictions. A more subtle source
of uncertainty can arise from the randomness of the data used to determine the parameter
values themselves. Consider for example the species deposition velocities. As a parcel of
air moves over the airshed it can encounter different surface roughnesses, material
surfaces and stability conditions. As a result the deposition velocity may exhibit a

seemingly random set of fluctuations.
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From a practical point of view what is needed is an approach that will show the effects of
these parameter uncertainties and errors on the predictions of the model. Koda et al.
(1979); McRae et al. (1982); Liu et al. (1976); Tilden et al. (1981) and McRae et al.
(1981) provide detailed discussions of a wide variety of procedures and the issues
associated with using them on models like CALGRID. In essence there are five basic

factors that need to be considered:

1. The accuracy of the basic mathematical formulation itself in describing the
processes occuring in the atmosphere.

2. Given that most practical models are nonlinear and require numerical solution,
what is the accuracy of the underlying algorithm?

3. What is the extent of the errors and parameter variations to be considered?
4. The combined roles of sensitivity and uncertainty analysis.

5. The computational cost of solving the model and carrying out the analysis.

From a practical point of view the dominant consideration in selecting an approriate
techniques is its computational cost since a single solution of the CALGRID model for
just one parameter combination make take several hours. A related issue is the amount of
effort needed to implement the particular technique. Some techniques do not require
extensive programming effort beyond that need to solve the model while others can
require considerable additional effort on the part of the investigator.

The ultimate goal of any study of error propagation is to determine the effects of
parameter changes on the predictions. Since most models require numerical solution, the
outputs needed to define the response surface, or how the predictions vary as the
parameters are changed, will only be available for a finite set of parameter combinatons.
Given this situation the basic problem then becomes how to sample the parameter space
with sufficient regularity top adequately characterize u(k). An analysis which accounts
for simultaneous variations in all of the parameters over their full range of uncertainties
is called a global method. Conversely, local analyses attempt to infer the shape or value
of the response surface at a particular point.

3.1 Sensitivity Analysis

Because of the high computational costs associated with carrying out sensitivity studies
just perturbing individual parameters is not sufficient. If, however, we start with the
premise that we would like to carry out such analyses it is possible to develop an entirely
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different approach. Typically the equations encountered in airshed modeling, after
numerical discretization, are represented in the general operator form:

F(u,k)= !cllltl ~fuk,n=0 (3.2)

Typically there is associated with (3.2) an output operator H(u) that maps the model
predictions u(k) into a form that is compatible with the actual observed variables y
={Y1v---’)’nobs}

y =H@u.k) (3.3)
Note that (3.3) may or may not be a linear operator. Both (3.2) and (3.3) are typically
very large and quite stiff because there is a wide variation in the underlying time and
space scales. In practice it is important to recognize that (3.3) may more than just the
concentration at a point. The operator could describe the peak one hour concentration
observed during a simulation, the population exposure or deposition flux. For any of these
metrics we are interested in the sensitivity of changes in the state variables to variations in

the parameters.

The sensitivity matrix is of the form:

S=g5= é}l—‘) (34
ok fik = k°

j

where k* is the nominal set of parameter values. In practice the partial derivatives in (3.4)
can sometimes be derived analytically but usually they must be numerically
approximated. Unfortunately, conventional low order finite difference approximations
can cause slow convergence or search directions that lead to suboptimal solutions. High
order finite difference methods require many more function evaluations. An alternate

approach is to consider the adjoint system:

d|d du oF

) + etk —H—

ot\dk ok ok

where Jg(u,k) is the Frechet derivative, or best locally linear approximation, to the

operator F(u k) at the nominal parameter value k*. The Frechet derivative is formally
defined by:

=0 (3.5)

Lim || Fu,k+h) - Fu,k) - Je@, k)Ml _, o 3.6)

Il — 0 lihl
where h is a vector of perturbations to the elements of u. For simple functions J(u,k)
is the system Jacobian. Rather than solve (3.5) and (3.2) as a large set of coupled
differential equations it is useful to recognize that most of the information needed to
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calculate the gradients can be derived from the solution of the model itself. For example,
in most numerical solution procedures the approximate solution values are calculated at t
= tg, t1,....tn Where t; = t,.; + h, for some step size h,, according to the formulae:

Up = R[%, Un.j, In-js k] o 3.7
=0,..., q
du [d“n-' ]
_& 3 _l £*
ot S T toji K 0ug (3.8)

where the subscript n indicates a numerical approximation of the vector u at t,, and q is
the order of the scheme. The exact functional forms of R and S and depend on the
particular integration technique. The resulting system of nonlinear algebraic equations
that arise when (3.7-8) are substituted into (3.2) are typically solved using Newton's
method:

(m) (m)
R, , Ofn {ug"'+"-u§.“"l=—{a"“ fa(Xn k)} (39)
ou, du, ot

where now m is the iteration number. The cost of solving (3.9) is typically dominated by
the need for repeated solutions of the linear algebraic system:

Ax =b (3.10)
where the matrix A is associated with the left hand side of (3.1):
A= Ry + ol 3.11)
du, Jdu,
If now (3.7, 3.8) are substituted into (3.5) it is possible to show that the gradients are
given by:
(m) {m)
aRn + afn dxn}=_ W(.aﬂ’ tn—ja k).g.m (3}2)
du, du,) 'dt at ok

where W has a similar form to (3.7). Again we can express (3.12) in the same manner as
(3.11):
AS =D (3.13)
where as before:
[S]=sj =-a—lﬂ ; i=1,2,..4,n, j=1,2,...m (3.14)
ok;

Since the matrix A is common to both systems, saving the LU decomposition after a
successful convergence of (3.9) provides a way to extract the gradient from (3.13) by a
simple back substitution. In addition to the obvious computational savings the gradients
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have an accuracy comparable to the solution of the basic model. A computer code called
SENSODE was developed that incorporates most of the above ideas and it has been used
to carry out a series of sensitivity studies of the reaction mechanisms embedded within
the CALGRID model Carbon Bond 4 (CB-4) and Lurmann, Carter and Coyner (LCC).
(Further details of the results are contained in Appendix B).

For small variations in k, (3.6) is the best local linear approximation to the actual
response surface. If the response of the model is highly nonlinear then (3.6) may not be a
good reflection of the variation of u(k) away from the nominal parameter value k*.
Figure 3.2 illustrates the limitation of local methods when they are applied to problems
which involve large uncertainties in the parameters.

k
u(‘) % |- Gradient
Linear approximation
wie)= () + 259 | -
&~
* > k
k
P(k)
4
Expected value of
de=[Plodk
= k

<k>

Figure 3.2 Linear and nonlinear sensitivity analysis of a model output with respect to
parameters variations together with the probability density function
associated with k.

3.2 Uncertainty Analysis

In Figure 3.2 the region of highest sensitivity occurs at a point where the
likelihood of the particular value occuring in practice is small. This particular example
highlights the fact that so far in the discussion all the values of k have been treated as
being equally likely; however in practice, the parameters often have non-uniform
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probability distributions. While the response surface or sensitivity is independent of all
assumptions about the likely parameter combinations, the expected value or other
statistical measures depend on both the sensitivity and the probability density functions
for the parameters. For example the expected value of the predictions is given by

<ui(k)> = f e f ui(k) P&) dk; - - - dkm (3.15)

where P(k) is the multidimensional probability density function associated with the
parameters. For example if the parameters were to be jointly normally distributed then

P(k) would be of the form

P =—L— exgl - kT V-1k] (3.16)
(2nfiVE

where V is the covariance matrix. Another measure of uncertainty is the variance in the
predictions associated with parameter variations i.e.

oui(k) ] = I . ] [0 (k) - <u;(k)>]? P®) dk; - - - dkpn (3.17)

One of the major difficulties in carrying out an error analysis when there are statistical
distributions associated with the parameter values is that the model must be solved many
times in order to develop accurate solutions to the integrals of the form (3.15) and (3.17).
There are a variety of procedures that can be used including Monte Carlo methods and the
Fourier Amplitude Sensitivity (FAST) technique. These and other techniques are
reviewed in McRae et al. (1981).

In summary, a sensitivity analysis then refers to the influence of parameter variations on
the output whereas a combined sensitivity/uncertainty error analysis considers the
additional factor of the probability density functions of the parameter values. Regardless
of the refinements in knowledge of parameter accuracy the global sensitivity remains the
same. One of the key points to take away from the discussion is that just because a
parameter may be uncertain or be subject to error it does not necessarily follow that the
predictions of the model have the same level of uncertainty. In fact as will be shown in
Chapters 4 and 5 some of the processes are self-compensating or limited in the extent of
their variation because there are other constraints acting on the system.

As an illustration of these issues consider a one-dimensional advection diffusion equation

de Jue_dy % (3.18)

ot dx ox ox
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where K, is the diffusion coefficient and u is the velocity field u(x,t). From a
mathematical standpoint (3.18) is formally a parabolic partial differential equation. Under
typical atmospheric conditions with u = 5 m/s, Kxx = 100 m2/s and a concentration
gradient of say 1 ppmvkm then it is easy to show from a scale analysis that
0
Advective Rux (uc) >> Diffusive Flux Kx,a—c) (3.19)
X
and so (3.18) exhibits almost hyperbolic type characteristics. In fact it is this property that
causes so much difficulty in developing numerical algorithms (to be discussed in
Chapters 4 and 7). If we consider an even simpler form of (3.18), where both the velocity
field and the diffusion coefficient are constants, the resulting equation is of the form
2
éc_:. +1u _aE = Kif.
ot ox ox2

and it is possible to develop a very simple finite difference approximation of the form

(3.20)

L oh bt K[cr’:”l =2ch+ %-l] (321)

At 2 Ax Ax’

where m is the space index and n the time level. Equation (3.21) is the standard first-order
accurate in time, second-order accurate in space discrete approximation (see Strikwerda,
1989). The overall stability }imit for the scheme is
KAL =xp<i (3.22)
sz 2

The difference scheme (3.21) can be written in the equivalent form

el = (1 - 2Kp)eh + Kpu( 1 - o) ey + Ku(l+ a)Ch1 (3.23)
where
= AL =Oxu - _ukh
71 sz and o >K ~2K§ (3.24)

Provided that the stability condition (3.22) is satisfied it is possible to show that for the
parabolic system (3.20) that the maximum value of lc(x,t)l will not increase as t increases
(see Strikwerda, 1989)

P loge,0 5P leGt)l ift > ¢ (3.25)
The finite difference scheme (3.23) will have the same property if and only if
= Ax <
v —1‘—2 S 1 (3.26)
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That is if the condition (3.26) is satisfied as well as the stability condition then for the
finite difference scheme

et = (1 - 2 Kplegd + Kp( 1- o) 12,4 + Kp(l+ olch, 41 < m;" Iyl (3.27)

we have

max, ., . Max
X g1 < T g (328)

On the surface the result (3.28) is very attractive since it would suggest that there would
be no overshoot, the solutions would not exhibit oscillatory behavior and the numerial
approximation is consistent with the original model (3.20). The basic problem is that for
typical horizontal atmospheric flows (u ~ 5 m/s and K ~ 100 m?/s) and typical grid cell
spacing (Ax ~ 5000 m) we have that

=Axu _5000x5 _
o K~ 2x100 125>>1 (3.29)

Under these conditions it is possible to show that the solutions will be oscillatory. For
example Figure 3.3 presents the results of the transport of a concentration profile using
the same conditions as above with a time step At of 600 seconds. From an inspection of
the plot it is quite clear that there is more than 30% overshoot in the peak and the

solution profile is oscillatory.
Initial profile c(x,t)

1.4

1.2 Profile c(x,t) after 5 time steps
cxt) 1

0.8 /

0. 6

0. 4

0.2

10 20 30 40 50
Meshpoint

Figure 3.3  Predicted concentration profile after five time steps using the difference
scheme (3.21)

With the difference scheme (3.21) the only way to avoid the oscillations is to reduce the

mesh size to less than 40 m, since from (3.26) we require that

Axs 2K =230 - 40m (3.30)
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which in turn involves a considerable increase in computational cost and storage
requirements. In order to understand the origin of the problem it is useful to regognize
that term 2K/u in (3.30) corresponds to the cell Reynolds number in fluid flow or the
Peclet Number in heat flow problems. The condition (3.30) is a requirement for the
difference scheme to behave qualitatively like the original parabolic partial differential
equation. It is important to recognize that (3.30) is pot a stability requirement, since
stability only deals with the limits as Ax and At tend to zero, (3.30) is always satisfied for
Ax small enough. In fact for the conditions used in the sample problem the finite
difference scheme is operating well below the CFL limit (See Roache, 1976). The
oscillations that occur when (3.30) is violated are not the result of instability. They do not
grow excessively; they are only the result of inadequate spatial resolution.

One way of avoiding the restriction (3.30) is to use upwind differencing of the convection

term.
Fl-ch,, c&-ci'n-d:K[ﬂ'nﬂ'“?“*c'f’n-l] (331)
At Ax | Ax?
or
o = [1 - 2 Kp(l+ c)leh + Kp e,y + Kp(l+ 200k (3.32)

If the term 1 - 2Kp(1 + @) is positive (it is 0.4 for the sample problem), then (3.32)
satisfies the condition (3. 28) and there will be no oscillations. The result has however
been achieved by introducing another problem. As can be seen in Figure 3.4 there is a
considerable diffusion of the initial profile beyond what might be expected from the
physical processes occuring in the atmosphere.
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Figure 3.4  Predicted concentration profile after five time steps using the difference
scheme (3.32)

The origin of the enhanced diffusion can be seen by rewriting (3.31) in the equivalent
form:

it oy [Ghet~Sha] - ¢ 4 2 [""“*‘ oLk *-‘} (333)

At 2 Ax Ax?

In other words the effective diffusion coefficient is now K + u Ax/2. Again for the sample
problem this corresponds to a numerical diffusion coefficient of 100 + 12,500 m2/s. The
artificial diffusion coefficient is two orders of magnitude greater than the turbulent
diffusivity. This result illustrates an important point about uncertainty analysis. Even if
there were to be a factor of 10 uncertainty in the diffusion coefficient its effect on the
predictions of numerical schemes of the form (3.33) would be neglible because of the

low order accuracy of the numerical approximation.

3.3 Conclusions

The key conclusion to be drawn from this section is the need to be careful in
carrying out an error propagation analysis and in particular to understand the different
sources of errors that can arise in air quality modeling. For example, depending on the
numerical solution scheme the errors in parameter values for the diffusion coefficient are
neglible in comparision to the errors that might arise from a poor choice of an integration
scheme. While the numerical schemes used in the CALGRID model are considerably
more sophisticated and accurate than the simple form (3.33) the basic ideas are still
relevant. An important caution that can be derived from this section is that just because
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there might be a large error associated with a particular parameter value it does not
always follow that there will be similarly large errors in the prediction.
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4. Module Evaluation

When mathematical models are used to describe various physical and chemical
processes of atmospheric air pollution, there are always some discrepancies between
observations and model prediction. These discrepancies are due to a variety of factors,
including approximation in the model formulation, uncertainties in the model inputs, and
representativeness of the measurements. Model predictions are compared against
observed air quality. Determining the sources of errors is not an easy task. Since the
processes involved are highly non-linear, it is almost impossible to pinpoint the sources
of the errors just by looking at the simulation results.

The effects of model formulation, numerical solution procedures and computer
implementation play an important role in the outcome of simulations. The sources of
errors in the photochemical airshed model developed for the California Air Resources
Board, CALGRID (Yamartino et al., 1992), are being investigated. Model components
are tested to determine the significance of errors introduced. Level checks are conducted
to assess how these errors are propagated and how they contribute to the final results.
This report describes the method used in the component error and error propagation
analysis and presents some preliminary results.

4.1 Background
Before describing our approach, it is important to provide some background
information about the CALGRID airshed model. CALGRID is an Eulerian grid model

based on the atmospheric diffusion equation. The operator splitting technique is used for
solving this equation. The solution is marched in time as follows:

€ p = (LxLyLRLLyLY) (4.1)

where Ly and L, are one-dimensional horizontal transport, L, is the vertical transport and
R is the chemical reaction operator. These operators constitute the major components of
CALGRID.

4.2 Methodology
Two approaches were adopted for the assessment of uncertainties in the routines

for horizontal transport, vertical and chemistry transport and their effect on model
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predictions. The first approach is breaking the code into individual modules and studying
each one separately. However, CALGRID makes use of a single vector to store most
relevant variables. Therefore, breaking the code and analyzing each module individually
would require redesign of this data structure. Also, with this approach, it would be
impossible to evaluate the code's integrity and consistency. The performance of several
modules together could not be assessed and a true picture of the program's modularity
could not be drawn.

The second approach is to maintain the structure of the program and perform tests
that suppress the desired components either via input data or by minor changes in the
code. CALGRID is equipped with a sufficient number of diagnostic parameters. By
setting these parameters appropriately or by changing their values internally, it is possible
to test the model's components individually and in combination. This approach was
found more viable in the assessment of the overall performance. The steps taken in
performing the tests will be described in detail so that the tests can be repeated or the way
they were performed can be open to discussion.

As mentioned above, the major components of CALGRID are the horizontal
transport, chemistry and vertical transport. In the rest of this report, each module will be
tested individually or in combination with the others and the errors involved in each
module will be determined.

4.3 Horizontal Transport

CALGRID splits the horizontal transport into two one-dimensional operators and
uses the Chapeau function scheme for the solution. One-dimensional operators lead to
tridiagonal systems of equations that are solved very efficiently. However, operator
splitting is associated with loss of accuracy. This issue will be discussed in a special test
problem. The one-dimensional Chapeau function scheme can not approximate smooth
solutions near sharp gradients. Accurate, monotonic solutions can only be assured by
means of non-lincar mechanisms. CALGRID is equipped with several filtering
mechanisms to eliminate the ripples produced by the Chapeau scheme. First, a two-pass
Forester filter is used. The mass conservative Forester filter is very effective in
eliminating local noise waves. The local property of the filter maintains resolvable
features such as peak pollutant concentrations. However, convergence to strictly
monotonic solutions slow down considerably after the first few iterations. That is why
the Forester filter is applied only twice and then the donor cell mass borrowing technique
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is used. If there are still some negative concentrations in the field after the application of
the donor cell filter, these concentrations are simply set equal to zero. This last procedure
is not mass conservative but is not a major error source either.

4.4 Rotating Puff Test

The advection of a pollutant puff in a rotational velocity field is a standard
problem for testing horizontal transport algorithms. It presents a good test case for
identifying diffusion, dispersion and phase errors. However, it is important to note that a
rigid body rotation field yields constant x velocity along any line parallel to the x-axis,
and, likewise, a constant y component of velocity along any line parallel to the y-axis.
(Of note, by extension, given any straight line, the velocity component in the direction of
that line is constant.) For schemes that split horizontal transport into two one-
dimensional operators, the problem becomes constant velocity advection. This is not the
most severe test case but was included in our analysis because of its popularity.

The rotational velocity field is defined as

Ur =0
“4.4.1)
ug=uowr

where  is constant. In this case, the advection equation becomes

a—C+coa—c=0

a 59 (4.4.2)

The solution to this equation can be found in terms of characteristics as

O - o = constant

and (4.4.3)
r =constant

From this solution, it is obvious that the initial concentration field will simply be rotated.
The concentration field consists of a cosine hill puff defined as

%(1 + cos %}i) forR<4 \

4.4.4)
for R2 4/

x,y)=
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0ld:

IF (CLAB.NE.CSPEC (I)) THEN 00189700

New IF (CLAB.NE.CSPEC (1L} ) THEN 060189700
old:

WRITE (I06,522)CLAB,CSPEC(I).,I 00189900

New WRITE (I06,522)CLAB,CSPEC(L).,L 00189900

Figure 4.1  Bug in subroutine RDICON.
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0ld:

CLABEXP (1:1)="V" 01110500
New:

CLABEXP="V~-LEV' 01110500

WRITE (CLABEXP {(6:8), * (I3)')I2
old:

CLABEXP (1:5)="'WFACE"' 01110800
New:

CLABEXP='W-LEV' 01110900

WRITE (CLABEXP (6:8), ' (I3)'}12
olad:

CLABEXP='ZI" 01115000
New:

CLABEXP='"HTMIX' 01115000
old:

CLABEXP='EL' 01115600
New:

CLABEXP='XMONIN' 01115600
old:

CLABEXP='TEMPK" 01117800
New:

CLABEXP='TEMPSS"' 01117800
0ld:

CLABEXP="'RHO" 01118300
New:

CLABEXP="'RHOSS' 01118300
old:

CLABEXP="'QSW' 01118800
New:

CLABEXP="'QSWSS"' 01118800
0Old:

CLABEXP="'IRH' 01119300
Rew:

CLABEXP="'IRHSS' 01119300
Figure 4.2  Changes in subroutine RDMET.
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old:

CONAVG (I, J,LL)=CONAVG(I,J,LL)+FULCON(I,J,K,L) 01477700
Hew: CONAVG(1,J,LL) =FULCON(I,J,K, L} 01477700
oid:

CONAVG (I, J, LL) =XSUBI*CONAVG(I,J,LL) 01480000
Hew: CONAVG({(I,J,LL)=CONAVG(I,J,LL) 01480000

Figure 4.3  Changes in subroutine TIMEAV.

old:
DATA LHORIZ/.TRUE./,LVADV/.TRUE./,LVDIFF/.TRQE./,LCHEM/.TRUE./, 00022300

New:
DATA LHORIZ/.TRUE./,LVADV/.TRUE./,LVDIFF/.TRUE./,LCHEM/.FALSE./ , 00022900

Figure 4.4  The parameter change in the main program CALGRID to suppress the
chemistry.
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0.0 32.0 0.0 32.0
Figure 4.5  Solution obtained from CALGRID to the rotating puff problem when the

filters are suppressed: after one-half (top-left), one (top-right), one and a
half (bottom-left), and two (bottom-right) rotations. The peak

concentrations are 102.1, 97.0, 95.4, and 93.7 respectively.

The

corresponding most negative concentrations are -4.1, -7.4, -11.1 and -13.5.
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Figure 4.6  Solution obtained from CALGRID to the rotating puff problem when the
filters are active: after one-half (top-left), one (top-right), one and a half
(bottom-left), and two (bottom-right) rotations. The peak concentrations
are 103.3, 90.5, 82.1, and 74.7 respectively.
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where,

R =+(x- x0)? + (¥ - yo)? 4.4.5)

and (xg, yo) is the initial location of the peak. In equation (4.4.5) the base radius of the
puff is equal to 4. All tests are carried until the puff completes two full rotations. The
accuracy will be assessed by the peak retention capability, also defined as the maximum
absolute error.

Maximum absolute error = max(fc; - ¢ff) (4.4.6)

where cf is the exact solution value of the concentration at grid point i.

A 33x33 uniform grid with a single vertical layer is used in this test. The peak of the
cosine hill shaped puff is initially located at the grid point (9, 17). A binary file,
ICON.DAT, is used to input this concentration field. A bug was discovered in subroutine
RDICON and was corrected as shown in Figure 4.1. The velocity field is input through
the binary meteorological data file CALMET.DAT. The angular velocity, w, is adjusted
so that one complete rotation of the puff is performed in 240 time steps. This corresponds
to a Courant number of n/15 at the peak of the puff. While new three-dimensional
meteorological fields were generated some changes needed to be made in subroutine
RDMET (Figure 4.2). Also since the hourly averaging of the concentrations created a
very diffusive effect, averaging was suppressed in subroutine TIMEAYV as shown in
Figure 4.3. The horizontal diffusivity is set to zero to make the problem one of pure
advection. The chemistry is suppressed by setting the logical variable LCHEM to
.FALSE.in the main program (Figure 4.4). Since there is only one vertical layer, no
vertical transport takes place.

In order to evaluate diffusion and dispersion errors associated with the Chapeau
scheme, the filters are suppressed in the first test. As may be seen in Figure 4.5, the
solution contains some negative concentrations due to a small amount of numerical
dispersion that follows in the wake of the advected distribution (represented by dashed
contours). The maximum negative concentration in the field after two complete
revolutions is equal to 13.5% of the original peak height. Also of interest is the overshoot
of the peak by as much as 3.1%, in the first half of the rotation. The Chapeau function
scheme is mass conservative, however, being a one-dimensional method may cause

overshoots at the peak.
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Figure 4.7  Solution obtained from CALGRID to the rotating puff problem when the
puff has a base radius of 5: after one-half (top-left), one (top-right), one
and a half (bottom-left), and two (bottom-right) rotations. The peak
concentrations are 102.0, 103.8, 102.2, and 98.3 respectively.
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Figure 4.8 Peak retention history in rotating puff test.

Figure 4.9 Parabolic angular velocity profile.
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When the filters are activated, the solution shown in Figure 4.6 is obtained.
Although the filters remove the negative concentrations in the field, the peak
concentration dropped by 25.3% after two complete rotations compared to the 6.3% of
the unfiltered solution. Although the Forester filter is local, and does not effect the peak
heights directly, diffusion at the base (i.e., where the noise waves reside) changes the
shape of the puff. The puff becomes more and more steep and the Chapeau function
scheme diffuses the peak heights more and more in return. The overshoot at the peak still
exist (as much as 4.3% in the first half of the rotation), because the filters are effective
only in the base of the puff. The same test was carried one more time using a puff of base
radius 5. The solution for this case is shown in Figure 4.7. The peak heights are plotted
as a function of time both for the unfiltered and filtered cases in Figure 4.8. Also shown
is the peak height history for the puff of base length 5. The latter is a less severe case
with a smoother gradient yielding more accurate solutions, and the error in predicting the
peak height remains within 4%.

4.5 Parabolic Tangential Velocity Profile

As mentioned above, the rigid body rotation field yields to constant velocity when
the horizontal transport is split into one-dimensional operators. A more severe test
problem would be one where the tangential velocity has a parabolic profile. With this
field, the components of velocity along straight lines are not constant. This problem is
more realistic because the wind speeds in the atmosphere are variable. The velocity field
is defined as

0

l

Ur
toy? 4.5.1)
w2

where R is the distance to the boundary of the domain. The tangential velocity varies

parabolically as a function of r as shown in Figure 4.9.

The advection equation in this case is

aC 40)?' (l

R) (452)

and the solution can be written in terms of the characteristics as
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0 -Agﬂ(l—ﬁ)t = constant

and (4.5.3)
r = constant )

The initial conditions are same as before, i.e., a cosine hill with a base radius of 4
with the peak centered at grid point (9, 17) on a 33x33 domain. A new meteorological
file has been created to input the velocity field. All other parameters are the same as the
rotating puff test.

The exact solution to the problem is shown in Figure 4.10. The velocity field is inverted
after one full rotation of the puff and the problem is continued until the puff returns to its
original position. Of course, the shape of the puff must also be recovered. The solution
obtained from CALGRID is shown in Figure 4.11. Especially in reverse rotation, the
shape of the puff is distorted significantly. Also shown are the solutions from a two-
dimensional transport operator (Odman and Russell, 1991ab) in Figure 4.12. This
scheme uses the high-order accurate streamline-upwind Petrov-Galerkin (SUPG) method
in conjunction with a streamline filter. The two-dimensional scheme is much more
accurate than the Chapeau scheme of CALGRID. The peak retention performance of
both schemes is shown as maximum absolute errors (Figure 4.13). Of note is that the
SUPG scheme does not yield any overshoots. The diffusion errors grow monotonically.
Even after the Chapeau function scheme overshoots the peak prediction, the peak of the
puff is diminished more with the Chapeau function scheme. Only 72.6% of the peak
hight remains at the end of the test while the SUPG scheme retains 81% of the original
height.

As predicted, the difference in accuracy between CALGRID and a two-
dimensional scheme becomes more obvious with the parabolic angular velocity profile
problem. Since the velocities vary along straight lines in actual meteorological fields, the
rotating puff test may not always be reliable to assess the accuracy of a transport scheme,
especially if the scheme is using one-dimensional operator splitting. To our knowledge,
this is the first time the parabolic angular velocity profile is used in performance
evaluation of transport schemes. However, the results show that it is a better alternative
to the standard rotating puff test
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Figure 4.10 Exact solution to the parabolic angular velocity profile problem: after one-
fourth (top-left), one-half (top-right), three-fourth (bottom-left), and one
(bottom-right) rotations. In the second half of the problem the velocity
field is inverted. The solution is the same but, this time, in reverse order.
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Figure 4.11  Solution obtained from CALGRID to the parabolic angular velocity profile

problem: after one-half (top-left) and one (top-right) forward rotations and
then , one-half (bottom-left), and one (bottom-right) backward rotations.
The peak concentrations are 109.9, 104.9, 83.5, and 72.6 respectively.
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Solution obtained from two-dimensional SUPG scheme to the parabolic
angular velocity profile problem: after one-half (top-left) and one (top-
right) forward rotations and then , one-half (bottom-left), and one (bottom-
right) backward rotations. The peak concentrations are 97.4, 95.8, 84.4,

and 81.0 respectively.

Figure 4.12

64



4.6 Horizontal Transport and Chemistry

The performance of transport schemes are usually evaluated in advection tests.
These tests investigate certain measures such as the degree of preservation of the peaks
and the generation of ripples. There are some characteristics of transport schemes,
however, that an advection test alone can not reveal. The nonlinear chemistry alters the
shape of a pollutant puff constantly; it can change its slope, making it less or more steep,
or it can even invert a peak. The ability of the scheme to adapt to such changes can only
be seen and evaluated in tests with chemistry.

For test purposes, it is better to keep the chemical mechanism simple. This way,
sound physical arguments can be made more readily. However, the mechanism should
still be able to yield the kind of numerical difficulties encountered in photochemical
models. One such simple description of the atmosphere was used by Hov et al. (1989)
and is given in Table 4.1 The test itself consists of advecting puffs of different species
while they react according to the chemistry described. The solution to the advection part
is known: the concentration ¢ of a certain species located at some point X is moved to
some other point, say X3, after a certain time. On the other hand, if no advection is taking
place, but the chemistry is activated, the concentration at Xy will be changed to c; during
the same time period. Therefore, if both advection and chemistry are applied, then the
concentration at X should be ¢3.

A 33x33 grid and a rigid-body rotation velocity field are used for this problem.
The angular velocity @ is adjusted so that one rotation is completed in 24 hours. The
horizontal transport operators is applied every 150 s and the chemistry operator, every
300 s. The solar zenith angle, 8, that appears in the photolysis reactions of Table 4.1, is
held constant at 71.5° throughout. This is the angle whose cosine corresponds to the
average during an equinox day in the equator. Four species, HC, HCHO, NO and NOa,
are initialized as perfect cone-shaped puffs with the peak located at grid point (9, 17) and
the base radius equal to 4. The initial concentrations at the peaks are given in Table 4.2.
Background concentrations are set equal to 2.5% of the peak height for these species. All
other species have the same background concentrations at all nodal points.

In order to accommodate the simple chemistry, subroutine BLDUP has been
replaced with the one shown in Figure 4.14. For the same purpose subroutine DIFUN is
changed as shown in Figure 4.15. Also, certain parameters and the species names were
changed in the main program CALGRID (Figure 4.16). The number of species is now 13
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Table 4.1

Simplified chemical mechanism used in the model.

1)
2
3
4
&)
(6)
7
(8)
®
(10)

HC + OH — 4 RO, + 2 HCHO

HCHO +hv — 2HO, +CO

RO; +NO -» NO; +HCHO + HO;

NO + HO; - NO; + OH
NO; +hv = NO + 04
NO + O3 =2 NO,; + 0
O3 +hv = 0; +0(D)
O(D)+H;0 -2 OH
NO; + OH —» HNOs

CO +OH — CO; +HO;

k; =6.0 x 1012

J,="7.8 x 105 e-087/ws @
k; =8.0x 1012
ks=8.3x 1012
Js=1.0x 102 ¢-03%ws @
kg=1.6x 1014

J7=1.9 % 109 e-19/ws0
kg =2.3x 10°1¢
kg=1.0x 101!
kip=2.9x1013
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Table 4.2

Initial concentrations.

Pollutant Background Peak
(ppmV)

CO 4.06x10-2

H,0 2.00x10#

HC 1.02x104 4.06x103

HCHO 5.08x10-5 2.03x103

HO, 4.06x10-8

NO 1.02x104 4.06x103

NO; 1.02x104 4.06x103

O(1d)

(07} 2.03x102

OH

RO, 4.06x10-8

Table 4.3
Predicted peak concentrations.
Pollutant Chemistry  Advection + Error
Chemistry
(ppmV) (ppmV) (%)

HCHO 1.603x10-2 1.504x10-2 -6.2
NO 5.70x10-10 5.80x10-10 +1.8
NO, 9.570x10°7 9.260x10-7 -3.2
(0% 4,762x102 4,759x10-2 -0.1
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Figure 4.13 Peak retention history in parabolic angular velocity profile test.

C ________________________________ - - - [ -
SUBROUTINE BLDUP (R, CO,DCDT)
Cmmremme— e m - ————— - - e o - - -—
c
C -—- CALGRID  VERSION: 1.2 LEVEL: 890531 BLDUP
c
c*t****t****i**t**i*ittit*ii*t*ﬁt*it***t*iﬁ*t*it*i*iit***iitt**ttii*tii
c
c MODEL DEPENDENT SUBROUTINE TO CALCULATE FORMATION
c RATES OF NON-REACTING SPECIES
C — - — —————— - ———— - ———_— i ——————————
c
C --- BLDUP CALLED BY: CHMRXN, INTEGR
C --- BLDUP CALLS: NONE
C -_— - - —————— —— — o o T e - - = ———
c
REAL R(*),CO(*),DCDT (*)
c
c
c coz
DCDT( 1) = R{ 10)
c
c HNO3
DCDT( 2) = R({ 9)
RETURN
END

00683900
00684000
00684100
00684200
00684300
00684400
00684500
00684600
00684700
00684800
00684900
00685000
00685100
00685200
00685300
00685400
00685500
00685600
00685700
00685800

00686600
00686700
00689100
00689200

Figure 4.14  Subroutine BLDUP.
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Cm—wemm et m e ———— ———— ———— ——— -- - - 00689300
SUBROUTINE DIFUN {(C,A,S,RK,R,CO,FR,1R) 00689400
Cowmm== —— - B i e s 00685500
o] 00689600
C ~-- CALGRID VERSION: 1.2 LEVEL: 890531 DIFUN 00689700
c 00689800
xR mE AR AR KR R AR R AR RS R AN R AR R AR A KR AR AR NI AA SRR EAN IR AN KRR TR RN TR A * % 00689900
o 00690000
o4 MODEL DEPENDENT SUBROUTINE TO CALCULATE RATES OF 00690100
c FORMATION AND LOSS FOR ACTIVE SPECIES 006390200
C - ——————ersme—— - - - -- -- 00690300
c 00690400
C --- DIFUN CALLED BY: CHMRXN, INTEGR 00690500
C =-=-- DIFUN CALLS: NONE 00690600
(e e e i o o o e o o e S ——— 00690700
o] 00690800
REAL C(*},A(*),S(*),RK(*),R(*},CO(*),FR(*},LR(*) 00690900
o] 00691000
[of 00691100
C DEFINE RATES OF REACTIONS, PARTIAL RATES 00691200
C FOR REACTIONS WITH STEADY STATE REACTANTS 00691300
o 00691400
R{ 1) = RK{ 1)*A{ 8) 00691500
R{ 2) = RK( 2)*A( T} 00691600
R{ 3) = RK( 3)*A( 6)*A{ 2) 00691700
R{ 4) = RK( 4)*A( 2)*A( 4) 00691800
R( 5) = RK( S5)*a( 3) 00651500
R( €6) = RK( 6)*A( 2)*A( 1) 00652000
R{ 7) = RK( 7)*A{( 1) 00692100
R{ 8) = RK( 8&)*C{ 1)
R( 9) = RK( 9)*A( 3) 00692300
R( 10) = RK( 10)*A( 5) 00692400
c 00701500
C CALCULATE STEADY-STATE CONCENTRATIONS AND 00701600
C RATES OF REACTIONS WITH SS SPECIES 00701700
C
Cc OlD
c
S( 2y = (R{ 71 /(R({ 8))
R{ B) = S( 2) * R{ 8)
C .
o] OH
o]
S({ 1) = (R({ 4) + 2.*R({ 8))/(R{ 1)+ R({ 9+ R{ 10)) 00702000
R{ 1)y = S( 1) * R{ 1) 00702100
R{ 9) = S8S( 1) * R( 9) 00702100
R({ 10) = S( 1) * R{ 10) 00702100
o] 00711200
od DEFINE FORMATION RATES FOR ACTIVE SPECIES 00711300
o} 00711400
C 03
FR{ 1) = R{ B5)
C
c NO
FR( 2) = R( 95)
c
C NO2
FR( 3) = R{ 3)+ R{ 4)+ R( 6)
C
c HO2
FR( 4) = R{ 2)*2.+ R( 3)+ R({ 10)
o
C [&8)
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FR( 5) = R( 2)

c
c RO2
FR{ €) = R{ 1)*4.
C
c HCHO
FR( 7) = R{ 1}*2. + R{ 3)
c
c HC
FR( 8) = ©
c
c
c DEFINE LOSS RATES OF ACTIVE SPECIES
c
c 03
LR{ 1) = RK( 6)*A( 2)+ RK( 7)
c
C NO
LR( 2) = RK( 3)*A( 6)+ RK( 4)*A{
c
c NO2
LR{ 3) = RK{ 5)+ RK( 9}*5( 1}
c
c HO2
LR( 4) = RK{ 4)*A( 2}
c
c co
LR( 5) = RK( 10})*S( 1)
C
c ROZ2
LR{ €) = RK( 3)*A( 2)
c
c HCHO
LR( 7) = RK( 2)
c
c HC
LR( B8) = RK{ 1)*s( 1)
c
c
RETURN
END

4)+ RK(

6)*A(

1)

00722500
00722600

00733200
00733300

Figure 4.15  Subroutine DIFUN.

70




old:

DATA NSPEC/47/,NSA/36/,RSDD/15/,NSE/13/ 00017800
New:

DATA NSPEC/13/,NSA/10/,NSDD/0/,.NSE/1/ 00017800
old:

DATA CSPEC/'COZ‘,'HOZH‘,'ROZ-HO2-PROD','ROZ-ROZ—PROD‘,‘-OOH', 00018100

1 '—C','-N‘,'HZ‘,'H2504','03‘,'NO','NO2','N03','N205','HN03', 00018200

2 'HONO',‘HNO4','HOZ‘,'CO','RO2.','RCOB.','PAN','HCHO','RNOB', 00018300

3 'MEK‘,'CCHO','MGLY','CRES','AFGZ',’AARI','AAR2',‘AAR3','AAR4', 00018400

4 ‘ETHE','OLEI',‘SOZ','HO.','O',‘0*1D2','ROZ-R.','RO2-N.','R202', 00018500

5 'ROZ—XN.','HOCOO.‘,'-NO?',‘03OL-SB'.'H20'/ 00018600
New:

DATA CSPEC/'CO2', 'HNO3', '03', ‘'NO', °'NOZ°, *HO2', 'CO', 'RO2',
& 'HCHO', ‘HC', 'OH', 'O1D', 'H20'/

Figure 4.16 Changes in main program CALGRID due to new chemical mechanism.

Old:

IRXP - 32 00467200
Rew:

IRXP =0 00467200
0ld:

OPEN (IRXP ,FILE='CALBE221 .RXP', STATUS='OLD'} 00467500
Naw:
o] OPEN(IRXP ,FILE='CALBE221.RXP',STATUS='0LD"} 00467500
old:

CLOSE (IRXP ) 00472900
New:
c CLOSE (IRXP ) 00472900

Figure 4.17 Changes in subroutine CHEMIL
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with 10 active spcciés. There are no dry deposited species. The number of emitted
species had to be set to one due to a memory allocation problem in the code. However
the emission rate has been set 1o zero, therefore, there are no emissions in the test
problem.

The file CALLBE221 is not used in this test problem. In this respect, changes
shown in Figure 4.17 were made in subroutine CHEMI. In subroutine CHMRXN, the
photolysis rates were made constant by eliminating the variation of the zenith angle.
Then, the water vapor concentration was made constant by eliminating the related lines of
code. Finally, the lumping technique used in conjunction with the original chemistry was
eliminated. All these changes are shown in Figure 4.18.

The changes shown in Figure 4.19 are made in subroutine COMP. The model
dependent initialization subroutine CONSTR is not used. Also, in subroutine INPQA,
certain changes were necessary (Figure 4.20). The subroutine OPSPLT has been changed
as shown in Figure 4.21 in order to accommodate time varying boundary conditions.

The solution to chemical kinetics is obtained by using the hybrid solver of
CALGRID. Although this is not the exact solution of the problem, since the horizontal
transport is not taking place, the solution has the errors involved with the chemistry only
and is exact as far as the transport is concerned. The predicted advection with chemistry
solutions are compared to the chemistry solution in Fig.'s 22, 23, 24, and 25 for NO, NO3,
HCHO and O3 respectively. The predicted peak concentrations and the errors relative to
the exact solution are also shown in 4.3.

Since the shape of different pollutant puffs are altered differently by the
chemistry, the errors are not the same for all species. The largest shape changes occur
with HCHO where the pollutant puff becomes more steep, and NOz where the puff is
inverted, i.e., the concentration at the original peak becomes less than the background
concentration. These species also display the largest errors: 6.2% and 3.2% for HCHO
and NO, respectively. These errors are of the same order of magnitude as the diffusion
errors observed in the rotating puff test. Therefore, it can be concluded that CALGRID's
transport scheme performs well in conjunction with chemistry. There are no additional
errors due to any mismatch, and the diffusion errors of the transport scheme prevail.
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0ld:
CALL VRTPHK (COSZ, ET}

Rew:
(o4 CALL VRTPHK (CCSZ, HT)
Eliminated:
[o4 UPDATE THE WATER CCNCENTRATIONS IN PPM
o]
CONC{ 4) = WATCON (TEMP, RH,PRESS)
(o4
c LUMPING FOR THE SULFUR-CONTAINING SPECIES (S02,SULFATE)
[o4
TOTSUL = CONA(27) + CONB( 9)
c
c
CONB( 9) = TOTSUL - CONA(27)
(o}
C EMPLOY THE LUMPING TECHNIQUE FOR N-, S-, AND NO & 03.
o}
TOTSUL = CONA{27) + CONB( 9)
C
RAT2 = LR{ 1) * CONA( 1) - LR( 2) * CONA( 2)
DIFFl = FR{ 1) - FR( 2) -~ RAT2
DIFF2 = (FR{ 2)+FR{ 3)+FR( 4)+2.*FR( 5)}+FR( €)+FR( 7)+
& FR{ 8)+FR(13)+FR(15)) -
& (LR{ 2)*CONA({ 2)+LR{ 3)*CONA( 3)+LR{ 4)*CONA( 4)+
& 2.*LR( S)*CONA({ 5)+LR{ 6)*CONA{ €)+LR{ 7)*CONA( Ty+
& LR( 8)*CONA( B}+LR(13)*CONA(13}+LR(15)*CONA(15))
RHS1 = (CONA{ 1) - CONA( 2)) + DIFFl * DTC
RHS2 = (CONA( 2) + CONA( 3) + CONA( 4) + 2.*CONA( 5) +
& CONA{ €} + CONA{ 7) + CONA( 8) + CONA (13) +
& CONA (15)) + DIFF2 * DTC
IF{CONA( 2) .LT. CONA( 1}) THEN
INX = 1
INY = 2
ELSE
INX = 2
INY =1
RHS]1 = -RHS1
END IF
o] EVALUATE THE CONCENTRATION OF NO2 AND O3 OR NO
o}

CONA (INX) = CONA(INY) + RHS1
CONA( 3) =-(CONA( 2)+CONA( 4)+2.*CONA{ 5)+CONA( 6)+
& CONA( 7)+CONA( B)+ CONA (13)+CONA (15) ) +RHS2
IF(CONA{ 1) .LE. 0.) CONA({ 1)=0.
IF(CONA( 2) .LT. O. .AND. CONA( 3) .LT. O.) THEN
CONA( 3) = 0.
CONA( 2) = O.
ELSE IF(CONA( 2) .LT. 0.) THEN
CONA( 3) = CONA{ 2} + CONA( 3)
CONA( 2) = 0.
ELSE IF(CONA({ 3) .LT. 0.) THEN
CONA( 2) = CONA( 3) + CONA( 2}
CONA( 3) = O.
END IF

CONB( 9) = TOTSUL - CONA({27)}

00491300

00491300

00452200
00492300
00452400

00493100
00493200
00493300
00493400
00493500
00493700
00453800
00493900

00495500
00495600
00495700
00495800
00495900
00496000
00496100
00496200
00496300
00496400
00496500
00496600
00456700
00496800
00496900
00497000
00457100
00497200
00497300
00497400
00497500
004%7600
00457700

00458300
00498400
00458500
00458600
00458700
00458800
00458900
00455000
00499100
00499200
0049%300
00499400
00459500
00459600
00499700
00459800

00500700

Figure 4.18 Changes in subroutine CHMRXN.
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Old:

C -—- CURRENT VERSION OF CHEMISTRY REQUIRES 36 ADVECTED SPECIES AND 01396900
C --- 47 TOTAL (ADVECTED + STEADY-STATE) SPECIES 01357000

IF (NSPEC.NE.47) THER 01397100
Naw:
C --- CURRENT VERSION OF CHEMISTRY REQUIRES 10 ADVECTED SPECIES AND 01396900
C --- 13 TOTAL (ADVECTED + STEADY-STATE) SPECIES 01397000

IF (NSPEC.NE.13) THEN 01397100
old:

1 'MUST BE 47 IN CURRENT VERSION OF CHEMISTRY -- NSPEC = ', NSPEC 01397700
New:

1 *MUST BE 13 IN CURRENT VERSION OF CHEMISTRY -- NSPEC = ',NSPEC 01397700
Old:

IF (NSA.NE.36) THEN 01398000
New:

IF (NSA.NE.10) THEN 01358000
old:

1  °'MUST BE 36 IN CURRENT VERSION OF CHEMISTRY -- NSA = ' NSA 01398400
New:

1 'MUST BE 10 IN CURRENT VERSION OF CHEMISTRY -- NSA = ', NSA 01398400
Figure 4.19 Changes in subroutine INPQA.
0ld:

DO 500 I=2,NXMi 00287400

DO 500 J=2,NYMl 00287500
New:

DO 500 I=1,NX 00287400

DO 500 J=1,NY 00287500
Figure 4.20 Changes in subroutine OPSPLT.
c 00273400
old:

LDB=.TRUE. 00258800
New:

LDB=.FALSE. 00258800

Figure 4.21 Changes in subroutine COMP.
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Figure 4.22 Solutions for NO of chemistry and advection + chemistry. 100%
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Figure 4.23 Solutions for NO2 of chemistry and advection + chemistry. 100%
corresponds to a concentration of 9.570x10-10 ppmV.
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4.7  Error Propagation in the Solution of the Chemical Kinetics

The CALGRID model has two methods for integrating the chemical kinetic
formation and loss. Both are widely used, fast, numerical solvers for stiff equations, and
take advantage of the solution characeristics of chemically reacting systems. The
documentation tends to prefer the Quasi-Steady State Solver (QSSA; Hestvelt et al,
1978). It was found to be faster and, after the addition of a step to conserve oxidized
nitrogen compouinds, more accurately tracked oxidized nitrogen species than the Hybrid
solver of Young and Boris (1974). The QSSA solver is also used by the Regional
Oxidant Model (Lamb, 1983), and the Regional Acid Deposition Model (Chang et al.,
1988). The Hybrid solver is used by the CIT model (McRae et al., 1983; Harley et al,
1992). Both methods were tested in this study. Of note, the version of CALGRID
originally supplied implemented the QSSA solver in a predictor-only mode, with
specified time steps. After completion of the original tests of the fast ODE solvers, a
modified version of CALGRID was supplied, with a modified QSSA solver. The
modified QSSA solver used a predictor-corrector scheme, with automatic, internal choice
of time step. Because the original tests had identified errors originating from having just
the predictor step and fixed time steps, it was decided to extend the original tests to also
assess the modified QSSA. The results of these tests are discussed below.

First, the original QSSA and hybrid solvers were evaluated for error propogation
by using a series of box-model types tests. They were compared against the same
calculations conducted using a very accurate, Gear type solver; LSODE (Hindmarsh,
1985). The results of those tests are discussed in detail in QOdman et al. (1992), which is
attached as Appendix A to this report. The treatment of nonlinear chemical kinetics
requires special attention in air quality models because most of the computer time is spent
in solving the equations describing the chemistry. Two fast solvers, the hybrid and QSSA
schemes, were compared to the Gear method for accuracy. The conservation errors in the
QSSA scheme are significant, therefore, it should be used with a mass conservative linear
transformation technique. The NO; lumping technique yields better accuracy than the
proportional distribution of errors among all nitrogen containing species. The hybrid
scheme, even without lumping, is about two times more accurate than the QSSA. The
latter can be made more accurate by decreasing the predetermined time step, but the
resulting scheme is usually less efficient than the hybrid scheme.
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Simple test problems may be misleading in efficiency considerations. A moderate
sized test problem with varying photolysis rates and ROG/NO; emission ratios was
designed specifically to measure the performances in vector processing mode. This
problem, spanning a three day period, approximates real simulation situations better than
test problems with constant rates. Both schemes displayed the largest errors around an
ROG/NO, emission ratio of 8:1, which is very close to the observed value in many urban
areas. The QSSA scheme with NO, lumping used about 4 times less computer time in
solving this problem. Both schemes use about 50% of their CPU times in computing the
production and Joss rates. This process is not readily vectorizable and restricts the overall
gain for both schemes. In vector processing mode, the integrating part of the hybrid
scheme experienced approximately 50% larger speed-up than the QSSA.

These results show that there is a trade-off between the accuracy and efficiency of
fast chemical kinetic solvers considered here. When the suggested time steps are used,
the QSSA scheme is faster than the hybrid scheme, though less accurate. In multi-day
simulations, some instability problems may be encountered. Depending on the stiffness
of the problem, special techniques may be required to obtain stable solutions. These
techniques may be different for different chemical mechanisms and different atmospheric
conditions may require new techniques. On the other hand, the hybrid scheme gives
stable solutions of better accuracy and is not restrictive computationally. Since the hybrid
scheme displays better vector speed-ups, the CPU time differences between the two
become smaller in vector processing mode. Thus the hybrid scheme is numerically more
robust, though usually slower.

After those tests were completed, the modified QSSA solver was provided. It was
decided to test that version of the solver in situ, by extending a separate project where
CALGRID was being modified to use CB-IV, and applied to a SCAQS episode. A more
detailed discussion of the these tests and the issues are contained in section 5.1 of this
report. Those tests did indicate that the modified QSSA, after further modification by this
group, provided acceptable accuracy and computational performance. This version of the
code has been successfully implemented by Tesche (1992) in an application to the South
Central Coast of California.

One issue that is not addressed in the CALGRID documentation is that the

chemical kinetics and the vertical, turbulent diffusive transport have similar characteristic
times. This argues for the two processes not being split into separate operators, as is done
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in CALGRID. As it turns out, the characteristics of the diffusion process and the
chemical decay are similar (negative exponential form), and can be solved simultaneously
using the ODE solvers tested above. Simultaneous solution of the chemical kinetics and
vertical, diffusion-dominated, transport should be considered in future modifications and
evaluations of CALGRID.

In summary, the two ODE solvers available in CALGRID (the hybrid and
modified QSSA) provide acceptable performance in a typical application. The modified
QSSA and hybrid solvers have similar performance in terms of computational efficiency
and accuracy (the modification significantly slowed the QSSA solver from the original
tests discussed in Appendix 2). The errors would likely be on the order of 1 to 2%. As
discussed below, this is below those that can originate from the transport algorithm.

4.8 Vertical Transport

The vertical transport component of CALGRID is implemented in the routine
ZTRANS.F and employs a hybrid fully implicit scheme to solve the one dimensional
advection diffusion equation with dry deposition and emission injection. The governing
equation is

d, a_w5=_a_Kua_c (4.8.1)

ot 9Jdz 0dz o0z

where w is the vertical component of the velocity and Kzz is the vertical eddy diffusivity.
The variation of the elements of Kzz, as a function of time and atmospheric stability are
described in Yamartino et al. (1992). Unlike the horizontal transport case discussed in
section 3, under typical daytime conditions we have

.
0z

Advective Rux (wc) << Diffusive Flux 4.8.2)

and so the transport equation is primarily parabolic in character. The parabolic nature of
the problem makes the numerical solution considerably easier. There are several types of
boundary conditions for (4.8.1) and they depend upon whether the computational mesh is
time-varying or fixed. For a fixed mesh the lower level boundary conditions accounting
for emissions E; and surface removal by dry a deposition velocity vig are given by:
viC; - Kzz?ac—i =E;[x,t] ;z=0 (4.8.3)
z
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At the top of the airshed, well above the mixed layer Z;, the boundary condition

corresponds to the zero flux condition:
Kﬁ:O ;z=H 4.84)
oz
Closure of the system of equations requires the specification of the initial concentration

profile:
¢;i(z,0) =) 4.8.5

The sytem of equations (4.8.1-5) has no analytic solution for conditions typical of those
encountered in the atmosphere. For many of the simple test cases, however, analytic
solutions can be found in Carslaw and Jaeger (1986) or in Nawrocki and Papa (1963).
The actual numerical difference expressions used to solve the equations are presented in
Yamartino et al (1992) and will not be repeated here. One unique feature of ZTRANS.f
is that it can use both fixed and variable mesh spacing. For fixed mesh spacing, the
particular difference technique is formally second-order accurate in space. A complete
discussion of the stability of the Crank-Nicholson time stepping procedure and in
particular the effect on truncation error arising from the use of a non-uniform
computational mesh are described in Roache (1979).

In order to assess the likely range of errors in the predictions, several approaches
were adopted. A fourth-order accurate finite element solution of the diffusion equation
was developed and used as a basis for comparison against the performance of the
ZTRANS.f module in CALGRID. Several simplified cases were used to test the transport
module under conditions where it is possible to determine analytic solutions. Figure 4.26
presents the results of a comparison between the performance of the CALGRID module,
the fourth order finite element solution (FEM) and the analytic solution after 5 hours of
simulation under conditions similar to those encountered under convective mixing. The
differences in the results are negligible. In fact, the concentration axis in Figure 4.26 has
been expand to show any difference at all. Based on these and other tests it can be
concluded that the errors arising from the vertical transport solution scheme are less than
5%. '

Figure 4.27 shows the form of the error as a function of the number of grid cells.
It can be seen from the plot that the results are similar to those of Chapter 2 where once
the number of mesh points exceeds about 5 the incremental improvement is negligible.
One point of interest is that when the log spacing is used the error is smaller. While the
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Figure 4.26 Comparison of the analytic and numerical solutions for log and linearly
spaced meshes (3 vertical cells). The averaging results correspond 1o ZTRANS.F and
the linear interpolation to a fourth-order finite element scheme (t = 5 hours).
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truncation error analysis would suggest that the variable mesh is less accurate than the
fixed form the extra resolution near the ground, where there are sharp gradients in the
concentration profiles, improves the overall accuracy (see Figure 4.28 for an example).
In summary, under conditions typically encountered in the atmosphere the errors arising
from the numerical procedures used to describe vertical transport are quite small in
comparison to those observed for the horizontal transport algorithms.

4.9 Summary i
The horizontal and vertical transport and chemistry components of CALGRID
were extensively tested. The sources of errors stemming from the mathematical models
used by these components were determined. Several test problems were used in order to
identify the type and magnitude of the errors involved in each components. The
components were also tested together, in order to see how errors propagate from one
component to the other. The integrity of the computer code was also checked. Some
inconsistencies and the changes made in order to run the test problems were reported.
Simultaneous solution of the chemical kinetics and vertical, diffusion-dominated,
transport should be considered in future modifications and evaluations of CALGRID.
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5. Combined Error Propagation and Uncertainty Analysis

5.1 Introduction
When air quality models are used in operational practice there are many potential
sources of errors in the predicted air quality levels. In the previous chapters primary

attention was given to two basic types:

Structural Errors or uncertainties in the mathematical description of the
processes occurring in the atmosphere. (Chapter 2)

Algorithmic Inaccuracies or errors that arise from the numerical solution of
the governing equations. (Chapter 4)

In both of these cases problems with known analytic solutions or synthetic data were used
to determine the magnitude of the errors. The utility of these tests is that they avoid the
difficulty of trying to determine if the errors have arisen from the data itself. In practice
however, the issue of how data errors effect the performance of the model cannot be
avoided. There are two types of data related error:

Data Errors The errors may be specific to the airshed of interest, for example
in the emissions and meteorological information, or it may be in
parameters incorporated into the model itself, for example in
kinetic rate constants.

The data errors may also be either systematic or random. As an illustration of the difference
consider the case where a reaction rate constant might have been overestimated because of
an instrument malfunction. Under these conditions the higher value of the rate constant
could lead to a systematic bias in the predictions of the model. A more common source of
predictive uncertainty arises when there are random errors in the data. Again using the rate
constant example the kinetic rate data are often reported in the scientific literature as a mean
+1 standard deviation, with an implicit understanding that the underlying statistical
distribution of the error in the rateconstant is described by a normal form. Another type of
uncertaintity can arises because of spatial inhomogenities across grid cells. In a typical
computational mesh the horizontal cell size is approximately 5x5 km and the associated
properties such as surface roughness are assumed to be homogeneous. In actual fact there
is often considerable variation in properties across the cell. An illustration of such a

variation is shown in Figure 5.1.

In this chapter we introduce several different sampling procedures to assess how random
errors in the data affect the predictions of the model.
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Figure 5.1 Schematic representation of how a parameter might randomly vary in space or
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region corresponds to a + 1 ¢ variation around some nominal value.

Given a knowledge of the statistical distribution of the data errors the practical issue is how
to sample from the parameter or data space in such a way that we can determine the
distribution of errors in the predictions. This problem is one of the most difficult in
statistical analysis and is complicated by the sheer size of the parameter space that must be
evaluated in airshed modeling studies.

One of the most common ways to carry out the analysis is to use Monte Carlo methods.
The basic idea is to sample the parameter space and then carry out a simulation of the model
for each combination. The sampling is continued until the variance in the measures used to
evaluate the model's performance become stable. Some of the error metrics that might be
considered are the accuracy of the peak prediction, the mean square €rTor over the airshed,
or matching the predictions at particular measurement sites. For example consider the root
mean square error criteria, <Cms'>, at a particular location

N
<Chms> = 1/ L 3 cikj) - copsl? (5.1)
N j=1

where ci(kj) is the model prediction of species i for parameter combination K;, and Cobs is
the observation. In the Monte Carlo procedure the number of samples, N, needed to obtain
stable exstimates of the error depends on the functional form of the model and the number
of parameters k = {k;.k2,....km}. Unfortunately the number _of sample points needed to
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produce stable estimates of means, let alone variances, is very large for realistic numbers of
parameters. In passing it is important to note that while it is easy to define different metrics
for assessing predictive errors one difficulty, that is often overlooked in practice, is the
needed for information about the quality of the measurements themselves. Without some
knowledge about the errors in the observational data it is often difficult to make meaningful
comparisons between the predictions and measurements. There are several ways around
the dimensionality problem. The Fourier Amplitude Sensitivity Test (FAST) was used by
McRae et al. (1981) and Falls et al. (1979) to study the effects of errors in rate constants
and stoichiometric coefficients in photochemical reaction mechanisms. Despite the
efficiency of the FAST technique it is still prohibitive for models of the size of CALGRID.
What is need is a better sampling procedure, one that maintains the simplicity of the Monte
Carlo approach while at the same time minimizing the number of sampling points.

5.1 Monte Carlo Simulation

In order to assess the effects of random errors in the data it is necessary to introduce
some metrics to characterize the effects of uncertainties. For example if u(x,k) is some
measure of the model output then its expected value, <u(x,k)> is given by

<u(x,k)> = J fu(x,k) P(k) dk;...dkn, (5.2)

where <.> stands for probability distribution weighted average or the expected value and
P(k) is the probability distribution of the parameter values or data errors. The variance in
u(x,k) is given by o k) i€

Ou(x.k) = f flu(x,k) - <u(x,k)>? P(k) dk;...dkn (5.3)

Higher moments of the probability distribution can be derived in a similar manner. In both
(5.2) and (5.3) the key need is the ability to carry out multidimensional integrals over the
parameter space. There are a variety of approaches to this problem and one of the most
common is to use a Monte Carlo method. Estimates of the integrals are obtained by
sampling from the parameter space and then evaluating the response of the model for each
parameter combination. Since the Monte Carlo method is such a well known techniques it
will not be discsussed any further. For more background the reader is referred to
Rubinstein (1981) and Shreider et al. (1967).

86



5.2 Approximation of Multi-Dimensional Integration
The key problem in assessing the effects of data errors is the evaluation of multi-
dimensional integrals. In order to simplify the subsequent notation the term u(x,k)P(k) will
be simplified into the equivalent form g(x) and the integrals to
1= e g(X) Xm' . 'de (5.4)
C
where (5.4) is an integral over the m dimensions defining the space. The integral (5.4) is

usually solved by approximating it with a discrete summation of the form
1= wigx) (5.5)

where w; are suitable weights that depend on the sampling procedure and the functional
form of g. (See Halton, 1960). There are many different schemes and perhaps the simplest
is based on simply subdividing each parameter range into uniform increments. The
resulting mesh of parameter values is evaluated at each intersection using a form similar to
(5.5). The multidimensional mesh may be thought of as an assembly of "hyper bricks".
Since the approach seems to be almost trivial and it is useful to evaluate just how effective
such a procedure might be in practice.

The efficiency of such an integration formula may be gauged by considering how it fares
when g(x) is the indicator-function of the hyperbrick defined by an arbitrary point A in the
unit hypercube C (Halton, 1960). The practical question is of course whether a uniform
placement of sample points is the best. Hammersley (1960) proposed a criterion to evaluate
the relative efficiencies of different distributions of points,

1 1
] =I I {S(xy1,x2,..0XK) - lexz...xk}2 dxidx;,...dxy (5.6)
0 0

where N is the number of points used in the estimating formula and S(xq.x9,....xy) is the

number of these N points that fall in the hyperbrick whose upper right corner is at
(x1,%2,-..xg). If there are m samples in each direction then the number of points that must

be evaluated is N = mK points, where k is dimension of the parameter space. The x values
corresponding to the center of each hyperbrick are given by

4
m

X = ry=01,..m-1;i=12_.k 5.7
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For the simple indicator function it is possible to evaluate the Hammersley criterion directly
to give (Hammersley, 1960),

- . m?
! 3 231 7 [ 3 ]
~ () NS as N e
3k 4
For the Monte Carlo method with N points distributed at random over that unit hypercube
it is a straightforward task to determine the that corresponding average value of J is given

by

(5.8)

(2k 3k G

By comparing (5.8) and (5.9) it is possible to see that the uniform spacing approach is in
fact considerably worse that the random sampling and that the Monte Carlo method is much
superior for large N and k. In deriving these results no assumptions have been made about
the integrand in (5.4). If information is available about the functional form of g(x) then it
is possible to use this knowledge to develop a more efficient integration procedure.
Unfortunately in the case of airshed models the functional form of g(x) is not known,
however the key implication from the above analysis does apply. If we have to evaluate
moments of the distribution in order to assess the effects of data errors on predictions then
a uniform sampling procedure is not very efficient. A later section will address the question
if a uniform sampling procedure is 'bad’ then is it possible to find the 'best’ technique.

In addition to the question related to sampling the next practical issue is how many samples
are required to devélop stable estimates of the moments of the model output distributions.
Technically this issue is ascertaining the order of convergence of the procedure. If it is
known that the integrand g(x) is quadratically integrable then the simple Monte Carlo
method will have order of convergence,

o) = 5.10
(N) N (5.10)
If a set of functions, whose first-order partial derivatives,

dg o )

% % £ (5.11)

2 * ki
ox; Ox2 Xy
are all continuous and bounded in C, then there exists classical numerical integration or

quadrature formula which have an order of convergence

O(N) = Nl,d (5.12)
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As mentioned above, in the case of large dimension a uniform net is a poor choice.
However, if the class of functions is further restricted and the requirements of continuity
and boundedness of all those partial derivatives which contain no more than one
differentiation with respect to each of the independent variables are fulfilled then one can
construct a mesh yielding convergence of the order

= In*IN
o) = B (5.13)

Further details of the convergence properties can be found in Shreider et al. (1967).

5.3 Random Number Generator
The key conclusion from the previous section was that random sampling is a good
way to evaluate multidimensional integrals. Because of this it is important to look at the
procedures used for generating the random samples. The most commonly used method,
and the one used for this study, is the congruential method based on recursive relationship,
L1 = alj+c¢ (mod m) (5.14)
this equation produces a sequence of integers Iy,I5,I3,..., each between 0 and m-1. Here m
is called the modulus, and a and c are positive integers called the multiplier and the
increment respectively. The modulo notation (mod m) means that
L1 = alj+c¢ -mkj {5.15)
where kj = [(a Ij + ¢)/m)] denotes the largest positive integer in (a IJ- +c)/m. A seed, Iy, is
required for generating such pseudo-random integers. A more extensive description on the
pseudo-random points generator can be found elsewhere (Rubinstein, 1981; Press et al.,
1988; Halton, 1970). The generator used in this work is a function called rand(), which is
available from standard ANSI C language library. The library routine rand() employs a
multiplicative congruential random number generator with period 232 to return successive
pseudo-random numbers in the range from 0 to RAND_MAX. The default value of the
symbolic constant RAND_MAX is 215 - 1.

Figure 5.2 shows the distribution of 100 sample points generated by three different
techniques: uniform sampling, random sampling (Monte Carlo) and the results from a
newly discoved quasi-random number generator proposed by Wozniakowsky (1991). A
careful examination of the random sampling results (Figure 5.2a) shows that there are large
areas or 'holes’ where there are no sample points and some areas where the points are

tghtly clustered together.
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Figure 5.2 Two dimensional example of 100 (a) of pseudo-random points, (b) of
Hammersley Wozniakowsky points, and (c) of uniform net.

It is beyond the scope of this report to discuss the theoretical basis for Wozniakowsky
procedure but the key result is that the distribution of points shown in Figure 5.2b is in fact
optimal for evaluating expected value integrals of the form (5.2). The new technique
represents a major breakthough because the number of sample points needed to estimate the
integral is considerably less than the classical Monte Carlo procedure. The optimal set of
points resulted from a generalization of Van der Corput’s sequence from two dimensions to
k dimensions. A brief procedure of mechanism for generating such points will be given in
the following paragraph, more detailed theoretical background is presented in
Wozniakowsky (1991) and Halton (1960). The computer codes needed to use this
procedure are available from the authors.
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If R is any integer, then any other integer n can be written in radix-R notation as

n = nyipm.j...Nonng = ng+n; R+ny R2+ ... +ny RM (5.16)
where
= =|lnn
M = [logg n] [m R] (5.17)

the square brackets denoting the integral part. By reversing the order of the digits in n, or in
other words, by taking the mirror image relative to the decimal point, one can uniquely
construct a fraction lying between 0 and 1, and this function is commonly called the radical
inverse function, ¢, which is given as

@ = Qr(n) = O.ngnynz...ny = ng R +n; R2+ ... + ny R°M! (5.18)

The Van der Corput’s sequence of points in the unit square is given by (n/N,p,(n)) forn =
1,2,...,N. Hammersley (1960) suggested the k-dimensional sequence,

z(n) = (ﬁ- OR,(n), Pr,(n), ..., (ka_,(n)) for n=1.2,..N (5.19)
in which he takes Ry, Ry, ..., Ry to be the first k-1 primes.

In practical application, this sequence is not too convenient to use because the first element
in the sequence (5.19) unfortunately depends on N. One way around the problem is to
interative evaluate the integrals by successively adding sample points until the results
converge. The new Hammersley -Wozniakowsky procedure finesses the problem by using
the sample points

xk(n) = I - Z(n) (5.20)

The derivation of the computational complexity of (5.20) will not be repreated here but it
suffices to say that the number of sample points needed to achieve the same level of
accuracy as the Monte Carlo method is many orders of magnitude less.

5.4 Transformation of Probability Distribution

In the previous section a new procedure for generating sample points was
discussed. In order to be able to evaluate the technique it is important to compare it to the
conventional simulation methods. One of the difficulties encountered in practice is that
routines like rand() only provide uniformly distributed random numbers. In operational
practice the data values often have normal or log normal error distributions. A typical
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example might be a multinormal distributed random vector where X = (x,...,Xp), has a
probability density function (pdf} in the form,

f(x) = W exp[- L (- w7 27 (x- ) (5.21)
T

where | = (11;,....Hy) is the mean vector, 2 is the covariance matrix,

G11 :** O
=i : P (5.22)
cnl - cnn

The covariance matrix is positive definite and symmetric, IZl is the determinant of X, and -
1 jts inverse matrix. Equation (5.21) is commonly denoted by N(1,X). If the errors are of
the form (5.21) then there are two problems. One is how to develop normally distributed
random numbers and the other is how to deal with the fact that parameters are often highly
correlated.

The procedure used in this work to develop normally distributed random numbers is the
Box-Muller technique that uses two independent uniform random variates from zero to one,
U; and Uj, to obtain two independent standard normal deviates, Z; and Z,, by employing
the relationship,

71 = (-2In U} cos 21U,

Z; = (-2 In U} sin 27U,
The algorithmcan be formulated in two steps as follows,

(5.23)

1. Generate two independent random variates U1(0,1) and U;(0,1)
2. Compute Z; and Z, simultaneously by substituting Uy and U, in the
system of equations 5.21.

The result from this procedure are two independent standard normal deviates. An
independent standard normal deviates has an expected mean value equals zero and a
standard deviation equal to one. The algorithm can be obviously extended to obtain
independent multinormal distributed random vector. More details can be found in Devroye
(1986) and Rubinstein (1981).
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The second problem is how to deal with the correlation structure. For each
parameter usually p and X are known but wha is required is a set of values of x.Since X is

positive definite and symmetric, there exists a unique lower triangular matrix, C,

Ci1 0 0
C=| : "-. (5.24)
Cat -+ Cm
such that
r=CCT (5.25)

and so the vector x can be represented as a transformation from uncorrelated standard

multinormal random vector z
x=Cz+) (5.26)

The problem becomes how to to calculate matrix C if one knows the covariance matrix Z.
In this work the technique used is to employ Crout factorization. This method provides a
set of recursive formulas for computation of the elements of C. The algorithm is:

1. Generate z = (21,...,2p)
2. Calculate

i1
Gjj - 2. Cik Cik
k=1

€ = j-1 1/2 (5.27)
(Gﬁ - 2 o
k=1
where
0
Y cikcj =0, 1<j<i<n (5.28)
k=1

3. Calculate x =Cz + L.

A more detailed step by step description of that method is reported by Franklin (1965) and
a routine for calculating matrix C is available (Press et al., 1988).

5.5 Implementation of the Sampling Procedures

Figure 5.3 provides an overview of how individual modules in the CALGRID code
can be interfaced with the two sampling procedures, the conventional Monte Carlo
approach and the new Hammersley-Wozniakowsky (HW) technique. One key feature of
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the approach adopted in this study, that is not obvious from the flow diagram, is the data
storage technique. There are two approaches that can be employed. First, generate all the
requ1red random data points and then solve the model for each parameter combination at
each time point. Given all of the time histories corresponding to each parameter
combination then it is possible to determine the statistical properties of the concentration
predictions at each point in time. The data storage requirements for such an approach is
prohibitive. In this study we advance all the solution for each parameter combinations at the
same time, compute the new concentrations and then only store the desired statistical
moments. In the CALGRID model the use of a single master data array complicates the
task of interfacing the system with the sampling procedures. In this study we extracted
component modules and wrote interfaces for the sampling system.
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Figure 5.3 Flowchart of how the Monte Carlo and Hammersley Wozniakowsky
sampling procedures can be interfaced with a CALGRID module.



5.6 Application of Sampling to Airshed Modeling Problems

In order to illustrate the sampling procedures we applied them to a modified version
of the vertical transport section of the CALGRID model. The vertical transport module
ZTRANS.f solves the one-dimensional diffusion equation. The code was extended to
include first order chemistry for a typical species like SO2. We chose to include this
species because it has a decay time comparable to some of the longer lived organics and
with a suitable transformation it is possible to develop an analytic solution to the model to
test its accuracy. In the problem it is assumed that the errors in the input data are the
independent normally distributed random diffusivity coefficient D(w), the reaction constant
k(w), and the dry deposition velocity vg(w). The probler has mathematical statement,

2
9ezt®) _ 1y BN 4y ezt (5.29)
at 0z2
with initial conditions
c(z,0) = dw); t=0 (5.30)
and boundary conditions
D(w) _ac_w =(; z=H
oz
(5.3
vg(w) ¢(0,1,0) - D(®) M = E@); z=0

Z
The presence of variable @ in any term denotes the fact that the parameter values are
random variables or a sample points from the probability distribution. The emission flux
E(1) in (5.31) enters the airshed model at the ground. The diurnal variation of the flux and
its magnitude have been chosen to be representative of conditions occuring during the
SCAQS episode. The functional form of E(t) is given by

E(t) =ag + a1 Sin(o; t+ 1) + a2 Sin(az t) (5.32)
and its temporal evolution is shown in Figure 5.4. The value of each of the parameters and
their associated error distribution are given in Table 5.1. The numeric values are

representative of daytime conditions over urban airshed and the data errors are typical of
what might be encountered in practice.
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Figure 5.4 Emission profile for Vertical Transport module.

Table 5.1 Parameter Values used for Testing the CALGRID Model

Parameters Value
Number of nodes/element 2
Number of elements 13
H 1000.0 m
0 0.13 ppm
o 0.013 ppm
D 100.0 m2/s
oD) 20.0 m%/s
k 0.14 /hr
ok) 0.028 /hr
Vo 1.0 cm/s
C(vg) 0.2 cm/s
a) 0.039 g/m2-hr
a) 0.0266 g/m2-hr
az 0.05 g/m2-hr
o Il/6
o I124
1 1172
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As a first step both the Hammersley-Wozniakowsky and the standard Monte Carlo methods
were used to determine the effects of errors in the vertical diffusion coefficient on the
diurnal concentration profile. (1000 samples points were used for both methods.) The
nominal value case corresponds to setting the diffusion coefficient to its mean value and
holding it fixed at that value for the whole of the diurnal cycle. This is in fact similar to a
deterministic solution. The concentration mean value plot is the average value of all the
1000 concentration profiles derived from sampling different values of the diffusion
coefficient probability distribution. Figure 5.5 also shows the + 1 standard deviation
envelope corresponding to all the samples.

nominal value
—p—= .1 sid.dev.
——  + 1 sid.dev.
—¢—— mean value

v v 1 ' r Y T v
0 4 8 12 16 20 24
Time (h)

Figure 5.5 Diurnal variation of the ground level concentration of SO2 determined by
both the Monte Carlo and Hammersly-Wozniakowsky sampling procedures
for the case when there are only errors in the diffusion coefficient

i.e. o(D) = 20 %, o(k) =0 %, o(vg) =0 %.

There are two significant features apparent in the plot. One is that it is not possible to
distinguish between the results developed using the standard Monte Carlo procedure and
the Hammersley-Wozniakowsky (HW) technique. For the same level of accuracy the HW
method require an order of magnitude less sample points.

Without a doubt the most striking feature of Figure 5.5, and indeed for many of the plots to
follow, is that the uncertainty in the concentration predictions does not grow with time, in
fact it decays later in the day. This result is of critical important to the whole issue of how
to interpret and bound error propagation in airshed models. A common belief, and in fact
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often confirmed for systems of ordinary differential equations, is that initial errors often
undergo exponential growth to the point where the model loses any useful predictive
power. In this case there are lots of constraints on the system that arise from the physical
interplay between the source emissions, surface removal and chemical conversion
processes. For example at the end of the day even if there are large uncertainties in the
diffusion coefficient there is just not that much material left to be transported in the air
column.

Figures 5.6 and 5.7 illustrate an additional important point. In both cases the effects of a
systematic bias in the data was compared against the results when the parameter was treated
as a random variable. Figure 5.6 presents the predicted concentration profiles for errors in
the reaction rate constant. The + one standard deviation cases correspond to fixing the rate
constant at an upper (k+16) and a lower (k-10) value for the entire diurnal cycle. Under
these conditions there is a approximately a maximum of 20% uncertainty in the predictions.
Again it can be observed that the error grows and then decay. The systematic errors are
much larger than when the reaction rate is treated as a random variable. Similar results are
also observed for the dry deposition velocity case. The key finding is that if parameter
values are systematically biased high or low the error in the predictions can be higher than
if the parameters are treated as stochastic variables.

0.24
10 std.dev.
0.20 1
3
a
o
0.16
[}
Q
N
nominal value
0.12 1 —— -1 std.dev.
—a—— 41 std.dev.
—o— mean value
0.08 v T v T Y T v T v T T 1
0 4 8 12 16 20 24
Time (h)

Figure 5.6 Diumnal variation of the ground level concentration of SO2 determined by
sampling procedures for the case when there are only errors in the rate

constant coefficient 6(D) = 0 %, o(k) =20 %, o(vg) =0 %.
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Figure 5.7 On the ground concentration of SO; by Monte Carlo for 6(D) = 0 %, o(k) =
0 %, a(vg) =20 %.

Figures 5.8 - 5.10 show the vertical concentration at the end of 19 hours of simulation.
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Figure 5.8 Concentration profile of SO at time = 19 by Monte Carlo for 6(D) = 20 %,
o(k) =0 %, o(vg) =0 %.
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The results shown in Figure 5.8 are quite consistent with the physical processes occurring
in the atmosphere. If the diffusion coefficient is systematically high then the ground level
concentrations are reduced and the upper level ones are increased. In the case of Figure 5.9
it can be seen if the rate constant is systematically low then the amount of material left in the
vertical column is much higher. One interesting feature of Figure 5.9 is that it illustrate that
the average value of the concentration, derived from the random sampling, is not
necessarily the same as the profile derived using the mean value of the rate constant
distribution. There are important implications of this result for interpreting the outputs
when the parameters are set at the upper, nominal and lower limits. (The concentration
scales used in Figures 5.9 and 5.10 have been magnified to show the variation. The actual
variation in concentrations is much less than 30%.)
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Figure 5.9 Concentration profile of SO at time = 19 by Monte Carlo for o(D) =0 %,
o(k) =20 %, o(vg) = 0 %.
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Figure 5.10 Concentration profile of SO at time = 19 by Monte Carlo for o(D) =0 %,
o(k) =0 %, o(vg) = 20 %.

5.7 Conclusions

There are several key conclusions to be drawn from the preceeding analyses. The
first is that by using the new Hammersley-Wozniakowsky sampling procedure it is
possible to significantly reduce the number of model simulations needed to develop stable
estimates of the effects of data errors. One of the most critical findings is the fact that just
sampling from the extremes of the distributions considerably overestimates the likely
ranges in the predicted concentration variables. Without a doubt the most important finding
was the fact that uncertainties in the predicted concentrations do not grow exponentially
with time. In fact the uncertainties in the predictions arising from data errors decayed at the
end of each diurnal cycle. Considering the magnitude of the uncertainties in the predictions
arising from the data errors it is possible to conclude that just because there may be an error
in one of the data inputs it does not imply a similar level of uncertainty in the predictions of

the airshed model.
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