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1.0 INTRODUCTION
1.1 Overview

Urban ozone modeling techniques have matured significantly since the
original development work in the South Coast Air Basin two decades ago. Despite
much success, important problem areas remain. Possibly the most pressing is how
to determine whether a photochemical model performs well enough for use in

regulatory decision-making. There are several facets to this problem.

Many decision makers have limited confidence in the use of models in
the planning process, noting that ozone concentrations haven’t declined over the
last several years as much as models predicted they would (API, 1989). Many
counties and metropolitan areas identified by the United States Environmental
Protection Agency (EPA) in 1979 as non-attainment should have reached attainment
by 31 December, 1987. But only 39 percent of these areas met the ozone standard.
Is this a result of inadequate models and data bases? No doubt, part of the
answer is that many planned emissions reduction measures were not implemented
because control technology was not fully developed or was considered too cost-
ly. Some control measures were not as effective as originally thought; others
were not enfqrced. Nevertheless, many of the State Implementation Plans (SIPs)
understated the amount or type (e.g., oxides of nitrogen or reactivé organic

gases) of control needed as a result of inadequate data and models.

Sometimes the desired reductions in ozone concentrations predicted by
models are of the same magnitude as the prediction error. In such a case, can
the model be used to predict ozone attainment for such a metropolitan region?
Can photochemical models be used to assess the impact of single sources or the
effects of emissions control strategies involving only small emissions changes

over the urban area?

Often only one or two episodes are modeled and their representativeness
of the broader range of conditions is questioned. Thus, how many episodes must
be studied to test rigorously a proposed control program? Should the episodes

consist of severe ozone-producing conditions or should a few less severe episodes

1-1
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be studied? The Environmental Protection Agency (Schere and Shreffler, 1982)
suggest that the most stringent emissions control requirements may, in some
cases, result from less severe episodes. What, then, 1s the optimal collection

of episodes to model?

Traditional photochemical model performance evaluations do not provide
sufficient information to decision-makers about the suitability of a model for
use in regulatory applications (Dennis and Downton, 1984; Seinfeld, 1988a,b;

Tesche and Roth, 1988). Typical questions that arise are listed in Table 1-1.

Present photochemical model evaluation methodologies are largely
"operational.” They are not specifically designed to reveal flaws in the model,
the data base, or the procedures used to exercise the model. Instead, they are
aimed at quantifying the correspondence between predicted and observed ground-
level concentrations. While current operational evaluation procedures may
indicate to the decision-maker how well a model performed in an overall sense
relative to past, similar applicatioms, little direct information is provided

about the model’s suitability for predicting the effects of emissions reductions.

To date, there have been no standardized procedures for conducting
model performance evaluations. Also lacking are agreed-upon procedures for
rejecting simulation results. Past ozome modeling protocols have accepted
photochemical model results as "adequate” if the bias and error statistics were
"comparable” with those of previous, similar studies, but little attention was
given to whether the previous simulations adequately met policy-making needs.
Furthermore, previous model evaluations have not rigorously pursued sufficient
diagnostic tests (e.g., mass budgets and tests of precursor species) or
mechanistic evaluations (e.g., deposition and meteorological module testing) to

confirm that the ozone results are “correct for the right reason.”

New procedures are needed to deal with these issues. The performance
of photochemical models, judged by commonly-reported statistical procedures,
appears to have reached a plateau (Seinfeld, 1988a,b). Current photochemical

grid models reproduce hourly averaged ozone concentrations to within 30-35
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TABLE 1-1. TYPICAL QUESTIONS THAT ARISE IN PHOTOCHEMICAL MODEL
APPLICATIONS IN SUPPORT OF REGULATORY DECISION-MAKING.

. If successfully evaluated for a base case, does the model hold
for a significantly reduced level of emissions?

. What is the probability that a desired air quality level will
indeed be achieved, given the application of a deterministic model
to an inherently stochastic problem?

. Has the model been adequately "stressed” in prior testing, i.e.,
if it is significantly flawed, will it have failed demonstrably?
Have the evaluation tests been sufficiently stringent to cause a
flawed model to fail?

. What is the risk of underestimating or overestimating the impact
of a control strategy?

. What are the component uncertainties associated with the modeling
analysis and what is the aggregate uncertainty in the control
strategy requirement?

. Is an average error of, say 30 percent, in hourly averaged ozone
predictions low enough?

. Is a 10 percent underprediction bias acceptable when developing
multi-billion dollar emission control programs? How does one
account for this bias?

. How much confidence can be placed in a photochemical model simu-
lation exhibiting "good” ozone performance statisties when the
precursor and product species (NO, NO,, VOCs, PAN) are grossly
and systematically underestimated? '

. Does a model evaluation whose ozone performance statistics are
"comparable with other similar studies” provide any assurance
that the predictions are correct for the right reason or that
control strategies based upon the modeling will work?

. Can a photochemical model be used to demonstrate attainment when
the best estimate of its ozone prediction error is of the same
magnitude as the ozone concentration reduction needed to meet the
standard?

. No matter how well a model performs in a base case, can it be
trusted to predict the future consequences of a strategy imple-
mented now? )
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percent and the peak one-hour prediction is often reproduced to within 15-20
percent (Tesche, 1988). 1In spite of the wealth of routine statistics on model
bias, error, and correlation gained from literally hundreds of simulations, many
decision-makers have limited confidence in using models and their predictions
(Roth et al., 1989). To assist decision-makers further, model performance
evaluation methodologies need to be expanded to include diagnostic, comparative,

and mechanistic tests in addition to those currently being performed.

1.2 Review of Previous Work

Nearly a decade ago, the U. S. Environmental Protection Agency commis-
sioned several studies to develop procedures for evaluating photochemical grid
models. Among the relevant studies are those of Hayes (1979); Hillyer, Reynolds,
and Roth (1979); Bencala and Seinfeld (1979); Dennis and Downton (1982); Schere
and Shreffler (1982); Moore et al., (1983), and Tesche et al., (1983). These
and other investigators produced a set of quantitative and qualitative procedures

for evaluating photochemical model performance.

In a more general modeling context, the highly-regarded American
Meteorological Society (AMS) workshop on model evaluation developed a natural
hierarchy of performance measures and accompanying statistical methods (Fox,
1981). Eight types of graphiéal display methods were identified in addition to

the numerical procedures. The AMS procedures may be grouped as follows:

. Pearson moment éorrelation coefficient;

. Time lagged cross-correlation function;

° Goodness of fit tests for cumulative frequency distributions;
o Bias as measured by the average of the residuals;

° Noise gs measured by the variance of the résiduals;

s Gross error as measured by the root mean square error;
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. Vector differences in locations between the highest observed and

predicted concentrations; and

. Time differences between the occurrence of the highest observed

and predicted concentrations.

Because the AMS workshop was not restricted to photochemical grid models, it is
not surprising that several of the recommended numerical and graphical procedures
(e.g., correlation coefficients, vector difference plots) have not been widely
‘used in ozone model evaluations. Several performance measures not identified by
the AMS workshop or the earlier EPA studies have also been proposed, including
‘'ratios of prediction and observation; the percentage of predictions lying within
N-percent of the observation; least squares regression statistics based on
prediction and observation; largest positive and range of errors; coefficients
of variation of the residuals where the standard deviation is normalized by the
mean observation or prediction; distance distributions; and time series plots

using "best prediction” values for comparisons with observations.

Despite over a decade of accumulated experience in photochemical model
evaluation and refinement, there has been no focused attempt by regulatory
agencies, model developers, or others to derive a consistent set of evaluation
procedures from among the techniques in common usage, notwithstanding the widely

recognized need for such methodology. The major problem areas are:

. Lack of consistency among performance evaluations conducted by
different groups; for example, various definitions of ozone
"cutoff levels” or time periods over which performance 1is

quantified;

. Use of alternative definitions of certain key performance mea-

sures such as bias, error, or peak prediction accuracy;

. Ambiguous meanings of some correlation measures such as the

spatial correlation coefficient; and -

s
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. Inability of most measures to reveal clearly the existence of

model flaws, data base deficiencies, or both.

This study attempts to fulfill this need for a comnsistent set of evaluation
procedures and to provide a basis for addressing current issues including those
previously identified. Results of this study may be incorporated into the ARB's
guidelines on photochemical modeling in California (ARB, 1989).

1.3 Study Objectives

Our goal in this study is to establish the basis for consistent
photochemical grid model performance evaluations in the near term and to provide
a framework for performance evaluation research over the longer term. The

specific study objectives include:

° Develop improved evaluation procedures for photochemical grid
models;
. Develop evaluation procedures supporting regulatory decision-

making concerning ozone control programs;

° Develop new procedures consistent with improved aerometric data
bases such as the Southern California Air Quality Study (SCAQS);

and

* Exemplify the use of the recommended procedures and performance

measures.

We have attempted to develop a sound framework for photochemical model
performance testing, incorporating several procedures and measures that have
proven useful in the past. These existing procedures are supplemented with new
methods where appropriate. Specific suggestions are made on how additional,
newer evaluation procedures and measures may be developed as measurement data

bases become more robust and as the discipline of model evaluation matures. The
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evaluation methodology suggested here will require wupdating as improved

information and procedures become available.

1.4 Report Structure

Section 2.0 of this report presents the statistical and graphical
performance evaluation procedures that we recommend for routine use in
photochemical modeling studies in California. Included is a set of diagnostic
simulations that should accompany the performance evaluations. Tabular and
graphical examples of many of these measures are provided to suggest ways in

which the results might be portrayed.

Section 3.0 discusses diagnostic model evaluation methods. Strongly
recommended for routine pérformance evaluations, these procedures are intended
to-dqyelop greater insight into the strengths and weaknesses of a particular
model, data base and photochemical simulation than is afforded by the routine
procedures suggested in Section 2.0. In difficult modeling situations such as
the South Coast Air Basin and the San Francisco Bay Area, many of the diagnostic
procedures presented in Section 3.0 are an essential component of the overall

performance evaluation process.

Recognizing that photochemical modeling is a dynamic process,
Section 4.0"addresses emergent and longer term performance evaluation issues and
research needs. In some cases, these needs have been identified for some time;
only recently have data bases and numerical modeling techniques become available
to address them. In time, some of the research needs discussed in Section 4.0
will be addressed successfully, leading to an improved set of model and data base

testing procedures.

Section 5.0 contains the Summary and Recommendations. We provide an
expanded bibliography on photochemical modeling in Section 6.0 in lieu of a
reference section to aid individuals in locating potentially relevant

photochemical modeling studies.
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1.5 Definition of Terms

Several different terms are used in the literature to refer to the
mixture of organic compounds that are emitted from natural and man-made sources
and that react in the atmosphere to form ozone. Terms such as non-methane
hydrocarbons (NMHC), reactive hydrocarbons (RHC), volatile organic compounds
(VOC’s), reactive organic gases (ROG), and non-methane organic compounds (NMOC)
are occasionally used interchangeably to describe the mixture of compounds that
are emitted from sources, measured in the atmosphere with instruments, or are
simulated with mathematical models and chemical mechanisms. In this report we
use ROG to refer to emissions of reactive organics (expressed in units of mass
per time) and VOC to signify the volumetric concentration of species measured

in the atmosphere or simulated by photochemical models.
Another set of definitions relates directly to performance evaluation.
Following are the definitions of specific terms that are used repeatedly

throughout this report:

Accuracy: The degree, usually expressed in percent, to which a one hour average

prediction deviates from the corresponding hourly-averaged measurement. The

predicted value may be the highest one hour concentration during the episode,
the peak value at a given monitoring station, or some other value.

Bias: The first moment of the distribution of concentration residuals. Bilas

provides a measure of the overall tendency of the model to over- or underestimate

the observed concentration fields.

Comparative Evaluation: An intercomparison between two different photochemical
models or different modules (e.g. wind field generators, mixing height
algorithms, chemical kinetic mechanisms) using the observed fields as the

standard against which the intercomparisons are made.
Cutoff Level: A predetermined observed concentration level below which pairs
of predicted and observed values are not considered in calculating various

statistical relative difference measures. The cutoff level is used to avoid

1-8



unduly influenecing the calculation of relative difference measures by allowing
near zero observed concentrations to appear in the denominator of certain
performance measures. Although inherently arbitrary in specification, previous
studies have generally set cutoff levels of 6 pphm for ozone, 2 pphm for NO and

NO,, and 1 pphm for VOC concentrations. These values are suggested here.

Diagnostic Evaluation: An assessment of a model’s ability, when functioning as
a whole, to predict specific details or processes occurring during a photochemi-
cal episode (e.g., dispersion patterns, deposition rates). The events and tests
are specifically chosen to challenge the science in the model. Specific focus
is on detailed examination of how well individual components of the model (i.e.,

. modules) simulate actual atmospheric processes.

Error: The mean absolute deviation among the hourly-averaged predicted

concentrations and the corresponding measurements.

Mechanistic Evaluation: An assessment of the ability of an individual process
modules’ ability to reproduce the observed salient features of the process. When
applied to all process modules that constitute the full model, it represents a

test of the correctness of the underlying science.

Model Evaluation: Part of the continuing process of model development, data
collection, model testing, diagnostic analysis refinement, and retesting. While
a single evaluation cannot validate a model, it can raise serious doubts about
the model’s adequacy. Model evaluation represents testing of a model'’s ability
to predict accurately observed measures of air quality over a range of air

quality and meteorological conditions.

Model Validation: A potential outcome of the process of model evaluation and
verifications. The "validity” of a model refers to how well model predictions.
would agree with the appropriate observations given a perfect specification of
model inputs. Validity refers to the inherent quality of the model formulation.
Model validation is the establishment of a conclusion by detailed and copious
evidence that leads to formal recognition. This may include several model

performance evaluations,
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Model Verification: A successful or positive outcome of the model evaluation

process. Verification is ﬁ}oof of the accufacy, reality, or truth of the model.

Operational Evaluation: An assessment of a model’'s ability to predict the
correct answer whether or not the process descriptions in the model are accurate.
It is an examination of how well a model reproduces observed concentration fields
in time and space consistent with the needs of policy analysis or regulatory

decision making.

Performance Evaluation: The process of testing a model’s ability to predict
accurately observed measures of air quality over a range of meteorological and
air quality conditions. Testing the predictive capabilities of supporting models
or modules, such és chemical mechanisms and wind field models, is an important

component of performance evaluation.
Precision: The second moment of the distribution of concentration residuals.

Residual: The difference, in units of concentration, between a predicted value
and the wvalue observed at a monitor at the same location and time. The
concentration residual forms the basis for all difference measures used in this

study.

Sensitivity Analysis: The process of studying (through numerical simulation)
the influence on model predictions due to variations in one or more model inputs,
including emissions, meteorological, or air quality parameters. Omne component
of sensitivity analysis is the variation of inputs over their range of
uncertainty in order to develop estimates of the range in predicted concentra-

tions associated with to these input uncertainties.

Variance: The second moment of the distribution of concentration residuals.

This statistic is commonly used as a measure of the precision of a simulation.

Mathematical definitions and procedures for estimating-and interpreting these

quantities are addressed in the following three sections.
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2.0 OPERATIONAL MODEL PERFORMANCE EVALUATION PROCEDURES

Before a photochemical model may be applied to simulate the effects of
emissions controls, it is appropriate to assess whether the model adequately
reproduces the chemical and physical processes governing urban-scale ozone
concentrations. Referred to as model performance evaluation, this assessment
involves the compilation of emissions, meteorological, air quality and chemical
data, drawn from an historical ozone episode, and the use of this information
in the exercise of the model. Through various statistical and graphical means,
the model predictions and air quality observations are compared to determine the
"fidelity” of the simulation. The first set of simulation results seldom
provides a level of correspondence with the observations that is judged to be
adequate. Consequently, the model inputs and outputs are reexamined to ascertain
the cause(s) of poor performance. Where modifications to the inputs or model
algorithms are justified, these changes are made and the photochemical model is
re-run. This process is repeated until adequate performance is achieved or until

no further modifications to the model inputs can be justified.

Specific numerical and graphical procedures are recommended in this
section for operational evaluation of the performance of grid-based photochemical
dispersion models. The methods suggested include the calculation of certain peak
prediction accuracy indices, various statistics based on concentration residuals,
and time series of predicted and observed hourly concentrations. Graphical
procedures are suggested to complement the numerical measures, providing
additional insight into model performance. Finally, a minimum set of six
diagnostic simulations are recommended as part of operational performance evalua-

tions. These procedures are listed in Figure 2-1.
2.1 Numerical Procedures
Ten numerical measures may be used to typify a model’s overall

performance in a photochemical simulation. Several of these measures, involving

specific comparisons between hourly predictions and observations, have been used

o
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Operational
Performance
Evaluation

Numerical
Measures

Graphical
Procedures

N

¢ Paired Peak Prediction
Temporally-Paired Peak Prediction
Spatially-Paired Peak Prediction
Unpaired Peak Prediction

Average Station Peak Prediction
Bias

Variance

Gross Error

( Time Series Plots
Ground Leval Isopleths

Scatter Plots ot Predictions and
Observations

Scatter Plots of Residuals and Observations

Diagnostic
Simulations

Bias Stratified by Concentration

Gross Error Stratified by Concentration
Bias Stratitied by Time

\ Gross Error Stratified by Time

( Zero Emissions
Zero Initial Conditions

Zero Boundary Conditions

Zero Surface Deposition
Mixing Heights Increased 50%
L Wind Speeds Reduced 50%

Figure 2-1. Recommended Operationail Performance
~ Evaluation Measures and Procedures.
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extensively in past performance evaluations, though not always consistently.
As shown in Figure 2-1, the measures involve thé accuracy of peak one-hour
average prédiction, bias, variance, and error. These measures may be appiied
to any primary or secondary pollutant for which adequate monitoring data are

available. e e A e e D T T T ey s imepumaegpgs.

AR Al O e O L C S D e einuiieier
2.1.1 Accuracy

The accuracy of a photochemical model’s prediction of peak one-hour
average concentrations may be estimated in five ways. Several accuracy measures
are proposed because there are different ways of defining "peak” concentrations.
These five measures provide useful tests of a model’s performance, particularly
from a regulatory perspective, but they convey only a portion of the information
needed to assess the overall adequacy of a model simulation. The real value of
the five measures will likely be determined only after their usage in a number
of photochemical model evaluation studies by various groups of investigators.

.
-

Paired Peak Prediction Accuracy. The paired peak prediction accuracy, A, is

given by:

) cn(}:rt‘.) - co(£:£)
A, = : x 100% (2-1)
o (%, t) '

where ¢, is the predicted one-hour pollutant concentration, c, is the observed
hourly averaged concentration, X refers to the peak monitoring station location, t
is the time of the peak observation. The caret, ~, denotes the time or location
of the maximum observed concentration. A;; quantifies the discrepancy between
the magnitude of the peak one-hour average concentration measurement at a
monitoring station, ¢, (i,E), and the predicted concentration at the same
location, %, and at the same time, t. Predictions and observations are thus
"paired in time and space.” The paired peak prediction accuracy is a stringent

model evaluation measure. It quantifies the model’s ability to reproduce, at
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the same time and location, the highest observed concentration during each day
of the episode.

There are at least three different definitions of the "predicted” con-
centration that may be used in calculating the accuracy measures and other

statistics. These three procedures are discussed later in Section 2.2, i

Y - - - -

mpemwwmeter. (Press et al., 1986) of the predictions in the nearest four grid
cells. Obviously, the monitoring station will fall within one of the four grid
cells. Other, higher order interpolation schemes might be used (e.g. bicubic
1nterpolatlon inverse distance square weighting, bicubic spline) but these more
sophisticated methods are not justified in light of the models minimum

theoretical spatial resolution of approximately two grid cells.

A,, is very sensitive to spatial and temporal misalignments between the
predicted and observed concentration fields. These space and time offsets may
arise from spatial displacements in the transport fields resulting from biases
in wind speed and direction, problems with the “timing” of photochemical
oxidation and removal processes, or subgrid-scale phenomena (e.g., ozone

titration by local NO, emission sources) that are not resolvable by the model,

Temporallv-Paired Peak Prediction Accuracy. The temporally-paired peak pre-

diction accuracy, A,, is given by:

Co(X,E) - ColX, )
A, - x 100% (2-2)

co (X%, 1)

A, quantifies the discrepancy between the highest concentration measurement at

AT it 111 heavily populated air basins in California such

as the South Coast, South Central Coast, and Bay Area, often there are three or

more monitoring stations within a 25 km radius.
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it @™ Coupled with other performance measures, it provides some

insight into the reasonableness of the model’s chemical transformation processes

that lead to concentration maximum.

Relaxation of the spatial-pairing requirement (compared with A;;) may

be appropriate if the spatial offsets between predicted and observed

concentrations are the AT A R PR TR

dwewema. In large air basins or where different subregional source-receptor flow
patterns exist,

the monitor where the highest prediction occurs may not

correspond to the location where the highest observation was recorded. For

example, in the South Coast Air Basin, it is inappropriate to calculate A, based

on a peak measurement at Riverside (the eastern basin) and a peak prediction at

Reseda (in the San Fernando Valley). SR oNi e et ———.

Y »

. - -

As
noted, a maximum distance of 25 km is suggested as an estimate of subregion size,
although this criterion may need to be revised depending upon the air basin and
its specific monitoring network.

Spatially-Paired Peak Prediction Accuracy. The spatially-paired peak prediction

accuracy, A,, is given by:

co(X,t) - c,(%,t)
A, = x 100% (2-3)
c.(%,t)

A; quantifies the discrepancy between the magnitude of the peak one-hour aver-
age concentration measurement at a monitoring station and the highest predicted

concentration at the same monitor, A s gl e PR S,
S e e T etk i i, b 2.5 & i

on review of typical predicted and observed ozone time series profiles in several

California air basins. e e e N S e b
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inbairereti—ywpwbndiase When interpreted along with other performance
quantities, this measure may provide some insight into the reasonableness of the

simulated transport processes leading to the concentration maximum.

Relaxation of the temporal-pairing requirement (compared with A;.) may
be appropriate if the causes of temporal offsets between predicted and observed
concentrations result from circumstances that do not compromise the model’'s
utility in control strétegy evaluation. For example, situations involving
extended transport times across large air basins, multiple-day episodes with
significant pollutant recirculation, or episode days with considerable air mass

stagnation prior to the time of the ozone peak may be difficult for a model to

ek e [t is not uncommon to find a one to two hour offset between

predicted and observed ozone maximum.

Unpaired Peak Prediction Accuracy. The unpaired peak prediction accuracy, A,,

is given by:

cp(x,t) - co(;hy;:) N
A, - x 100% (2-4)
S (x,T)

A, quantifies the difference between the magnitude of the peak one-hour average
concentration and the highest predicted value in the modeling domain. The
unpaired peak prediction accuracy tests the model’s ability to reproduce the
highest observed concentration anywhere in the region. This is the least
stringent of the four peak prediction accuracy measures introduced thus far.
This measure quickly identifies situations where the model produces maximum ozone
concentrations in the air basin that significantly exceed the highest observed

values within the network.

2-6



Average Station Peak Prediction Accuracy. The average station peak prediction
accuracy, A, is given by:

- )
A= X |laal (2-5)

where:

Cp(ﬁnt) - co(;{h%)
Ay = x 100s% (2-6)
co(x|lt)

A is the mean of the spatially-paired peak prediction accuracies wiigisipiietinems
et asbeakaatL00S, A is calculated from Equation 2-5 by first

determining the spatially-paired peak prediction accuracy at each monitoring
station, A, based upon Equation 2-6. Swimsresemmo TS I &b O i,
i . . ] - e , e a
e

The average station peak prediction accuracy is simply the mean of the

absolute value of the A, scores (Equation 2-6). deetettinelcmmhbsmgumn
Lall g p———— — ! ]
instead of the temporally-paired metric, in part because the former has been used
far more often in evaluation studies. As noted earlier, the temporal offset
between predicted and observed maxima at any mor{itoring station should not exceed

three hours.

The average station peak prediction accuracy describes how well the

maximum concentrations at individual stations throughout the monitoring network

are reproduced. <iviementiiGmicehbidinitg < s .

By itself, A does not reveal the adequacy of a simulation for regulatory proposes

because the averaging process ikttt
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2.1.2 Mean Bias

The mean bias (sometimes called the mean bias error) is calculated as
a residual quantity and as one that is normalized by the observed concentrations.

The non-normalized bias, D, is given by:

1 N
D = —N_ Z (cn(xlvt) = co(xiat)) (2'7)

imi

where N equals the number of hourly prediction-observation pairs drawn from all

monitoring stations for the particular day. The normalized bias is:

* 1 N (ep(x,t) - c(x,,E))
D=-—x z e (X, t) (2-8)

The bias is based on the average signed deviation of the concentration residuals.
It indicates the degree to which predicted one-hour concentrations are over- or
underestimated. Based on the ensemble of prediétion-observation pairs, this
measure reveals the presence of systematic deviation from observed concentra-
tions. Both non-normalized (Equation 2-7) and normalized estimates (Equation
2-8) of blas are recommended. The former provides an indication of the overall
tendency of the model té over- or underestimate in units of concentration. Model
prediction bias may thus be compared directly with the ozone design value and
ambient air quality standards. The normalized bias is very useful because it
facilitates direct comparisons between different diagnostic simulations of a
given episode and comparisons between photochemical model performance across

different urban areas experiencing widely varying concentration levels.

Bias estimates are useful in identifying systematic errors in the
model’s temporal or spatial response. Because the bias reveals the tendency for
systematic over- or underestimation, it should be zero in the ideal case. Both
normalized and non-normalized (absolute) quantities should be feportgd, in part

to facilitate comparisons with other studies where the range of concentration
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levels differs. For the most part, the mean normalized bias is of greater
regulatory interest so, hereafter, we refer to it as simply the bias.

Bias estimates provide little direct insight into systematic under-or
overestimation problems that may exist on a subregional basis, or within specific
time periods during the diurnal cycle. By itself, the bias sheds little light
on the causes of the systematic under- or overprediction, and in fact, low
estimates may conceal significant bias. It is possible, for example, for a model
simulation to exhibit strong underprediction in one region and strong
overprediction in another region. On average, the regionwide bias estimate could
be zero, yet significant local biases would still remain. Small or zero bias
thus does not guarantee good model performance since large gross errors (and
variance) can accompany a zero first moment. Obviously, bias must be interpfeted

carefully along with the other residual measures.

+

2.1.3 Variance _ B > -
B * g
o

-

The variance of the tesidual distributién,gsﬁ, is given by:

.. 1.2 .
Sy = N-1 Z (d; - D)*- (2-9)

where the concentration residual is defined as:
d‘i - Cp(xnt) = co(xixt) (2°10)

and D is the first moment, i.e., the mean non-normalized bias. This statistic
describes the "dispersion” or spread of the residual distribution about the mean.
The variance is calculated using all prediction-observation pairs above the
cutoff level. The variance is the second moment of the residual distribution,
whereas the standard deviation is simply the square root of the variance. It
measures the average "spread” of the residuals, independent of any systematic

bias in the predictions. No direct information is provided about subregional
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errors or about large discrepancies occurring within portions of the diurnal

cycle,
2.1.4 Gross Error

The mean gross error is calculated in two ways, similar to the bias.

The mean absolute gross error, E,, is given by:

1 N
Ee = L |G(xi,t) - colxi, B) (2-11)

The mean absolute normalized gross error is:

* 1 N I(CD(Xi,t) = co(xl!t))| |
Ea = Z (%, ©) 212

i=1

The gross error quantifies the mean absolute signed deviation: of the
concentration residuals. It indicates the average (signed) discrepancy between
hourly predictions and observations. Gross error is ome of the most useful
single measures for comparing different model simulations. Normalized and
absolute (non-normalized) estimates of the gross error should be reported, but
the normalized value is generally the more useful in assessing the quality of
a specific simulation. Gross error is a robust measure of overall model
performance and provides a useful basis for comparison among model simulations
across different air basins or ozone episodes. Compared with the variance, the
gross error is somewhat less sensitive to extreme values (Fox, 1981). It
provides no direct information about sub-regional errors or about large

discrepancies occurring within portions of the diurnal cycle.

2.1.5 Use of the Numerical Measures

Ten numerical measures have been suggested for operational performance

evaluations. Their estimation and interpretation serve two main purposes.
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First, and most important, these measures provide a basis for judging whether
a photochemical simulation is an adequate representation of the episode modeled.
A subset of the ten numerical measures, identified below, appeaf well-suited for
this purpose. Second, routine reporting of the full set of measures will add,
in time, to the growing knowledge base for this class of atmospheric models.
In particular, recent, comprehensive surveys of photochemical model evaluation,
sensitivity, and uncertainty studies have revealed a lack of uniform procedures
for quantifying model performance or for reporting sensitivity/uncertainty
simulation results (Tesche, 1988; 1989). By adopting, consistently reporting,
and archiving results from a standardized set of performance measures, the
modeling community will develop a data base against with which new performance
evaluation studies may be compared. Not only will this data base facilitate
judgements regarding the acceptability of new modeling results, but it will also
provide much needed information on the causes of model failures so that these

situations may be avoided in the future.

Four numerical measures appear to be most helpful in making an initial

assessment of the adequacy of a photochemical simulation. These include:

. The paired peak prediction accuracy, A;

. The unpaired peak prediction accuracy, A,;

. The mean normalized bias, D*; and

. The mean absolute normalized gross error, E:

These measures alone are insufficient in many cases to describe adequately a
model’'s performance. Where this occurs, the full set of operational measures,
together with the graphical procedures and diagnostic simulations will provide
additional, useful information. Section 2.4 addresses the difficult issue of

setting model performance standards.

Confidence intervals or statistical significance tests are specifically
not recommended as part of operational performance evaluation. The computation
and interpretation of statistical significanée for photochemical model results
is fraught with a number of uncertainties and potentially stringent limitations

(e.g. statistical independence, distributional assumptions), and interpretation
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of results based on these assumptions can be very misleading. Preisendorfer and
Barnett (1983) characterize this problem well ”...because the sample is small
and its parts may not always be statistically independént, one cannot confidently
rely on any one of the classical continuous probability demsity functioms such
as the normal, Student-t, chi-square and F-distributions. The limited
populations. of real fields and associated computer-generated fields are too
sparse and statistically interdependent to allow one confidently to assign the
normal distribution or its relatives to stand in for the - probability

distributions actually encountered”.

A much more illuminating scientific evaluation can be derived from
analysis of the residual measures, graphical results, and diagnostic simulations
suggested here. Assessment of the adequacy of model results should be based on
the summary and residual measures and graphical information, knowledge of model
sensitivity to perturbations in key inputs, an understanding of the theoretical
formulation and numerical implementation of the model, and knowledge of the
structure and uncertainties in the various input data bases. Givén the present
limitations of statistical testing with sparse data sets, as applied to
photochemical model predictions, reliance on confidence bands and statistical
significance tests raises umnnecessary risks of inappropriate rejection of

adequate model results or the converse.

2.2 Graphical Procedures

Certain features of a photochemical grid model simulation are best
analyzed through graphical means. In addition to revealing important qualitative
relationships, graphical displays also supply quantitative information. Nine

different graphical methods are suggested to display:

. The relationship between the five accuracy measures;
. The temporal correlation between predictions and observations;
. The spatial distribution of predicted concentration fields;
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. The correlatiofi between hourly pairs of predictions, observations

and residuals;

. The variation in bias and error estimates as functions of time

and space; and

] The degree of mismatch between model predictions and point

measurements.

th of the recommended graphical procedures is described in the following
:tion together with examples of suggested plotting methods.

1 Accuracy Plot

‘ Two accuracy plots are recommended. One depicts relationships between
: five accuracy measures introduced earljer while the other plot summarizes
: .peak prediction accuracy at all monitoring stations, revealing the presence

»
subregional prediction bias if it occurs.

Figure 2-2 is a histogram that displays the calculated values of A,

A,, A,, and A. In the example shown, all but the unpaired accuracy estimates

: negative, indicating an underestimation of peak ozone. The positive wvalue

A, results from a model prediction in a grid cell that exceeds the highest
asurement in the network by about 7 percent.

Figure 2-3a is a histogram plot showing the peak observed and predicted
1centrations (unpaired in time) at each monitoring station above the cutoff
acentration. Figure 2-3b contains values of A, calculated at each monitoring
ation. The shaded region corresponds to the normalized gross error calculated
o>m Equation 2-12. The dashed line in Figure 2-3b corresponds to the mean
rmalized bias, calculated from Equation 2-8. Both the bias and error
atistics are included on the plot for easy reference. Where feasible, the
dering of the stations on the plot may correspond to the predominant wind flow
rection from the primary source region to the downwind receptor locations.

us, monitors within the high emission source region(s) are plotted on the left
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Mean Bias = -7.1%
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and those in the receptor locations are plotted on the right. Alternatively,
the grouping may be made by geographical subregion. Figure 2-2 reveals directly
the degree of improvement in peak prediction accuracy as the requirements for

temporal and spatial pairing are relaxed.

2.2.2 Time Series Plots

Probably the most useful graph for depicting photochemical model
results is the time series plot. Developed for each monitoring station for which
observed concentrations are available, this plot presents the hourly predictions
and observations throughout the simulation period. As shown in Figure 2-4, the
time series plot consists of the hourly averaged observations (the solid circles)
and the hourly averaged predictions, the latter being fitted by a smooth
continuous line. Heré, the predictions represent the four-cell weighted average.
At each hour, the absolute value of the concentration residual (Equation 2-10)
is calculated and plotted as a dashed line on the same plot. Alternatively, the
hourly residual may be plotted as a signed quantity, thereby providing even more
information than the absolute residual, but this will require a somewhat more
complicated graphical presentation. The time series plot in Figure 2-4 may be
enhanced by including the average residual over the day together with the maximum
predicted and observed values. These latter statistics are not shown in the

Figure 2-4 example.

Time series plot are very useful. One may determine the model’s
ability to reproduce the peak prediction, the presence or absence of significant
bias and errors within the diurnal cycle, and whether the "timing” of the
predicted concentration maximum agreeé with the observation. By including the

residual plot on the same graph, prediction biases are more apparent.

2.2.3 Spatial Time Series Plots

Conventional time series plots do not reveal situations where the model
predicts concentrations comparable in magnitude to the observations a short

distance away from the monitoring station. A second time series display, called
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a "spatial time series plot”, is recommended for this purpose. These plots
provide information about the degrée to which model discrepancies result from
the procedure for selecting the predicted values. There 1s no é priori reason
to select the four-cell weighted average prediction over the prediction in the
specific grid cell containing the monitor (i.e., the "cell value”), or perhaps
the grid cell prediction within any of the four adjacent cells that is closest
in magnitude to the observed value (i.e. the "best” estimate). Thus, additional
spatial time series plots may be constructed for each monitoring station by

plotting the hourly observations together with three sets of model predictions:

. The four cell weighted average ("weighted");

e The prediction in the grid cell containing the monitor ("cell”);
and

. The prediction closest in magnitude to the observed value, where

the prediction at a given hour is drawn from one of the four

nearest grid cells ("best”).

Figure 2-5 gives an example of a spatial time series plot. An option with this
plot (mot shown) is to graph the hourly maximum difference between the largest
and smallest of the three predicted values, in a manner analogous to the residual

curve shown in Figure 2-4.

The spatial time series plot provide useful diagnostic information
about the "steepness” of the concentration gradients in the simulated fields.
Small differences between the three curves in Figure 2-5 indicate relatively flat
concentration gradients. Conversely, steep gradients may produce fairly large
differences between weighted, cell, and best predictions. Sometimes, calculated
measures such as bias and error may not be greatly dependent upon the method of
choosing the predicted value (e.g., the four-cell weighted average) and this can
be determined directly from these plots. Spatial time series plots are one
method of revealing the correspondence or " commensurability” between volume-
averaged model predictions and point measurements. We address this subject of

commensurability in greater depth in Section 4.0.
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2.2.4 Ground Level Isopleths

Ground-level isopleths (Figure 2-6) display the spatial distribution
of predicted concentration fields for -any selected hour. Combined with time
series plots, these isopleths are a very useful method for investigating
photochemical grid model results. The isopleth plots are developed by computer-
contouring the hourly, gridded model predictions. The information content of

these plots is enhanced by including the following:

. A base map identifying significant geophysical and political
boundaries;

° Locations of air monitoring stations;

° The observed concentrations at each monitoring station by a bold

numeral;

. The location of the peak prediction (signified by an asterisk);
~and

* The magnitude of the peak grid cell prediction.

These isopleths supply direct information about the magnitude and location of
pollutant concentrations, and help to identify situations were sub-regional
biases may be attributed to spatial misalignment of the predicted and observed

concentration fields.

2.2.5 Scatter Plot of Predictions _and Observations

Scatter plots are a familiar means of visually assessing the extent of
bias and error in hourly prediction-observation pairs. The scatter plot in
Figure 2-7 is developed by plotting all hourly-averaged prediction-observation
pairs for which the observed concentration exceeds the cutoff value. Similarly,
Figure 2-8 is developed from the pairs of maximum hourly predicted and observed

values at each monitoring station. The predicted maximum is the highest value
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simulated within three hours of the observed maximum. In these plots, the solid
diagonal line is the perfect correlation line and the dashed lines enclese the

region wherein predictions and observations agree to within a factor of two.

The scatter plot gives a quick visual indication of the extent of over-

or underestimation in the hourly predictions and whether there appear to be

noticeable nonlinear relationships between predictions and observations over the
concentration range studied.” Bias is indicated by the preponderance of data
points falling above or below the perfect correlation line. The dispersion
(spread) of points provides a visual indication of the general error pattern in
the simulation. Scatter plots help identify outlier prediction-observation
pairs, i.e., a seemingly discrepant prediction-observation pair that may result
from erroneous data, a fundamental flaw in the model, or some other cause that
requires investigation. These plots provide little diagnostic information about
sub-regional performance problems, temporal or spatial misalignments, or other
inadequacies in the simulation. In addition, scattérplots do not reveal the

temporal correlation between various prediction-observation pairs.

2.2.6 Scatter Plot of Residuals and Observations

Residual scatter plots reveal the distribution of hourly average model
discrepancies (pésitive and negative) as a function of concentration level. This
is a graphical display of the data elements that make up the bias and error
calculations. Hourly concentration residuals for all monitoring stations are
plotted as a function of observed concentration for all pairs above the cutoff
value. Figure 2-9 depicts the hourly residual scatter plot. The daily maximum
residual plot (Figure 2-10) is based on data pairs involving the maximum observed.
concentration at a monitor station and the maximum predicted value at the same

station within three hours of the peak.

Residual scatter plots describe prediction discrepancy throughout the

observed concentration range. The plot does not reveal the existence or causes
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of sub-regional or timing performance problems. Absence of bias is suggested
by no systematic tendency for the data points to fall above or below the
ordinate; however, as noted previously, important subregional biases may still

exist in the presence of a zero overall bias estimate.

2.2.7 Bias Stratified by Concentration

The bias-concentration plot, derived from the residual scatter plot in
Figure 2-9, depicts the degree of systematic bias in hourly-averaged model
predictions (paired in time and space) as a function of observed concentration
level. This plot (and the companion error-concentration plot) have proven to
be among the most useful graphical aids in diagnostic model evaluation.
Figure 2-11 shows a bias-concentration plot. The observed concentration range
is divided into several equal-sized concentration bins and the normalized bias
within each bin is calculated from Equation™2-8. The bin average biases are then
plotted as a function of concentration level. Although not shown in Figure 2-9,
one may include the mean normalized bias statistic on the plot for easy

E )
reference.

The bias-concentration plot reveals the existence of under- or over-
estimation throughout the concentration range. The frequent situation of under-
estimations at the low concentration end and overprediction at the high end,
masked in the overall bias statistic (Equation 2-8), are revealed directly in

Figure 2-11.

2.2.8 Gross Error Stratified by Concentration

The gross error-concentration plot, also derived from the residual
distribution, depicts the degfee of error in model prediction (paired in time
and space) as a function of observed concentration level. The observed concen-
tration range is divided into several equal-sized concentration bins. Then,
average value of the normalized gross error (Equation 2-12) within each bin is
calculated. Bin averages are plottéd as a function of the observed concentra-
tion level as shown in Figure 2-12. One may wish to print the mean normalized

gross error in Figure 2-12 for easy reference.
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The gross error-concentration plot reveals the variation in model error
at various intervals throughout the concentration range. The plot must be
interpreted carefully, however, remembering that the concentration residual is

normalized by the observed value.

2.2.9 Bias Stratified by Time

The bias-time plot identifies specific time periods within the
photochemical simulation when systematic tendencles toward under- or
overestimation occurs. The bias-time plot is constructed in a manner similar to
the bias-concentration plot, except that the simulation period is discretized
into a number of time intervals, usually 1-2 hours in duration. An example of

this plot is shown in Figure 2-13.

Systematic bias in model predictions during specific periods within the
diurnal cycle may have several causes: microscale chemical interactions between
fresh emissions and ambient concentrations; biases in vertical mixing or wind
transport; "timing” problems with the chemistry; non-representative temporal
distributions assumed in the emissions inventory, and so cn. While the bias-
time plots may not clearly pinpoint the causes of bias, they do aid in defining
the time intervals when the bias is most apparent. This helps focus subsequent
diagnostic investigations. Also, use of the three methods for reporting the
model prediction (e.g. weighted, best, and cell) may provide some information

about the spatial extent of the apparent bias.

2.2.10 Gross Error Stratified by Time

The gross error-time plot (Figure 2-14) identifies‘specific time
periods when gross errors in the model predictions may be a problem. This plot
is constructed in a similar manner as the error-concentration plot, except that
the simulation period is discretized intc a number of time intervals, usually
"1-2 hours in duration. When interpreting the gross error-time and bias-time
plots, the analyst must remember that the concentration levels of all pollutants

vary throughout the diurnal cycle. For example, nighttime and midday normalized
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gross errors of comparable magnitude will generally represent different

concentration residuals. _ °

To aid diagnostic analysis, one may develop bias and error plots
similar to Figures 2-11 through 2-14 in which several different species are
plotted together. For example, the gross error in NO, NO,, and ozone
concentration may be plotted as a function of concentration level or simulation
time on the same plot. This technique facilities evaluation of model performance

for multiple species, as discussed in greater detail in Section 3.0.

2.3 Diagnostic Simulations
Six diagnostic simulations are suggested as necessary to accompany the
numerical and graphical comparisons of predictions and observations previously

outlined. These are outlined below.

2.3.1 Zero Emissions

The main purpose of the zero emission simulation is to ensure that the
base case simulation results are influenced appropriately by the emissions
iﬁputs. Zeroing out all emissions should lead to much lower reactive species
concentrations on the second and subsequent simulation days. The zero emissions
simulation is performed by exercising the base case run with all emission values

reduced to zero. All other model input files remain unchanged from the base

case,

The results of the zero emissions simulation, and the other diagnostic
simulations, may presented in three ways. First, a so-called Deficit-Enhancement
(D-E) plot is developed for each simulation hour of interest. The D-E plot is
developed by subtracting the hourly-average gridded diagnosvtic run concentrations
from those of the base case and plotting the residuals as isopleths. The dashed
lines in Figure 2-15 demonstrate this technique which has been applied to a
simulation involving only moderate emissions reductions. For handy reference,
the base case concentrations for the same hour may be plotted as solid contour

lines. Figure 2-16 gives the hourly time series plots for the diagnostic run.
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Figure 2-15. Deficit-Enhancement Piot of the Effects of Moderate Emissions Reductions on
Ground Level Ozone Concentrations - 1600 PST on 6 September 1984.
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It is constructed with the base case predictions represented by a solid line
and a zero emissions diagnostic run results depicted by a dashed line. Finally,
Table 2-1 lists all monitoring stations and the maximum predicted concentrations
(unpaired in time) in the base case and a moderate emissions reduction diagnostic

rumn.

The zero emissions diagnostic rum should produce significantly-reduced
concentrations, close to background or to the levels reflective of the inflow
boundary conditions. If not, there is reason to question the adequacy of the
simulation. Lack of sensitivity to emissions may indicate inappropriately high
initial conditions, improper boundary conditions, or some flaw in the model
itself. Quite apart from these concerns, insensitivity to emissions raises
serious questions about the usefulness of the simulated episode for control

strategy development and assessment.

2.3.2 Zero Initial Conditions

The zero initial conditions simulation reveals how much of the second
(or third) day predictions result from the initial field used to start the
simulation. This simulation is performed by setting all initial concentrations
to zero. This procedure may cause numerical instabilities; where this occurs,
the initial field should be reduced to values as close to zero as possible,

certainly below those of global background or inflow boundary conditions.

Deficit-enhancement and time series plots may be used to display the
results of this simulation. If the initial field is completely "washed out” of
the model domain by the second or third day, the D-E plots will indicate essen-
tially no differences between the diagnostic and base case runs on the following
day(s). For stagnation episodes, some residual effects of initial conditioms
may be seen even on the third day of a multiple-day siﬁulation (Tesche and

McNally, 1989).
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TABLE 2-1. MAXIMUM CONCENTRATIONS FOR BASE CASE AND MODERATE
EMISSIONS REDUCTION DIAGNOSTIC SIMULATIONS
(concentrations in pphm)
Diagnostic Ratio of
Base Case Simulation Diagnostic
Monitoring Maximum Maximum to Base Case Percentage
Stations Concentration Concentration Concentrations Difference
El Capitan B 6.0 6.3 1.05 5
El Rio 8.0 6.3 0.79 -20
Ventura 9.0 6.6 0.74 -27
Goleta 7.0 6.0 0.86 -14
Grace 8.0 7.5 0.94 -6
Hondo 6.0 7.4 1.23 23
Jalama 9.0 6.4 0.71 -29
Casitas ° 9.0 7.6 0.84 -1é6
Lompoc 5.0 6.3 1.27 27
Moorpark 4.0 7.9 - 1.98 98
Ojai 12.0 7.3 0.61 -39
Piru 16.0 8.8 0.55 -44
Pt.Conception 9.0 6.9 0.77 -23
Hueneme 9.0 6.8 0.76 -24
Santa Ynez 9.0 5.8 0.64 -36
Santa Barbara . 9.0 6.2 0.69 -31
Simi 12.0 7.1 0.60 -40
S.Mountain 9.0 7.9 0.88 -12
State Street 4.0 5.9 1.48 48
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2.3.3 - Zero Boundary Conditions

The zero boundary condition simulation examines the influence of
boundary values on second (or third) day concentrations, particularly in regions
where the base case predictions are highest. This simulation helps identify
situations where the base case results are "driven” by the boundary conditions.
The zero boundary conditions simulation is performed by setting all inflow and
outflow boundary values to zero. This includes the top surface of the modeling
région. If this procedure leads to numerical instabilities, the boundary
conditions should be set as low as possible, certainly' lower than background
levels. Also, the photostationary state relation (Seinfeld, 1986) that
approximates the NO, NO,, and ozone reaction cycle may be used to define boundary
concentrations.

Deficit-enhancement and time series plots may be used to display the
simulation results. Unless the episode is known to in&olve interbasin transport,
the D-E and time series plots should reveal little impact of the boundary

conditions in the interior of the computational domain.

2.3.4 7ero Surface Deposition

The zero deposition simulation addresses the influence of dry surface
deposition removal on primary and secondary spécies concentrations. The zero
deposition diagnostic run is exercised by setting deposition velocities for all
species to zero and re-running the base case simulation. Depending on the
photochemical model used, this may entail either a simple change to a model input

file or an actual modification to the source code.

Deposition tests have not been reported in previous model evaluation
studies so the analyst has little historical information at present to serve as
a guide in interpreting the results of this investigation. Nevertheless, some
general guidelines can be suggested. For primary species such as NO, and VOCs,
the downwind concentration fields should increase relative to the base case in

a manner consistent with the deposition velocities for each primary species.
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For reactive species such as ozone, increases and decreases may occur in the D-E

contour fields depending upon the interaction between ozone and NO fields.

.

2.3.5 Mixing Height Variations

Mixing heights have a direct and often significant influence on ozone
concentrations. The objective of the mixing height diagnostic simulation is to
reveal the degree to which ozone concentrations are influenced by the height of
the mixed layer. At a minimum, one diagnostic run is suggésted in which the
hourly mixing height values are uniformly increased by 50 percent above the base
case values. This percentage increase is somewhat larger than the expected
uncertainty in estimates of mixing heights typically encountered. Therefore,
this simulation should provide a bound on the change in ozone predictions
resulting from uncertainties in this input. Increased mixing heights typically
reduce ozone concentrations although the reduction is less than a one-to-one
change. One might choose, instead, to reduce the'hourly mixing heights by
50 percent. The resultant increase in ozone Eoncentrations under this scenario
~ will typically be comparable in magnitude but of opposite sigﬁ as those for the

mixing height increase case.

The results of this diagnostic simulation can be presented graphically
with D-E plots (Figure 2-15) or with conventional time series plots
(Figure 2-16). A more informative plot, referred to as a "time-space uncertainty
plot” can be developed, although it requires carrying out several mixing height
simulations instead of just one. An example of a time-space uncertainty plot
is given in Figure 2-17; it was developed as follows. ‘The solid bold line in
the figure represents the base case ozone predictions at a particular air
monitoring station. The boxes indicate the obsefved ozone concentrations at each
hour and the vertical lines associated with each box represent the estimated
uncertainty of the ozone measurement, The magnitude of these measurement
uncertainties has been exaggerated in Figure 2-17 in order to exemplify the
method. These estimates could inélude a component related to the spatial

representativeness of the monitoring station if one is able to develop it. The
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solid lines enclose an ensemble of time series profiles obtained from several
diagnostic runs involving different increases and decreases in the base case
mixihg heights. 1In the example shown, these mixing height uncertainties were
derived from more than a dozen simulations of a numerical mixing height model
(Tesche, McNally, and Wilkinson, 1988). Ideally, the ensemble of photochemical
model predictions (enclosed by the thin solid lines) would trace a path within
the upper and lower uncertainty bounds of the hourly ozone measurements.
Comparisons between the estimated measurement uncertainties and the variation
in ozone predictions due to mixing height variations could be used to guide
subsequent activities aimed at additional data collection, model refinement or
both. Finally, the dashed line in Figure 2-17 represents an additional ozone
simulation in which an alternative .procedure for constructing wind fields was
used. Thus, the time-space uncertainty plot may be used to compare directly the

results of different diagnostic runs.

2.3.6 Reduced Wind Speeds

The final diagnostic simulation we recommend entails a S0 perﬁent
reduction in the magnitude of the winds input to the photochemical model. More
complex and potentially very imsightful diagnostic runs focusing on windfields
might be conceived (e.g. random perturbation of grid-point speeds and directions)
but an initial characterization of the ozone model’s sensitivity to ventilation
is an appropriate starting point. This simulation is performed by decreasing
all grid-point wind components by 50 percent and re-running the photochemical
model. Based on previous windfield diagnostic results, the magnitude of the
hourly ozone concentrations, including the peak value, should increase relative
to the base case although the percentage increase should be less than
proportional to the wind speed reduction. Results of the windfield diagnostic

simulation can be displayed through D-E plots or by various time series plots.

2.4 Guidelines for Assessing Simulation Results

- ‘Decision-makers and regulatory agencies seek quantitative performance
standards by which any new model evaluation study may be judged either acceptable

or rejected for not meeting pre-established requirements. However, we do not
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endorse setting rigid criteria for model "acceptance” or "rejection” for both
technical and policy reasomns. Fox (1981) and Roth et al., (1988) discuss the
problems with setting model performance standards for air quality models. Even
after a decade of modeling research and applications studies, no scientifically
sound proposals have been advanced for setting performance standards that clearly
and consistently discriminate between acceptable and unacceptable model
simulations. As a result, we suggest an approach that gives regulatory agencies

guidance in making acceptance or rejection decisions on a case-by-case basis.

Each photochemical modeling episode exhibits distinctive aerometric and
émissions features. The available data base also is unique in the amount and
quality of observations available to support model evaluation and testing. 1In
addition, the particular set of modeling procedures and codes make each
application distinctive. Therefore, automatic use of standardized acceptance or
rejection standards raises the risk of accepting a model evaluation that gives
seeﬁingly "good” performance statistics but for the wfong or misleading reasons
or of rejecting a model evaluation that violates preset criteria for reasons

»

related to input inaccuracies rather than fundamental flaws.

Instead of prescribing fixed performance standards, we suggest the
following approach. From over 15 years of photochemical model development and
testing, photochemical grid model simulations generally produce peak (unpaired)
prediction accuracy, overall bias, and gross error statistics in the approximate
ranges of 15-20 percent, 5-15 percent, and 30-35 percent, respectively. A study
following an approved Ozone Modeling Protocol that falls below all of these
ranges would not be rejected unless evidence from the model diagnestic
simulations and the other numerical measures and diagnostic tests suggest unusual
or aberrant behavior. For model simulations falling within these ranges, some
additional diagnostic analyses (such as those proposed in Sections 3.0 and 4.0)
may be appropriate to lend further support to the coﬁtention that the simulation
is acceptable. For model results outside any one of these general ranges, it
should be incumbent on the modeler to explain why the performance is poorer than
that commonly achieved in similar applications. The modeler should also explain
whether the causes of poorer performande will adversely affect the use of the

model in control strategy evaluatioms. This methodology provides reviewing
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agencies with a general model performance target, but still guards against the

inappropriate rejection of less accurate model simulations when appropriate and

explainable reasons can be provided.
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3.0 DIAGNOSTIC MODEL PERFORMANCE EVALUATION PROCEDURES

There are at least théee main reasons for carrying out the diagnostic
model evaluation procedures developed in this section. These are to: (1)
determine the causes of failure of a flawed model, (2) stress a model to ensure
failure if indeed the modei is flawed, and (3) provide additional insight into
model performance beyond that supplied through the operational evaluation
Procedures pfeviously introduced. Frequently, the operational model evaluation
measures may not convey sufficient information about the model and data base to
allow their wuse in emission control strategy development and testing.
Particularly in complex air basins such as the South Coast and the Bay Area, the
model evaluation process should be supplemented with additional diagnostic
analyses that probe further into the comparisons between prediction and
observation, attempting to ensure that the ozone response given by the model is
correct. In this section, we discuss a series of tests and comparisons that are
useful in diagnostic analysis of the photochemical model. The general categories
of these anélyses include: sensitivity/uncertainty testing, testing of species
other than ozone (when adequate data permit), examination of model-predicted
fluxes and pollutant budgets, and the analysis of residuals. In some cases the
tests we recommend must be supported by high;quality aerometric data bases, only
now available in some areas. As modeling techniques mature and as data. bases
improve, the techniques in this section may well become part of the routine

model performance evaluation procéess in the next several years.

3.1 Sensitivity-Uncertainty Analysis

Sensitivity analysis consists of systematically studying the behavior
of a model over ranges in variation of inputs and parameters. This process may
actually extend to studying the behavior of the model for changes in its basic
structure, i.e., for different assumptions in its formulation. When model inputs
and parameters are varied over their ranges of uncertainty in order to provide
estimates of the uncertainty in predicted concentrations due to these input
uncertainties, the process can be termed a sensitivity-uncertainty analysis.
The diagnostic simulations outlined in Section 2.3 fall within the general

category of sensitivity analysis. We presented them in Section 2.0 as they
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represent operational tests that should accompany any model performance

evaluation.

Sensitivity analysis can be used to determined if the predictive
behavior of a model is consistent with that expected on the basis of its
underlying chemistry and physics, namely does the model respond "properly” when
its inputs and parameters are varied. Sensitivity-uncertainty analysis, just
a sensitivity analysis, in which the variations in inputs and parameters
correspond to their estimated uncertainties is used to estimate the uncertainty
in a model prediction, and may be viewed as a form of error analysis (Munn et
al., 1988). In short, sensitivity analysis of air quality models serves to meet
two objectives: (1) to determine in a qualitative sense if a model responds to
changes in its inputs and parameters in a manner consistent with what 1s
understood about its basis physics and chemistry, and (2) to quantitatively
estimate the uncertainty in model predictions arising from uncertainties in the

‘inputs and parameters.

Various methods applicable to sensitivity-uncertainty analysis of
photochemical air quality models are discussed in the literature (McRae et al.,
1982; Dunker, 1980, 1984, 1986; Tesche et al., 1981; Tilden et al., 1981;
Seigneui et al., 1981; Brost, 1988; and Derwent and Hov, 1988). An overview and
synopsis of major results of sensitivity testing and analyses of photochemical

air quality models can be found in Seinfeld (1988a).

Parameters of interest in the sensitivity analysis of photochemical air

quality models include:

. Structural and design parameters of the model. Examples are the
horizontal and vertical dimensions of the computational grid cell,
the number of cell layers in the vertical direction, the size of
integration time steps, etc. Changes in these parameters are
deliberate and related to model use. The objective of sensitivity
testing here is to identify values of such parameters leading to
an optimal combination of computational efficiency and accufacy

of predictions,
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. Constitutive parameters of the model. Examples are chemical
reaction rate constants, deposition velocities, etc. Sensitivity
analysis usually focuses on the effects of uncertainty in the

values of these parameters on model predictions,

. Input parameters. These are calculated from the input data and,
as discussed below, carry the uncertainties inherent in these

data.

The influence of the data input to the model on its predictions may
also be studied through sensitivity analysis. These data are used to drive the
model either directly or through the determination of input parameters by
"preprocessors” or "peripheral models.” Whether a component of the model that
describes atmospheric processes--such as, for example, the windfield generator--
is considered a preprocessor or a component of the main photochemical model is
mostly a matter of programming style and computational efficiency. Models
unrelated to atmospheric processes, such as emission models, are typically
considered peripheral models. Input data include uncertainties due to both
measurement errors and to the randomness of the atmosphere. Uncertainties are

also introduced by various assumptions and approximations in data processing.

Sensitivity analysis with respect to a single parameter or input that
affects one component (process module) of the model. Alternatively, sensitivity
testing can be done simultaneously with respect to more than one parameter (or
inputs), that, however still affect only one component (process module) of the
model (e.g., the chemical reaction rate coefficients). Related is sensitivity
testing with respect to a single parameter that affects more than one
(interacting) process in the model. For example, changing the resolution of the
model affects the interaction of transport/mixing and chemistry. Whether
sensitivity analysis is concerned with changes in a parameter that affect one
or more interacting processes depends on the study objective. For example, one
can examine the sensitivity of a model to the windfield inputs or vertical
dispersion parameters by considering conserved tracers. Alternatively, one can
study the effect of changes in the windfield, or dispersion parameters on the

overall evolution of the photochemical system. Usually both approaches are
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needed in order to provide sufficient understanding of the system dynamies.
Finally, multiparametric sensitivity testing can be_ carried out for a group of
parameters (or 1lnputs) that affect more than one (interacting) processes in the

model.

Sensitivity analysis of the first two types mentioned above would not
require running the full photochemical model; rather, only the specific module
(chemical mechanism, windfield preprocessor, etc.) that is affected by the
parameter changes would need to be examined. In some cases it might also be
possible to perform the latter two types of sensitivity tests by employing a
simplified model (see Section 4.5), but the limitations inherent in such an.

approach should not be overlocked. -

3.1.1 Sensitivity-Uncertainty Analysis

When the input data or parameters to be studied have been identified,
a sensitivity-uncertainty analysis can be carried out. Ideally the probabilistic
distribution of the input parameters, incorporating random variations due to both
natural wvariability (from, e.g., emissions, meteorology) and "errors” are
available. Errors include both measurement uncertainties and, in the cases where
the input parameter is derived by modeling of "raw” or “"basic” input data, such
as mobile source emissions, uncertainties related to the assumptions involved
in the modeling step. In practice, one usually must settle for much less in-
formation on input uncertainty than the complete probability distribution. In
] fact, model response can often be rather insensitive to the exact shape of the
input distribution (0’Neill et al., 1982; Alcamo and Bartnicki, 1987).
Typically, only estimates of the range of uncertainty are available.
Sensitivity-uncertainty analysis then consists of determining the outputs of the

model resulting from inputs prescribed at the limits of this range.

The sensitivity-uncertainty analysis involves determining how the un-
certainties in input data and parameters propagate through the model equations,
producing uncertainties in the output. Most techniques for uncertainty
propagation through model equations are based on Monte Carlo methods. These

methods involve random sampling from the distribution of inputs with
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corresponding model runs to obtain a statistically significant distribution of
model outputs. Modified Monte Carlo methods perform the sampling from the input
distribution in an efficient (”almost optimal”) manner so that the number of
necessary solutions, compared to the brute force Monte Carlo method is greatly
reduced. Three such methods appropriate for use with air quality models are the
Fourier Amplitude Sensitivity Test (FAST) (McRae et al., 1982), Latin Hypercube
Sampling (Iman et al., 1980; Derwent and Hov, 1988), and Fractional Factorial
Designs (Tesche et al., 1976).

As noted, sensitivity analysis has the objectives of: (1) evaluating
the behavior of the model with respect to changes in inputs and parameters, and
(2) providing quantitative estimates of the uncertainty associated with model
predictions. A sensitivity analysis should normally accompany a major model
performance evaluation study. The key input variables and parameters need to
be identified and their range of uncertainty estimated. These uncertainty bounds
are then propagated through the model, either singly or in concert, to provide
estimates of the uncertainties in the predictiops. The modeler should discuss
the results of the sensitivity runs from the viewpoint of the response of the
model expected from its underlying analysis and chemistry. Typical inputs and

parameters that should be considered for sensitivity analysis include:

. Key emission parameters, such as VOC rates and speciation;
. Mixing height;
. Wind field; and

. Deposition velocities.

A critical issue driving the entire question of model performance
evaluation is what effect do uncertainties in model predictions have on emission
reduction estimates obtained from a model. For example, if the ROG emissions
inventory is judged to have an uncertainty of * 50 ppb, what is the effect of
this uncertainty when ROG and NO, emissions reduction scenarios are evaluated?
If a model is to be used for emission reduction calculations tﬁen it is useful

to perform an appropriate sensitivity analysis.
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3.1.2 Characterization of Uncertainties and Comparisons of Unecertain

Predictions and Cbservations

Photochemical model predictions, although often stated and interpreted
in a deterministic framework, always include reducible and irreducible
uncertainty in both input data and parameters and in model formulation.

Sensitivity studies may provide quantitative estimates of these uncertainties.

When comparing model predictions and observations, one must remember
that observations contain uncertainties due to measurement errors and the
naturally random character of the atmosphere. Fox (1981) gives a good
introduction to the concept of uncertainty in air quality modeling. Beck (1987)
offers further discussion of the concept of uncertainty in environmental models

and data.

Ideally, comparisons of predictions and.obsefvations should account for
uncertainties in both the observational data and the model predictions. One then
seeks to determine if the uncertainty envelope around the data and the
uncertainty envelope around the predictions overlap sufficiently. Figure 2-17
illustrates this concept. Error basis on the observational data form the outline
of an "observation envelope,” while the "prediction envelope” has been generated
by varying the mixing height over a presumed range of uncertainty. This section
is devoted to a discussion of how the comparison of observation and prediction
envelopes could be carried out in a quantitative manner. While such comparisons
are not yet routinely carried out as a part of the model performance evaluation
process, this type of comparison may be quite valuable when comparisons of
predictions and observations in the absence of explicit accounting for
uncertainties, such as discussed in Section 2.0, yield comparison statistics

that are poorer than one would seek for a verified model.

Simple descriptive statistics such as the numerical performance
measures suggested in Section 2.0 help summarize the results of the evaluation
process, however, these statistics do not account for uncertainties in either
the data or the predictions. Interpretation of numerical performance measures

such as bias and error is enhanced by the estimation of certain statistical tests
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such as confidence intervals. Indeed, the 1980 AMS/EPA workshop on judging air
quality model performance (Fox, 1981) recommended that evaluation of performance
measures should be stated in the form of confidence intervals. Specifically,
Fox states "Statistical tests (Student’s t or Wilcoxon) could be used to indicate
whether the average observed concentration and the average predicted
concentration for a particular meteorological category were significantly
different from one another. An F-test could be used to compare the estimated
variances of the observed and predicted concentrations for each category.” He
also notes that "It is reasonable to urge that the use of statistical confidence
interval statements be accepted as a common tool in model performance evaluation
and as a recommended initial step towards setting performance standards. A
confidence interval statement for a parameter is more informative than a
statistical test. The interval statement provides information relative to ﬁany
different hypotheses, whereas the statistical acceptance/rejection test is a
decision rule about a single hypothesis... Interval statements can be constructed
for the bias and the variance using the Student}s t and the chi-square
distribution.”

Meaningful use of statistical tests and confidgnce"intervals requires
a random sample. The problem here is that data needs for a systematic diagnosis
of errors in the model may conflict with the need for a random sample. For
example, usually days having particular meteorological conditions relevant to
high ozone levels are selected for modeling. Although this is the sample of
interest it cannot be used as a basis for statistical inference because there
is no way of estimating the bias introducéd by the selection of that particular
set of days. In addition, the sample size must be "large enough”. For a given
population, a larger sample produces more precise estimates of statistical
measures and, hence, narrower confidence intervals. It is important, therefore,

to obtain data and simulate as many days as possible.

3.2 Analysis of Residuals

A residual is the difference between a prediction and its corres-
ponding observation, the remnant in variability after the systematic or ordered

component of the observation, as explained by the model, is removed. The set
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of residuals generated in a typical performance evaluation exercise contains all
available information about contributions to "error” of (a) the concentration
data used for comparison with model output, (b) the soundness of the model
formulation, and (c) the adequacy of the data supplied as input to the model.
If the model describes actual dynamic behavior reasonably well, and if the
observational data are reasonably accurate and representative, then the residuals
should have the characteristics of noise--little or no bias and a standard
(typically, normal or lognormal) distribution of error, with moderate to small
variance. If, on the other hand, the residuals display bias or other systematic
characteristics, the model is not fully or correctly representing the actual
system (assuming that the data being used in the comparison are indeed accurate

and representative).

When unexplained but statistically significant variation characterizes
the residuals, and concerns about model inadequacy arise, plotting residuals
against selected variables is an attractive means for identifying patterns of
aberrant behavior. If correlations (relationships) between the residuals and
one or more selected variables can be found, the emergent pattern (s) may be
suggestive of the cause(s) of failure or inadéquacy in the model. If the
cause(s) of model inadequacy can indeed be found and corrected and the residuals
replotted, the correlation(s) previously seen, in principle, should be reduced
or eliminated. The characteristics of the new residuals presumably approach

those of noise. -

A wide range in variables may be selected for plotting against resid-

uals, including:
' Time;
° Geographical location;

-- Along the general direction of the wind, and

-- Overall spatial pattern (two dimensions).
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. Concentration levels:
--. Precursor (hydrocarbon and NO,, for ozone) concentrations,
-- Concentrations at the inflow boundary (as they change with
time), and
-- Estimated concentrations of intermediate species, such as

free radicals.

. Meteorological variables (and their spatial and/or temporal pat-
terns);
-- Wind speed,
-- Wind direction,
-- Ventilation,
-- Height of the mixed layer, and

-- Solar insolation,

. Emissions (as they change with time);
-- Activity levels, and

-- Rates.

. Deposition rates (as they change with time);
-- Activity levels, and

-- Rates.

Such plots can be made (or correlations calculated) for the full region of
interest and for the full duration of the simulation, or for subregions, selected
time periods, and specified ranges in variables. This list of variables and the
subsets of conditions suggested are by no means exhaust the possibilities,
Hypotheses that are advanced concerning potential flaws in a model should suggest
variables and circumstances for investigations. Diagnostic analysis is an art,
enhanced by the knowledge and inquisitiveness df the investigator. Seeking
explanations and finding solutions is central to the methods of science; analysis

of residuals is one of a number of methods available.
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3.3 Multi-Species Comparisons

The development of evaluation procedures that test photochemical model
performance for species other than ozone has been strongly recommended by the
Urban Airshed Model Technical Advisory Committee (Seinfeld et al., 1987) and the
SCAQS Model Working Group and Data Analysis Group (Seinfeld et al., 1987, 1988).
The reasoning for these recommendations is that multi-species comparisons can
provide a more robust basis for accepting or rejecting a model (or a model
simulation); they significantly improve the chances that a flawed model will be
identified. Adequate model performance for several reactive specles increases
the decision-maker’s assurance that correct ozone predictions are not a result
of chance or fortuitous cancellation of errors introduced by various assumptions.
Multispecies comparisons may be the key in discriminating among alternative

modeling approaches that provide similar predictions of ozone levels.

To date, only limited comparisons have been published on model per-
formance for species other than ozone in photochemical simulations. Most model
evaluation studies available present only ozone results (Tesche, 1988) although
there are a few limited tabulations of NO, predictions (Wagner and Ranzieri,
1984). Studies reported by Roth et al. (1983), Tesche et al. (1983), Russell
and Cass (1986), Wagner and Croes (1986), and Russell, McCue and Cass (1988) are
among the few that present performance evaluation statisties for associated
pollutants. (Lack of ambient measurements Zor such pollutants is the major
reason for the limited number of past studies.) The SCAQS and other recent data
bases (e.g. San Diego, Sacramento, and San Francisco) now offer the potential
for several comparisons with species other than ozone. The SCAQS data in
particular afford a level of tesﬁing of photochemical models and modules, such
as the chemistry mechanism, not previously possible. The availability of ambient
air measurements for speciated organics, key species such as HCHO, PAN, NO,, H,0,,
and HNO,, and organic acids will allow not only more extensive "operational”
model testing but also diagnostic and comparative evaluations. Finally, the
SCAQS data base, or similar data bases that will be assembled in the future
(e.g., the San Joaquin Valley Air Quality Study), also offer the potential for

mechanistic evaluations of alternative chemical kinetic mechanisms.
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Until recently, such evaluations have been based entirely on smog

chamber data (see Section 4.2.4),

Evaluation of model performance for precursor and intermediate species
as well as for product species other than ozone is recommended when ambient
concentration data for these species are available. Comparisons of observed and
predicted concentration values for all important chemical compounds involved in
photochemical air pollution, inorganic and organic precursors, intermediates,
and products such as 0,, NO, NO,, PAN, indiviéual hydrocarbons, H,0,, HONO, and
HNO, is useful in model evaluation, especially with respect to the chemistry
component of the model. As discussed in more detail in Section 4.6, comparisons
of predié¢tions and observations for total organic nitrates (mainly PAN) and
inorganic nitrates (HNO, and nitrate aerosol) can be used to test qualitatively
if the emissions inventory has the correct relative amounts of ROG and NO, .
However, HNO, and nitrate aerosol cannot be included in the data set for model
comparisons if the model does not include an adequate description of the HNO,

depletion process associated with aerosol formation.

In some cases, modifications to existing models or data handling
procedures will be required in order to permit the types of multi-species
comparisons we recommend. For example, at the present time, non-reactive
hydrocarbons are not input into photochemical models. Typically, the
non-reactive nonmethane compounds comprise 20 percent to 30 percent of the
nonmethane carbons. Another model modification that would reduce ambiguity in
performance evéluation is to include non-reactive hydrocarbons as a transported
species. This would allow more direct comparison of the VOC predictions and

ambient data.

3.3.1 Selection and Orpganization of Predicted/Observed Data

Depending on the objectives of the performance evaluation,
multi-species comparisons can be organized in various ways, depending on the
number and kind of chemical species selected. For example, in applications
iﬁvolﬁing long-range transport, where multiday photochemistry is important and

less reactive organics play a significant role, one could group and compare
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species according to their average atmospheric lifetimes. In general, however,
the selection of the species should reflect their importance and role in

determining ozone dynamics.

As a general recommendation, the following species have the highest

priority for prediction-observation comparisons:

. Source/sink species (NO, NO,, VOC speciatgd). Reliably repro-
ducing NO and NO, concentrations should build confidence that
the model treats the nitrogen balance correctly. However, the
ability of a model to accurately reproduce individual VOC cbserva-
tions is in general limited; relevant problems are discussed

later.

. Intermediate species (H,0,, HCHO, PAN). Comparisons of H,0, and
HCHO predictions and observations will allow one to evaluate the
representation of the radical chemistry in the model. Satisfac-
tory prediction of PAN should suggest that one key radical sink

is treated correctly.

Depending on the availability of other measurements and the incorpo-
ration of aerosol dynamics and thermodynamic processes in the model, the above
comparisons can be supplemented with others.- For example, because HNO, is a sink
for the OH radical and because H,0, is a sink for the HO, radical, the ratio of
HNO, to H,0, is an indicator of the extent to which OH and HO, radicals are

adequately simulated.

3.3.2 Performance Measures and Statistical Tests

Selection of numerical and graphical performance measures for multi-
species comparisons should follow methodology outlined in Section 2.0 for
comparing observed and predicted ozone concentrations. One may also wish to
compare distributions of predictions and observations and using quantile-quantile
graphs and ﬁtatistical tests, 1if adequate data for such comparisons are

available. Because of the large uncertainty of measurements at low concentration
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levels, comparisons of observations and predictions should not be made with

measurements near the detection limits of the measuring instruments.

3.3.3 Graphical Procedures

Graphical time series plots of selected concentration ratios of
chemically linked species (e.g. NO,/NO, PAN/NO,, HCHO/ H;0,/0,) may facilitate
the comparison of predictions and observations or of predictions from different
models. Barchet (1987) suggests that these ratios may be the preferred
indicators of gas-phase chemistry module performance because they are less
sensitive to non-cﬁemical factors such as transport, dispersion, and dry
deposition. This may not always be true, depending on the relative magnitudes
of the characteristic time scales of chemical and transport phenomena. For
example the NO,/NO ratio in the vicinity of large localized sources is governed
by the state of mixing rather than the chemistry. However, the use of ratios
will indicate prevailing trends more clearly. Disagreement of predicted and
observed concentration ratios where the gas-phase chemistry module has shown
satisfactory performance may indicate the need for a more comprehensive treatment
of non-chemical processes. It has been suggested that analyses of ratios of
chemical constituents having different chemical lifetimes can be used to provide
a basis for differentiating removal through physical processes versus removal

through chemical processes (EPA, 1988).

3.3.4 Measurements and Measurement Evaluation

In using and interpreting (or when planning to measure and use)
observed ambient concentration levels of the groups of species selected for a
multi-species model performance evaluation, it is important to keep in mind that
such measurements are non-routine, that the associated uncertainties may be
significant, and that, most probably, the available number of data points for
a given modeling episode will be limited. Hence, one should be cautious when
drawing conclusions regarding model performance when non-routine measurements

are used.
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The location of the monitoring sites for field measurements of the
additional species should reflect the intended use of the predicted and cbserved
concentration comparisons in the performance evaluation process. Total VOC
should be measured during well mixed conditions at downwind locations to match
the emission flux. Speciated VOC should be measured during morning hours near
sources (ideally both at the 'surface and aloft) to check emission inventory
speciation. PAN, HCHO, and H,0, should be measured in the general area of the
ozone peaks to provide information needed to check the fidelity of the chemical
mechanism. General guidance for the location of monitoring stations for
traditionally measured photochemical pollutants can be found in Ludwig and Shelar
(1978). '

There are practical limitations in evaluating a model’'s performance
in predicting speciated VOC. Conceptually, comparisons can be made between
observed and predicted total VOC concentrations as well as between observed and
predicted concentrations of classes of VOC. The second type of comparisons
requires aggregations of the ambient VOC into the classes used in the particular
chemical mechanism employed by the model under consideration. However, emissions
of non-reactive organic compounds, which may comprise 5 percent to 30 percent
of the actual ROG emissions, usually are not included in the simulation. Thus,
predicted VOC may have an inherent bias toward underestimation relative to
observed VOC unless the difference is accounted for by explicitly excluding the
non-reactive compounds from the observed concentrations. Also, fairly severe
approximations are made in the VOC lumping schemes. In some cases, the
assignment of individual compounds to a class 1s based more on the simiiarity
of their ozone formation potential to that of the model species rather than on
the rate at which they react. Hence, perfect agreement is not expected and, in
fact, agreement within * 20 percent for VOC classes is probably the best one can

expect with current lumping schemes..

Another method of comparing model predictions with measured ambient
concentrations involves the use of atmospheric tracer experiments. Experiments
that involve inert materials (SF,, freon, or perfluorocarbons) released at known
locations and in precise amounts provide direct observational evidence of

transport and dispersion processes and afford an opportunity for independently
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evaluating the relevant components (transport and dispersion modules) of the
grid-based photochemical model. The methodologies for operational and diagnostic
testing of grid-based models using experimental inert tracer data are well
established (Tesche, Haney, and Morris, 1987). A discussion of meteorological
model evaluation, often considerably enhanced by avallability of tracer data,

is presented in Section 4.2.2.

In sum, multi-species comparisons are needed to evaluate the
performance of a photochemical model in predicting ambient levels of other
criteria pollutants such as NO, and to establish that the model predictions of
the temporal and spatial ozone dynamics are "correct for the right reasons” and
hence to discriminate among photochemical models that predict similar ozone
concentrations. Priority for multi-species comparisons should be given to NO,
NO,, speciated VOC, és well as to PAN, HCHO, and H,0,. The numerical and
graphical procedures outlined in Section 2.0 may be used for this purpose.
Appropriate ratios of the concentrations of theée species (observed and

predicted) are also recommended in this diagnostic evaluation process.

3.3.5 Model Modifications to Facilitate Testing

One of the most difficult problems in diagnostic evaluation of
photochemical models is confirming that the emissidns inventory has the correct
relative amounts of ROG and NO,. It is difficult to confirm this by direct
comparison of observed and predicted pPrecursor concentrations because of the
incommensurability problem. Another method of assessing whether the relative
amounts of ROG and NO, are correct is to evaluate the relative amounts of organic
and inorganic nitrate formed by the model. Based on the current understanding
of the atmospheric chemistry, biases in the ratio of organic nitrate to total

nitrate should qualitatively reflect biases in the ROG to NO, ratio of the

emissions.

Historically, data for the various nitrates either were not available
or were highly uncertain due to measurement problems. Improved techniques are
now available and have been used in measure nitriec acid and aerosol nitrate as

well as PAN in numerous field programs. Few, if any, measurements exist for
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organic nitrates other than PAN; however, we expect that these "other organic
nitrates” are a small part of the nitrogenous products. Typically, the condensed
chemical mechanisms predict the concentrations of PANs, the sum of PAN and PAN
analogs (usually labelled as PAN) and total inorganic nitrate (TIN), which is
the sum of nitric acid and aerosol nitrate (usually labelled HNO,). Some

mechanisms may also predict the concentrations of other organic nitrates.

The inorganic nitrate predictions from contemporary photochemical
models are probably fairly inaccurate because they lump together two species that
deposit at very different rates (i.e., nitric acid deposits very rapidly, while
aerosol nitrate deposits slowly). However, if the models are modified to
incorporate the nitric acid-aerosol nitrate equilibrium chemistry, as in the
models developed by Hogo et al. (1985), Russell and Cass (1986), and Russell et
al. (1988), then their nitric acid and aerosol nitrate predictions can become
useful components of the multi-species comparison. Comparison of the observed
and predicted ratios of PAN to total nitrate and TIN to total nitrate should be

made to assess possible biases in the VOC and NO, inputs to the models.

3.4 Mass Fluxes and Budgets

Only recently have attempts been made to derive mass balances and carry
out flux calculations for photochemical grid model simulations. This has
occurred more routinely for regional-scale Eulerian models. Four mass balance
and flux calculation procedures are suggested to accompany detailed performance
evaluations. The first procedure involves computing the mass fluxes into and
out of the domain boundaries. The fluxes of individual presursor species (NO,
S0,, CO, organics) and product species (NO,, O,, HNO,, S0,) into and out of the
four side walls and the top of the modeling domain shduld be calculated each hour
and summed for each simulation day. Hourly and daily flux totals should be
reported. These calculations could be performed so that concentration isopleths
of the species distributions crossing the four side walls and the top of the

modeling region could be displayed for further diagnostic analysis.

The second procedure involves the mass fluxes into and out of the mixed

layer. Here, hourly and daily average mass fluxes of all transported species
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should be calculated for vertical transfer into and out of the mixed layer.
These flux arrays may also be contoured for diagnostic analysis. Third, the
surface deposition fluxes should be estimated. Hourly and daily average surface
deposition rates should be calculated and reported for each species removed at
the ground. This information should be presented as basinwide hourly and daily

totals and by means of a daily surface deposition isopleth.

The final procedure involves the reconciliation. of emissions,
transport, transformation, and removal terms in a simplified, closed mass budget
over the whole modeling domain. The various flux terms described above, when
combined with the hourly emissions rates, may be used in a simple mass budget
to apportion the total mass in the modeling domain into emission, transport, and
removal components. The transformation term is obtained by difference, assuming
a closed budget. The degree of imbalance in the hourly and daily mass budget
should be reported as well. Mass balances and flux calculations have been
performed only to a very limited extent in the past and there is little present
guidance that can be offered with respect to how these results should be judged.
The true value of these calculations for diagnostic performance.evaluation and
stress testing will evolve as more experience is gained in their use and

interpretation.

3-17







CORP RATIOMN

4.0 RESEARCH NEEDS IN MODEL .-PERFORMANCE EVALUATION

Many of the key problems in photochemical model performance evaluation
have been known for a long time. Those amenable to near-term solution, thorough
either emerging high-quality data bases (e.g., SCAQS, SJVAQS) or added emphasis
given to the evaluation process, were discussed in earlier sections. Over the
longer term, there are several problems whose solution will come only thorough
more research, acquisition of specialized data bases, and the commitment of
significantly greater resources to the task of model evaluation than are available

today. 1In this section, we discuss these longer-term research needs.

4.1 Testing the Adequacy of Model Response to Emission Changes

Assessing the ability of models to correctly simulate the effects of
emission changes represents a major need in model performance evaluation since
it is directly related to the intended regulatory application of photochemical
models. Traditionally such models are evaluated for a variety of meteorological
conditions over periods of time that do not involve major changes in emissions.
Then, the critical assumption is implicitly made that the models would also .
perform in a satisfactory manner under conditions of drastically altered emis-
sions. However, there is no evidence to support this position. The work of
Dennis and co-workers (Dennis et al., 1983; Dennis and Downton, 1984; Downton
and Dennis, 1985; Dennis, 1986) has shown that grid-based photochemical models
which perform adequately over a range of meteorological conditions do not
necessarily show similar results when the evaluation involves a large change in
emissions. They found that different versions of the Urban Airshed Model (UAM),
which gave similar performance results under conditions of changing meteorology,
performed very differently when tested for emissions changes. (These versions
of the UAM represented progressive improvements in chemistry, numerical methods,
and the treatment of.meteorology.) It is imperative, therefore, to evaluate
photochemical models that are intended for use in the development of air pollution

control strategies to determine their ability to simulate the effects of emissions

changes.
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The problems raised in this type of evaluation are serious. Detailed
emission inventories of comparable accuracy are required for years sufficiently
far apart (e.g., l0 years) so that major emission changes have taken place to
allow a meaningful model performance evaluation. One has also to identify
episodes occurring in periods of similar meteorology; the importance of meteorolo-
gy in modeling emission changes is discussed further later in this section.
Ideally, this type of evaluation involving historical emission and air quality
records is the most preferable one, but generally the lack of detailled
i{nventories and historical aerometric data prohibits this approach. Even if the
required data are available, one would have to take into account all changes in
the procedures for developing emission inventories, for monitoring air quality,
and so on that have occurred over the years. So, almost unavoidably, stringent
assumptions and approximations regarding past emissions and ambient air quality
(initial and boundary conditions and ozone levels) will have to be made when
modeling episodes from past years. This problem may diminish somewhat in the
future, at least for some areas. The use of weekday versus weekend emission rates
has been suggested as an alternative to retrospective modeling. Even assuming
the inventories are accurately estimated, it is doubtful that the level of
emission change would be sufficient for a meaningful model performance evaluation,
although such studies would no doubt be valuable. A third promising approach
in evaluating a model’s ability to correctly predict the effects of major changes
in emissions is to thoroughly test the photochemical model for different urban

areas, using input data sets of similar quality.

Ideally, evaluation of the model (for a range of meteorological condi-
tions) should be performed using emission inventories and aerometric input data
for the same region and for years sufficiently far apart. Comparable quality of

inputs (mostly emission inventories) should be assured for such a task.

Since evaluation using historical inventories and aerometric data does
not appear feasible at the present time, the alternative of evaluating the model
on the basis of its performance for different urban areas should be adopted.
A fixed version of the photochemical model (same horizontal and vertical
resolution, identical input data preprocessors, chemistry and removal modules,

and so on) should be applied to all regions selected for the evaluation. The
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evaluation should span a wide range of meteorological conditions for the urban
areas under consideration, corresponding to high, moderate, and low ozone days.
Such an evaluation does not test uniform changes in emission levels. Instead,
overall model performance for different spatial and temporal distributions and

source strengths, and speciation of emissions is provided.

Even if the problems of availability and quality of input data (emission
and aerometric) are solved, allowing one to evaluate a model’s ability to simulate
significant emissions changes, one must still account for the fact that the
sensitivity of a photochemical modeling simulation to emission changes will vary
according to meteorology. Wagner and Wheeler (1989), reporting on sets of
simulations performed by Tesche et al. (1988a, 1988b) and Wagner (1988) concluded
that: "The location and amount of maximum sensitivity to emissions changes vary
with the meteorology. This may mean that more than one episode should be used
in evaluating the effects of emission changes upon peak ozone concentrations.”
Indeed, the selection of particular ozone episodes on which to design emission
controls can have a substantial effect on the projected control levels. It is
important to examine several episodes to determine the sensitivity of control

levels to meteorology.

Considerable effort has been devoted in recent years to developing
"screening/regression” methods that .decouple the effects of meteorology from those
of emission changes on observed high ozone concentrations (Horie, 1987; Pollack
et al., 1988; Stoeckenius, 1989). This technique is commonly referred to as
“meteorological de-trending” of an air pollution episode. Further testing aﬁd
research into methods for identifying an adequate set of meteorological episodes

that may be used in meteorological de-trending analyses is needed.

In sum, the adequacy of a photochemical model in correctly predicting
the effects of emission changes on ambient air quality should be evaluated
directly, by examining model performance for applications involving significantly
altered emission strengths and spatial patterns. Ideally such a performance
evaluation should be performed with emission inventories for the same region
that correspond to years sufficiently apart. When such a procedure is not fea-

sible, one should evaluate the model for two or more different regions, using
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input data of comparable quality. The effects of meteorology on the model’s

response to emission changes must be carefully analyzed.

4.2 Mechanistic Model Evaluations

A mechanistic model evaluation is an assessment of the ability of an
individual process modules’ ability to reproduce the observed salient features
of the process. When applied to all process modules that constitute the full
photochemical dispersion model, it represents a test of the correctness of the
underlying science. In this section, we recommend mechanistic evaluation
procedures for four major process modules used to support photochemical modeling:

emissions, meteorology, chemistry, and deposition.

4.2.1 Emissions Model Testing

The emissions inventory input to a photochemical model is itself a
model in the same sense that the windfield generation routine and the chemical
reaction mechanism are models. Whereas the uncertainties in meteorological and
chemical mechanism models have received extensive attention, those associated
with the emissions inventory generally have received far less comsideration in
the modeling context,. This is due, no doubt, to the great difficulty in
quantifying emissions uﬁcertainties. Even though much effort has been expended
to assemble adequate emissions inventories, there is significant feeling that
the emissions inventory may be the least accurate input in the photochemical .

modeling process.

Estimation of uncertainties associated with emissions inventories is
of considerable importance since any control strategy decisions made, with or
without the aid of models, are only as good as the emissions estimates upeon
which they are based. Subjective "Delphi” estimates of emissions inventory
uncertainties are of little use and should be replaced with other, improved
approaches (see, for example, Benkovitz and Oden, 1989; Dickson and Hobbs, 1989).
Some new directions in the evaluation of emission inventory models are suggested

below.
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"Top_down” vs. "Rottom up” Calculations

The emissions inventory should be developed for a pollutant by
estimating emissions of individual sources or groups of sources and then aggregat-
ing them and, independently, by calculating gross or integrated emissions rates.
Where possible, one should compare the two estimates and use the information
gained from analysis of diffefences in the diagnosis of sources and magnitudes
of uncertainty. Generic procedures for this "top down-bottom up” approach need
to be developed and potential areas of applicability of this approach, including
routine or special inventory development and special studies to assess uncertain-

ties, need to be specified.

Mass Balances

There is a need to develop means for carrying out mass balance calcula-
tions as part of the inventorying process. It is necessary to prescribe data
needs, anticipated uncertainties in determination of individual elements,
calculational procedures, and the like. For example, nitrogen balances can be
made for determining emissions estimates and uncertainties for animal wastes,

chemical fertilizer use, wastewater treatment plant emissions, and so on.

Ambient Air Ratios vs. Emissions Ratios

Another method of evaluating the emission inventory is to compare ratios
of ambient concentrations of two selected pollutant species, measured near the
source, with estimated ratios of emissions rates of the two species. Information
gained from analysis of differences in ratios may be used in estimating the
magnitudes of emissions uncertainties (and in suggesting means for reducing
uncertainties). As examples, the ratios of toluene/xylene and toluene/paraffin

might be used in such comparisons.

Indirect Confirmations

In assessing the emissions inventory, one should use external informa-

tion to the fullest extent possible to corroborate direct emissions estimates.
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One recent example involves the iterative use of an energy balance to redu&e
uncertainties in fuel consumption statistics, which in turn are used in estimating
sulfur emission rates. Other consistency checks include: (a) use of basin-wide
box models for long averaging times, as for lead, (b) comparison of spatial
distributions of emissions and air quality, as for ammonia in the SOCAB, (c)
comparison of relative magnitudes of mass iﬁ the atmosphere and in the inventory,
as for trace metals, and (d) examination of photochemical modeling calculations
within a particular air basin to infer if there is a tendency for pronounced bias

in various components of the inventory.

Source Testing

One should determine emissions of selected sources through direct
measurement. i.e,. source testing. Employing statistical sampling procedures
for selecting a subset of a large number of sources in a category for testing
may be quite wvaluable. Generally speaking, if knowledge of emissions is
inadequate, one should explore the feasibility of measuring emissions in the
field. Because of the large attendant costs, one must develop specific guidelines
for establishing this need and procedures for cost-benefit assessment in order

to justify this major effort.

Designed Field Studies

Thoughtfully-designed field studies should be considered specifically
for the purpose of emissions determination. Examples include the CRC-sponsored
SCAQS-1 “Tunnel Study” for corroborating estimates of emissions from vehicles
and (Ingalls et al., 1989) and the recent CO determinations at roadways in Denver
and in Lynnwood, CA. These field studies may include the release of inert tracers
from sources of interest, monitoring their concentrations at downwind locations.

Rare-earth doping of fuels in European experiments is another example.

General Guidelines for Inventories

One should determine, to the extent possible, the accuracy required to

satisfy the needs of policy makers. This leads to sensitivity studies to
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determine the accuracy and precision necessary for individual components of an
inventory. Apart from traditional simulations, these investigations might include
calculating sensitivities associated with the temporal distribution and modal
split in the driving cycle to determine importance of developing a weekend
inventory. For ozone modeling, it is highly desirable to determine the model’s
sensitivity to accuracy of the aldehyde inventory estimates and to the emissions

factors used to develop on-road motor vehicle emissions.

Emission inventory specialists, modelers and decision-makers should
determine and be cognizant of realistic limits on achievable accuracy. The
inventory should be neither too comprehensive nor too "lumped.” Proper spatial,
temporal, and chemical resolution must be achieved, realizing that these needs

must be balanced by other demands for emission inventory information.

There is a clear need to improve the characterization of the driving
cycle, including the degree of representativeness, extent of variability due to
changes in commute charécteristics, driver characteristics, and other influences.
‘Also, there is a need to develop better approaches to estimating spatial and
temporal uncertainties associated with grid-based inventories. With respect to
the entire inventory development process, there is a crucial need to provide
- appropriately detailed documentation of the inventory development process. This
includes the preparation of documented source code that processes the various
+ basic emissions data and parameter files into gridded, temporally-resolved, and
chemically-speciated photochemical model inputs. The Emissions Preprocessor
Systém (EPS) recently developed for the UAM (SAI, 1989) is an example of such

an "emissions model”.

4.2.2 Meteorological Model Testing

A wide range of meteorological models are available to support grid-
based photochemical modeling. Meteorological models provide estimates of the
two- or three- dimensional wind patterns, surface and aloft temperature fields,
estimates of the mixing height field, or all ‘of these variables, depending on
the model selected. Moreover, the domain scales over which the model may be

applied may range from local to regional. 1In this discussion, we focus on
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diagnosticandprognosticmeteorologicalmodelsthatestimatewinds,temperatures,
and mixing heights over mesoscale domains because this is the relevant size of
urban- and regional-scale photochemical modeling grids. We do not consider the
objective analysis class of meteorological models (e.g., Goodin, McRae, and
Seinfeld, 1980) due to the inherent problems that arise when attempting to

evaluate a model with the SCN data used to operate it.

Complex meteorological models are not necessarily superior to simpler
models for supplying inputs to photochemical models in a particular application.
If, for example, the observational network is exceptionally dense, objective
analysis methods (i.e., interpolation techniques) or simple diagnostic models
may be cost-effective alternatives to the more complicated "primitive equation”
models. But, advanced numerical meteorological models are expected to provide
greater overall consistency in their predictions because they contain more of
the relevant atmospheric physics. A brief review of previous meteorological
performance evaluation procedures is presented below, followed by a recommended
set of numerical and graphical procedures for mechanistic evaluation of

meteorological models.

Previous Model Evaluation Procedures

Since the mid-1970s, there has been considerable work in developing
procedures for evaluating air quality model performance. Less work has been
performed in developing procedures and standards for meteorological models used
in support air quality modeling. While there is a rich history of performance
evaluation of meteorological models used in weather forecasting (e.g., Anthes,
1983; Ray, 1986), these studies are of limited use in photochemical modeling for
three reasons. First, the time and space scales relevant to ozone modeling are
characteristically shorter than those corresponding to the weather prediction
problem. The regional-scale (or limited area) models have typical horizontal
resolutions of 50-250 km, compared with the photochemical model resolutioms of
order 2 to 5 km. Second, evaluation procedures for limited-area weather
prediction models have genefally consisted of "skill” medsures (related to the
calculation of large-scale pressure gradient fields), root-meaﬁ—square errors,

and correlations between forecasted and observed changes in surface fields of
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wind speed, temperature, pressure, or precipitation. These procedures have not

adequately stressed the model or data bases used to cperate themn.

Third,weatherpredictionumdelsfbrecastsomefutureatmosphericstate,
given an initial characterization. Meteorological modeling for air quality
problems, in contrast, is diagnostic in nature. One is principally interested
in reproducing the local meteorological details of some past ozone episode that
typically lasted 24-72 hours. Given an initial description of the atmosphere at
the beginning of the episode and meteorological data throughout the period for

supplying boundary conditions, models are used to reproduce the local wind,

temperature, and stability fields at all grid points within the computational
-domain. Although essentially a diagnostic problem, both steady-state and time
dependent (i.e. prognostic) models are used to re-create these past meteorological
- fields.

Qualitative Evaluations

Numerous qualitative evaluations of mesoscale meteorological models
appear in the literature (Fosberg et al., 1976; Martin, 1981; McNider, 1981; Segal
et al., 1982a,b; Garrett and Smith, 1984; Pielke, 1984, 1985; Kessler ahd Douglas,
1989; Yamada et al., 1989). Generally, these studies éompare gridded surface wind
patterns predicted by a model with those developed from streamline analysis or
by simple interpolation of observational data Vertical profiles of temperature
. and wind at one or more sites may also be compared with model predictions via
graphical displays. Invariably, the degree of correspondence between predictions
and observations are described in subjective terms, an example being ”...the

predicted and observed wind velocities are in reasonable agreement” (Segal et
al., 1982a, pg. 1392.) ‘

Recently,KesslerandDouglas(1989)carriedoutqualitativeperformance
evaluations with the Colorado State University Mesoscale Model (CSUMM) with data
collected during the 1985 South Central Coast Cooperative Aerometric Monitoring
Program (SCCCAMP). Four episode periods were examined. Each day was simulated
separately, with the model initialized at 0400 PDT and integrated through 1200

PDT on the following day. Their evaluation consisted of visually comparing
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modeled and cbserved winds at the surface (15 m, AGL) and at 300 m, AGL. Because
the emphasis was placed on the CSUMM's ability to reproduce major features of
the regional airflow rather than an accurate representation of grid-point wind
measurements, the comparisons, and hence the overall performance evaluation, was

subjective.

Qualitative evaluation methods are a necessary first step in the
performance evaluation process. However, they provide insufficient information
regarding the suitability of model output fields for input to photochemical models
or whether the calculated wind and temperature distributions contain large errors

or systematic biases resulting from an inadequate model, input data base, or both.

Quantitative Evaluations

-

A growing number of quantitative performance evaluations with urban
and regional-scale meteorological models have been reported. Early studies of
Pielke and Mahrer, (1978) and Simpson et al., (1979), for example, used the
statistical procedures introduced by Keyser and Anthes (1977). Keyser and Anthes
(1977) demonstrated the use of several simple statistics for the domain-averaged
mixed layer potential temperature and sea-level pressure. In addition, they
compared gridded ground-level fields of model predictions with cbservations.
The observation field was developed by a simple interpolation algorithm (i.e.
model) proposed by Keyser (1977). Investigators using Keyser's performance
measureshavetypicallyconsidereddomain-scalemodelperformance,eitheraveraged

over the entire simulation period or for a particular hour of interest.

Tesche and Yocke (1976) introduced the use of wind speed and direction
residual distributions in the evaluation the Complex Terrain Wind Model (CTWM)
for photochemical model applications in the Los Angeles Basin. These residual
distributions were developed for each simulation day, combining data from all
monitoring stations and all hours. The mean and standard deviation of the
predicted and observed speed and direction distributions were used to judge
model performance. Tesche et al., (1986) evaluated the prognostic Land-Sea Breeze
Model (LSBM) (Liu et al. 1979) on an hourly basis, presenting hourly bias and

error estimates throughout the whole 48 hour modeling interval. Four grid-based
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meteorological models were tested with detailed surface, aloft and tracer
experiment data (Tesche et al., 1987). Estimates of model bias and error in wind
speed prediction were computed for 16 tracer experiments. Moore et al., (1987)
updated the LSBM and reported hourly bias, error, standard deviation, and
correlation statistics for the period 0600-2000 LDT on 8 August, 1984 in.the San

Joaquin Valley of California.

Steyn and McKendry (1988) and Ulrickson (1988) 1incorporate the
suggestions of Willmont (see, for example, Willmont, 1981: Willmont et al., 1985)
to test more rigorously a hydrostatic primitive equation model. Using the CSUMM,
Steyn and McKendry assess the temporal and spatial fidelity of predicted
temperatures in the Vancouver, BC region with several statistical measures. They
also compare modeled and observed time series of the mixed layer depth and various
components of the surface heat budget. Steyn and McKendry also present plots
of predicted and observed vertical profiles of wind components. Ulrickson (1988)
evaluated the CSUMM in the South Coast Air Basin using the same statistical

measures proposed by Willmont and implemented by Steyn and McKendry.

Recommended Numerical Meteorological Performance Procedures

Contemporary photochemical models require hourly-averaged three-
dimensional wind and temperature distributions, two-dimensional mixing height
fields, and various meteorological scalars including the atmospheric water
content, radiation intensity, lapse rates above and below the inversion, and
atmospheric pressure. Most important to ozone model performance are the wind
and mixing height fields. The role of ambient temperature is becoming
increasingly more important, not so much from the standpoint of photochemical
model seﬁsitivity as from the emerging strong dependence of emissions model
sensitivity to temperature. Estimation of evaporative emissions from motor
vehicles, for example, is highly temperature-dependent and considerable emphasis
is now being placed in developing emissions models that realistically account
for the time and space variations in ambient temperature throughout the airshed,
for the specific simulation days of iﬁterest. Accordingly, the mechanistic
evaluation procedures we recommend may be applied to meteorological model

estimates of wind speed, wind direction, temperature, and mixing height.
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We recommend eleven numerical measures for quantifying the performance
of diagnostic and prognostic meteorological models. Following the nomenclature

of Willmont (1984), they are presented in Table 4-1. These measures include:

. Mean prediction;

. Mean observation;

. Standard deviation of predictions;

. Standard deviation of observations;

. Least squares slope and intercept regression statistics;
. Root mean square error;

. Systematic root mean square error;

. Unsystematic root mean square e€rror;

. Index of agreement;

° RMS error skill; and

° Variance rates skill.

These measures may be computed easily for wind speed, temperature, and mixing
‘height. Because wind direction has a crossover point between 0 degrees and 360
degrees, standard linear statistical methods cannot be used to calculate the mean
or standard deviation. Recent evaluations by the EPA (Turner, 1986) suggest that
the method proposed by Yamartino (1984) performs well in estimating the wind

direction standard deviation. Specifically, this quantity is calculated by:

0, = arcsin (e)[l.o + 0.1547 e=] (4-1)

where:

€ ={1.0 - [(sin a)2 + (cos a)z] : (4-2)

Here, a is the hourly wind direction value. Although Yamartino’s method was
developed for instantaneous wind direction values of a, it is expected to apply

to hourly values as well.
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A "good” meteorological model will provide low values of the RMSE,
explaining most of the variation in the observations. The systematic error,
RMSEs should approach zero and the unsystematic error RMSE, should approach RMSE

since:
RMSE? = RMSE? = RMSE? (4-3)
It is important that RMSE, RMSE,, and RMSE, are all calculated. If only

RMSE is estimated (and it appears acceptable) it could consist largely of the

systematic component. This bias might be removed, thereby reducing the bias

introduced into the photochemical calculation. On the other hand, if the RMSE

consists largely of the unsystematic component (RMSE,), this serves as an
indication to the modeler that further error reduction may require model
refinement and/or data acquisition. It also provides specific error bars to be
used on the meteorological inputs in subsequent photoghemical model sensitivity

analyses.

We recommend that all eleven measures are calculated and reported as
part of meteorological model mechanistic evaluation. Currently, there is little
guidance available for judging acceptable ranges of each of these measures. The
recent work by Ulrickson (1988) and Steyn and McKendry (1988) provides some
initial perspective, however. Ideally, a basis of experience with these
performance measures will be developed over the next few years. This will lead,
perhaps, to a refinement in the list of numerical measures, and to an improved

perspective on acceptable ranges for each measure.

Several graphical procedures are suggested for analyzing meteorological
model performance. Each of these have been usefully applied in the past.
Figure 4-1 is a "slice plot” which exemplifies the resulting three-dimensional
temperature fields that were input to the Land Sea Breeze Model for the 25
September, 1980 simulation. Included in the figure is the terrain elevation along
a north-south slice, the vertical temperature field, and the mixing height at
the hour given. Alternatively, one could plot wind vectors on the vertical slice

instead of the temperatures.
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Figure 4-2 presents surface windfields for 0600-0700 LST on 11
September, 1980 in the SCCAB. The bold arrows correspond to surface winds
observed at the monitoring stations. Graphical comparisons between predicted
and observed surface wind vectors at each monitoring station for every simulation
hour are often useful in diagnostic analyses. Figure 4-3 is an example of such
a comparison between simulated (solid arrows) and observed (dashed arrows) wind

velocities at the Ventura monitoring station on 25 September, 1980.

The results of a residual analysis of hourly predicted and observed wind
speeds is shown in Figure 4-4 for three simulation days in the SCCAB. Similar
plots for the wind direction residuals (not shown) are recbmmended. On each
plot, the mean and standard deviation of the predicted and observed residual

distributions should be given to aid analysis.

Figure 4-5 presents the mean wind speed, direction, wind speed standard
deviation, the three root mean square errors, and the index of agreement as a
.function of simulation time for Ulrickson’s (1988) application to 8 August, 1984
in the South Coast Air Basin. Similar plots for the standard deviation of wind
direction, and the two skill metrics, SE-VAR and S-VAR, should also be plotted
as a functiomn of time. In these times series plots, the model "spin-up” interval,
normally 4-6 hours at the start of the simulation, should be identified clearly.
Overall performance statistics should not include results from this dynamic

initialization period.

4.2.3 Chemistry Model Testing

The chemistry module is one of the few components of photochemical
models that can be independently evaluated. Since the early days of photochemi-
cal modeling, scientifically sound chemical mechanisms have undergone testing
against environmental chamber data before being used in atmospheric modeling
(Hecht et al. 1974; Demerjian et al. 1974, 1979; Dodge 1977; Carter et al. 1979,
1986, 1988, Whitten et al. 1977: Jeffries et al. 1981; Killus and Whitten 1983;
Atkinson et al. 1982; Leone and Seinfeld 1984: Lurmann et al. 1986, 1987; Gery
et al. 1988; Carter and Lurmann 1989). A large body of environmental chamber

data have been collected for testing chemical mechanisms. Consensus exists within
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Figure 4-5. Statistical Comparison of Observed and Modeled
Surface Winds with Time on 8 August 1984,

4-21



the scientific community that multi-species testing using these data is the best
available method for mechanistic evaluation of the chemistry for wurban
photochemical modeling (Atkinson et al. 1987). In fact, because of the recognized
uncertainties in chemical mechanisms, testing using chamber data should be a
necessary requirement for using a mechanism. However, given the limitations
of the chamber data, such testing can at best demonstrate an absence of .bias and
general consistency between predictions and observations. The data are

insufficient to verify a chemistry module.

The limitations of the environmental chamber data should be recognized.
First, the data base provides concentration-time profiles for NO, NO,, ozone, PAN,
selected hydrocarbon precursors, and some carbonyls. Comparisons of calculated
and experimental ozone, NO, NO,, PAN, VOCs, and carbonyls provide a basis for
operational evaluation and limited diagnostic evaluation of the chemistry models.
However, measurements are not available for many of the Iimportant radicals,
intermediate species, and product species that could be used in determining
whether or not a chemistry model is mechanistically correct. For example,
measurement of OH, HO,, HONO, HNO,, H,0,, and organic radicals and products could
very helpful for mechanism testing. Second, the initial precursor concentrations
used in environmental chambers are typically at or above those commonly observed
in urban areas (e.g., [NO,] > 100 ppb and [VOC] > 500 ppbC). Thus, data are not
available to test the chemistry’'s performance in relatively clean environments.
Third, chambers have artificial sources of reactivity. which are not well
characterized (Carter et al. 1982). The artificial source of radicals does not
significantly influence the testing of organic species that are moderately or
highly reactive. However, variability in the chamber radical source strength
interferes with testing the chemistry of slowly reacting compounds, because the
chamber radical source strength may be comparable to the gas-phase radical
formation rate in such systems. This is of concern because about half of the
VOCs emitted into urban air are slowly reacting alkanes whose chemistry can not
be unambiguously evaluated using chamber data. Lastly, although some evaluations
have used over 550 experiments (Lurmann et al. 1987; Carter and Lurmann 1989),
sfatistically robust evaluations are only possible for a limited number of
individual organic compounds, such as formaldehyde, ethene, propene, toluene,

and xylene, and organic mixtures.
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Procedures have been developed to characterize conditions in environmen-
tal chambers, such as light intensities and spectral distributions, the rates
of species off-gassing and deposition on chamber walls, and the rates of
heterogenous reactions occurring on chamber walls (Carter et al. 1986; Gery et
al. 1988; Jeffries et al. 1988). Significant differences exist in the chamber
characterization procedures used by different research groups, and these differ-
ences may dramatically influence the results of the chemistry model evaluations

(Atkinson et al. 1987; Jeffries et al. 1988).

The recommended approach for mechanism testing follows the hierarchy
of species shown in Figure 4-6 (Whitten 1983; Atkinson et al. 1987). The diagram
shows the hierarchical nature and .interdependence of the major components of
atmospheric photochemical mechanisms. Mechanism testing is initiated at the
lowest level in the hierarchy-(ie., NO,-air experiments to test the inorganic
reactions and the chamber characterization procedures) and proceeds to the highest
level (>C2 hydrocarbons) by step-wise addition of species with increasingly
complex chemistry. The step-wise feature of this approach is designed to
facilitate identification of the uncertain components of chemistry models, and
minimize both the occurrence of compensating errors in the mechanism and fortu-

itous agreement between models and chamber data.

The rationale for testing according to the hierarchy is that if a
substantial disagreement between a model and data occurs at a high level in the
hierarchy and the model has shown to perform well for experiments involving
species lower in the hierarchy, then the source of the disagreement is most likely
in the new higher level chemistry rather in the lower level reactions. Following
tests of single hydrocarbon-NO, systems, the chemistry models are tested against
complex mixtures of organics in the presence of NO,. The complex mixtures are
surrogates for the organics present in ambient air. Testing using complex mix-

tures allows for investigation of synergistic and compensating effects.
An important component of diagnostic evaluation is searching for

relationships between model biases and input parameters. Several procedures

have been used to investigate the presence of these relationships in chemistry
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Figure 4-6. Hierarchy of Specles for Mechanism Testing.
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models. Perhaps the oldest method is to examine the errors in ozone as a func-
tion of the different types of organic precursors (which is now routine). Plots
of the errors in ozone (or other product species) as a function of the initial
NO, and VOC concentrations, and VOC/NO, are useful for identification of systematic
biases. Figure 4-7 shows a typical plot of normalized error in ozone versus the
initial VOC/NO, in complex mixture runs. It shows under- and overprediction of
ozone by comparable amounts and with comparable frequency for initial VOC/NO, of
1 to 20. This demonstrates an absence of bias within this range. However, at
the lowest and highest VOC/NO,, this mechanism has a positive bias. If a mechanism
has negative bias at low VOC/NO, and positive bias at high VOC/NO, (or vise-versa),
it is indicative of mechanistic errors in the model that must be corrected before

use in atmospheric modeling and, especially, in control scenario evaluation.

Research needed to improve mechanistic evaluation of chemistry models
include: (1) acquiring chamber data from existing facilities and with existing
methods for organic species for which there are little data; (2) developing and
applying methods to collect data for species not presently measured in existing
facilities; and (3) development'of cleaner environmental chambers. The data
collection and methods development efforts should focus on the following major
areas of uncertainty in current photochemical mechanism: the identification and
subsequent reactions of aromatic ring-fragmentation products, the radical yields
in ozone-olefin reactions, the oxidation mechanisms of >C5 alkanes, and photolytic

data for carbonyls.

4.2.4 Deposition Model Testing

Dry deposition at the surface of an air basin is a major. sink for
gaseous air pollutants. Model calculations in the South Coast Air Basin show,
for example, that approximately 35 percent of the NOx emitted into an air parcel
is removed by dry éeposition within the first day of transport (McRae and Russell,
1984). Clearly, if the dry deposition calculations incorporated into
photochemical air quality models are in error, then predictions of ozone and ozone

precursor concentrations remaining in the atmosphere also will be in error.
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The deposition flux, F, to a surface is often computed by multiplying
the atmospheric concentration of the pollutant of interest by a parameter known
as the deposition velocity, v,:

F = vgec(z,) (4-4)

where c is the pollutant concentration measured at reference height z,. Within
simplified air quality models, v, is often specified as a constant value based
on the results of field experiments in which the concentration, ¢, and flux, F,
were measured simultaneously at the surface. In reality, the deposition velocity
is not constant, but rather depends on atmospheric turbulence and surface
conditions such as moisture level. Turbulent transport limits the rate at which
pollutants are brought to the vicinity of the earth’s surface, molecular scale
diffusion of the pollutant across a stagnant atmospheric layer immediately
adjacent to the surface provides another barrier to deposition, and finally, the
chemical reaction characteristics of the surface and pollutant de;ermine whether

or not .the gas molecules become attached to the surface.

Photochemical grid models include dynamic transport calculations and
chemical reaction resisfance calculations in estimating deposition rates as a
function of time and location. The correctness of these calculation steps-éhould
be checked individually to the extent possible. Then, the deposition module,
in isolation from the full photochemical model, should undergo mechanistic
evaluation using special studies in which the atmospheric concentration,
meteorological and surface characteristics inputs to the module and the flux to
the surface were measured simultaneously. These tests will determine whether
or not correct concentration values can be mapped into correct deposition fluxes.
Finally, the deposition module as it is integrated into the photochemical model
should be evaluated to determine the accuracy with which the pollutant flux can

be calculated directly from emissions data and meteorological data.

Before mechanistic evaluation of a candidate deposition module,

preliminary assessment first should be undertaken to ascertain whether or not
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the theoretical basis of the calculation is reasonable. Key questicns to be

answered include:

° Is the diffusion-limited flux to the ground computed in a manmer

consistent with atmospheric boundary layer theory?

. Have the surface resistance values due to chemical reaction been
selected based on the most recent experiments reported in the

scientific literature?

. Does the model adjust for the effect of computational cell height
on average pollutant concentrations such that pollutant fluxes
are calculated as if the concentrations were measured at a constant

reference elevation?

. Is vertical resolution sufficiently fine (or are there compensating
treatments in the model) to assure that deposition is adequately

simulated?

. Is vertical resolution sufficiently fine (or are there compensating
treatments in the model) to assure that deposition is adequately

described?

The first step in this process is to test the accuracy of the transport-
limited deposition rate calculation. Experimental data should be sought on the
atmospheric concentration and deposition of a pollutant that has essentially zero
chemical reaction resistance to deposition. Nitric acid vapor is one gaseous
contaminant that is thought to be deposited at a diffusion-limited rate (Huebert
and Robert, 1985). Comparison of computed and observed HNO, deposition fluxes
in the presence of accurate meteorodlogical inputs to the model would constitute
an initial test of the deposition module. If a sufficiently large set of such
data can be acquired, the statistical measures of the bias and error for the
deposition calculation can be estimated ﬁsing the procedures developed in

Section 2.0. Of course, the deposition rates of other species, many occurring
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less rapidly, should also be tested before the deposition module can be

successfully verified.

The chemical reaction resistance algorithm in most deposition models
is determined empirically based on field data. Therefore, a theoretical test
of this portion of the deposition caleulation is not practical. A literature
survey of the variability of the experimental data on the chemical reaction
resistance for specific pollutant-surface pairs - can be conducted. Then,
sensitivity analysis procedures can be used to assess the uncertainty in the
deposition module results due to the underlying uncertainty in the chemical

reaction resistance values.

Emphasis over the last decade on acid deposition phenomena has led to
a number of field studies in which careful measurements have been made of
pollutant concentrations, meteorological conditions, and pollutant fluxes to
various surfaces. Most of these studies were not conducted in geographical areas
where high-resolution emission inventories are available so it is usually not
possible to test photochemical models against these data sets. However, if the
deposition module is isolated from the model, then the ability of the entire
deposition module to track the relationship between atmospheric concentration

and surface fluxes can be assessed.

The most convincing test of the deposition calculations produced by a
photochemical model is analogous to the traditional testing of the concentration
predictions of such a model. Surface flux predictions are made in space and in
time and compared to corresponding field observations on the actual flux to the
airshed. While data sufficient to support such.a comparison are rare, the data
are not totally absent. For example, Riggan et al (1985) have reported the
nitrogen fluxes to watersheds in the San Gabriel Mountains within the grid system
used for photochemical modeling in the South Coast Air Basin. Within the
urbanized portion of the basin, Pierson et al. (1988) have measured the dry flux
of HNO, to surface outdoors at Claremont, CA. Photochemical grid model predictions
of the surface flux of the pollutants measured at those specific times and
locations could be developed and compared against the available field

observations. The existence of a few field studies of this type suggests that
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research could be directed specifically toward acquiring a model evaluation data
set for testing dry flux calculations over a wider geographic area and over a

wider range of pollutant species.

In the absence of experimental data on the actual deposition flux, a
few less exacting tests can be performed to obtain some insight into deposition
model performance. Graphical tests can be considered. The spatial distribution
of predicted pollutant fluxes can be contoured and examined to assure that the
spatial distributions of the fluxes are in reasonable relation to the atmospheric
concentrations. The ratio of the computed deposition fluxes to the computed
atmospheric concentrations can be calculated and displayed spatially, resulting
in a map of the effective deposition velocity for each pollutant. The deposition
velocity map can be checked to ensure that the values do not exceed the fluid
mechanical upper limit to the deposition velocity. Deposition velocities for
pollutants with a high surface chemical reaction resistance should be lower than
for pollutants that deposit at the diffusion-limited rate, and this too can be
checked to verify that it is reflected in the deposition velocity maps created

by the model.

Hubbe (1989) discusses several other facets of deposition flux
estimation that are worth considering in developing a research plan for rigorous
evaluation of deposition models. He explores ten major assumptions inherent in
deposition flux modeling and discusses the results of major field measurement

programs aimed at supplying data for model development and evaluation.

4.3 Non-Traditional Approaches to the Incommensurability Problem

Surface measurements of pollutant concentrations are made at instru-
mented monitoring stations. These measurements represent concentrations in the
immediate vicinity (of the order of tens of meters to one hundred meters) of the
station. In areas where concentrations vary with distance (”gradient areas”),
or in areas of moderate to high variability in concentrations, measurements
characterize only local conditions. In contrast, photochemical grid models
estimate volume average concentrations in each grid element where the

characteristic horizontal dimension of a grid cell is two to five kilometers
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for urban scale applications, five to twenty kilometers for regional scale
applications (such as the San Joaquin Valley), and twenty to one hundred
kilometers or more for subcontinental scale models such as the acidic depositions
models, RADM and ADOM. Because of the vastly different spatial and temporal
scales of measurements and modeling estimates (or predictions), measured and
predicted concentrations are not directly comparable. This lack of comparability,

which can add an important element of uncertainty to performance evaluation

exercises, is termed incommensurability.

The causes of incommensurability stem from the limitations of both
measurement and modeling. Measurements made at fixed locations cannot adequately
reflect variability at the spatial scale of a grid cell. This is frequently
termed the representativeness p}oblem. Conversely, grid-based models do not
incorporate descriptions of processes occurring at less than grid scalé. Unless
either measurement or modeling practice is altered so as to bring the differing
spatial scales more into alignment, the problem of incommensurability will

persist.

4.3.1 Sub-grid Scale Modeling

One option for enhancing commensurability is to include in grid-based
models those dynamic processes, such as chemical reaction, mixing, dispersion
and deposition, that occur at spatial scales less than the size of the modeling
grid. While it is possible, in principle, to develop and include descriptions
of these processes, it is exceedingly difficult to do'so in practice. The
theoretical representations are complex and only approximate. Data needed to
test the representations are difficult and expensive to acquire. Moreover, based
on experience to date, there is little evidence to suggest that the performance
of models would improve significantly if approximate representations of subgrid
scale processes were.included in models. Nevertheless, modeling of subgrid scale
variability in the vicinity of monitoring stations, with the objective of
achieving comparability between prediction and observation, may prove useful.
However, innovative ideas and considerable time, effort, and supporting data will

be required if this approach is to succeed.
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4.3.2 Finer Grid Resolution

Another option for improving commensurability is to substantially reduce
the dimensions of a grid cell. Incorporating increased grid resolution, however,
leads to increased computing requirements (increasing at least with the square
of the ratio of the horizontal linear dimension of the original to the modified
grid element) and data requirements, and the need for finer scale description
of dynamic processes. Moreover, for the reasons discussed by Lamb (1973), there
is a limit below which reducing the grid cell size violates the assumptions
inherent in the turbulence closure hypothesis of contemporary photochemical grid
models. While the merits of pursuing this option might be investigated, previous

assessments suggest that the costs far outweigh the benefits.

4.3.3 Remote Measurements

Potentially attractive approaches for enhancing commensurability involve
changes in measurement technology and strategy. Options include remote measure-
ment and multiple measurements within the area of a grid cell. The purpose of
employing remote measurement techniques 1s to observe volume-averaged
concentrations that might be compared directly with model predictions. EPA has
developed a prototype airborne lidar system for quantitatively determining volume-
averaged ozone concentrations. However, there is only one such system extant,
and it is still in the "testing” stage of development. A few lidar’ systems are

available for observing SO, concentrations.

Availability and use of operational, commercial remote measurement
systems would undoubtedly advance model performance evaluation. Of all approaches
to resolving the commensurability problem, the widespread use of remote monitoring
is the most promising and attractive. However, if this capability is to material-
ize, EPA, ARB, and other agencies will need to commit to its successful develop-

ment and implementation.
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4.3.4 Multiple Measurements Within a Cell

Monitoring at multiple sites within a grid cell provides an alternate
means for estimating grid-averaged concentrations. For example, several years
ago the Department of Energy (DOE) deployed fifty monitoring sites in the vicinity
of Fort Wayne, Indiana (Dana et al., 1984) to determine the subgrid scale
variability in precipitation, deposition and wet chemistry as a part of the OSCAR
field study. Unfortunately, the costs of today's preferred equipment for
monitoring gaseous pollutant concentrations preclude any but the most limited
research use of this option. The development of very low cost measurement

techniques would, of course, completely change the cost-benefit balance.

Finally, it is conceivable that, for well defined situations such as
monitoring sites located along urban arterials and freeways, correlations between
local point measurements and grid. volume averages might be developed through
special studies. However, since short term variations in local meteorological
conditions influence both local and spatially averaged concentrations, it may
be difficult to develop reliable correlations even under the best of circum-

stances.

In summary, no approach to resolving the commensurability issue is now
available. The development of economical remote measurement systems and very
low cost surface monitoring devices provide the most attractive routes to

resolution.

4.4 "Stressing” a Model

Oftentimes, testing of grid-based photochemical models is confined to
the study of one or two episodic‘periods of high ozone concentrations. In
California, high ozone concentrations are observed during two- to four-day
periods (episodes) of high pressure, high temperature and light winds. The
characteristics of adverse meteorological conditions vary relatively little for
a given region in the state; unfortunately, testing model performance for only
these conditions does not provide a sound basis for ensuring that a model will

perform adequately over a sufficiently broad range of circumstances. of
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particular interest are conditions of reduced emissions, under which acceptable

air quality is observed even though the meteorology is unfavorable.

During initial evaluation of model performance, the modeler has the
opportunity to carry out diagnostic analysis of results; to seek explanations
for inadequate performance; to make adjustments to the model or, more frequently,
to the meteorological, air quality, or emissions inputs to the model; and to
retest. Because of paucity of data or uncertainty in estimates of model inputs,
it is often difficult to identify unambiguously a cause of failure; several flaws
may exist and yet may not be obviously present or, if identifiable, easily
separable. Moreover, adjustment of inputs for one variable may improve model
performance but may not correct the inherent problem; the adjustment may simply

hide the flaw, albeit inadvertently.

For example, there is currently debate over the appropriateness of
emissions factors used to develop estimates of on-road motor vehicle emissions
in California. The recent tummnel study in Los Angeles (Ingalls et al., 1989)
reported VOC emissions factors from in-use vehicles that exceed those used by
the EMFAC7D model by as much as a factor of 6.9. Whether, and to what extent
the tunnel study and other recent field work in Texas, Colorado, and the SOCAB
point to a systematic underestimation in motor vehicle emissions estimates is
presently uﬁknown and is deserving of immediate, focused investigation. But,
it is known that photochemical grid models have a systematic tendency to
underestimate hourly-average ozone concentrations (Tesche, 1988). If it is
determined that the motor vehicle emission model is flawed, it opens to question
the reasonableness of other modeling procedures that may have, inadvertently,
compensated for a negative ozone prediction bias. Specifically, have mixing
height or wind speed estimation methodologies erred in favor of producing higher
ozone model prediction as the direct (and ﬁnknown) result of a systematic

underestimation in emissions?

In general, in carrying out photochemical grid modeling there is
significant risk of having a model appear to predict adequately, but to do so
for the "wrong” reasons. Under test conditions, one or more hidden inadequacies

may not reveal themselves. However, performance failures may become manifest
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under the reduced emissions conditions associated with implementation of a control
strategy. If this situation exists, then the model will predict incorrectly,
either under- or overestimating the concentration reductions associated with

the strategy under study.

"Stressing a model” is designing and carrying out performance tests
that cause a model to reveal its flaws and weaknesses if it is indeed inadequate.
Stressful testing is intended to reduce (or avoid) the risks associated with
"weak” or otherwise inadequate tests, wherein a model is not challenged suffi-
ciently to reveal its flaws and weaknesses or appears to be performing acceptably

despite significant inadequacies in formulation or inputs.

The notion that a model should be forced to reveal its flaws and
weaknesses should not be construed as being negative or destructive of the model
development process. Rather, it reflects the fact that a model cannot be proven
accurate; it is not possible to examine all the situations of interest or to
collect all the data needed for any one situation. Model acceptability is
demonstrated through a lack of inadequate performance over a range of conditions
and tests. Confidence in the model builds as the number and variety of "success-
ful” tests increases. The more stress that testing places on a model, the greater
is the value of the tests, and a fewer number of tests is needed to establish

model acceptance.

Tests intended to stress a photochemical grid model must clearly
transcend operational performance evaluation exercises, typically, the comparison
of predictions and observations for ozone (and, with less stringency, for NO,)
for one or two episodes of two days’ duration. No prescription of “stress
testing” now exists; however, one can conceive a number of requirements which,
if adopted in whole or in part, would certainly reduce the risk of inappropriately
accepting a flawed model for use in control strategy assessment. For example,

one might require, as part of a performance evaluation protocol, to:

. Give equal, or nearly equal, weight to accurate estimation of

NO, and volatile organic compounds as that given to ozone.
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Attempt, insofar as possible, to assure commensurateness in space
and time of predictions and observations; that is, attempt to

assure that observations are representative of predictions.

Test the performance of individual model components, such as the
chemical mechanism or deposition algorithm, prefatory to examin-

ing overall model performance, whenever possible.

Test the performance of "preprocessor models”, notably the meteo-

rological and emissions models, whenever possible.

Examine performance of the model over the range of meteorologi-
cal, air quality (chemical), and emissions conditions available
for study. If performance evaluation is part of a larger program
involving field observations, design the program to acquire the

necessary data. For example:

(a) While adverse meteorclogical events are typically studied,
evaluate model performance for situations invelving cleaner

air;

(b) Carry out tests for weekend as well as weekday emissions

patterns; and

(c) Carry out tests for adverse meteorological conditions of
varying temperature maxima and diurnal temperature

profiles.

Require "hands off” testing after an adequate period of time is
allowed for the "hands on” testing that is traditionally carried
out during model development. Also, require testing by indepen-
dent parties (who have no vested interest in the outcome) after

the inception of the period of "hands off” testing.
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When a flaw or weakness is revealed through stressing the model, the
intent is to correct the problem and retest. Test results are interpreted and
attempts are made to identify model components and/or data preprocessing that
need improvement. The process of testing and interpretation of test results is
cyclic and iterative; test failures are diagnosed and improvements are made to
the model until the model passes the prescribed tests, interpretation of test
results can no longer reveal failed model components, or the model cannot be
improved in the near term (signaling long-term model development activities and

eventual re-evaluation, or acquisition of data bases more suitable for use in

testing).
However desirable it is to stress a model, tests should nevertheless
be "reasomable.” Thus, a test should not attempt to demonstrate that a model

cannot do what it was not designed to do. In other words, the testing process
should not include requirements that are not possible to meet, either because
the necessary data cannot be acquired or the model itself does not include the
necessary features. For example, since urban and regional models are not designed
to simulate subgrid scale processes, tests should not be prescribed that require

accurate subgrid scale predictions of spatially variable parameters.

One might extend the requirement for "reasonableness” to the testing
of nonessential features of a model. On one hand, if it is a nonessential
feature that appears to fail, it is still an indication that all is not right
with the model. On the other hand, the desire is to develop a useful model for
guiding the thinking of decision-makers in the short and intermediate terms.
Thus, if the model meets all current needs, it may be judged acceptable even if
one or more nonessential elements are flawed. Of course, it is unlikely that
the scientific community will wish to accept a model displaying these character-

istics; however, it may still serve its intended shorter term function adequately.

Finally, as suggested earlier, tests should not require data that
cannot be acquired. For example, while it is highly desirable to collect free
radical data in the field, it is currently not possible to do so, except by
using research equipment under special circumstances. The design of tests should

reflect such limitations.
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Anticipating potential problems with or limitations of models is a
valuable aid in the development of stressful and informative tests. A careful
look at past experience in analyzing model failures, coupled with a knowledge
of the treatment of phenomena that are key to addressing issues of concern,
gives focus and direction to the test development process. Possible limitations
of models in their simulation of key processes, as 1identified by the

scientific/modeling community, should guide the design of tests.

4.5 Use of Simplified Models

In certain, carefully selected situations, the use of simplified models
may augment the procedures used to evaluate the full photochemical grid model.
A few examples are discussed below.

<

4.5.1 Photochemical Box Models

Photochemical box models cannot be used to predict the magnitude and
location of the concentration of photochemically reactive species in a given
region; at best they may be able to calculate the temporal variation of the aver-
age regional concentration for the various pollutants. However, since they lack
spatial resolution, they cannot be used in situations where the meteorological
or emission patterns vary significantly across the modeling region. Clearly,
single-box models cannot be used to assess the effectiveness of emission control
strategies in relation to spatially inhomogeneous emissions. Nevertheless, box
models that incorporate a full-scale chemical mechanism can be used in a supﬁle—
mental manner in the process of evaluating the performance of a grid-based
photochemical model, always for applications with respect to a given region.
For example, box models can be used to calculate material balances over an entire
region, and for preliminary sensitivity testing, to determine the relative
contributions of sources, initial conditions, and inflow to a regiom's air

quality.
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4.5.2 Photochemical Trajectory Models

Trajectory models encompass a wide variety of formulations (uniformly
mixed versus vertically and/or horizontally resolved control volume or "air
parcel,” constant. versus expanding control volume, forward versus backward
trajectory calculations). In general, the formulation employed by the trajectory
models to describe atmospheric pollution dynamics represents an attempt to solve
the mass conservation equation in a moving coordinate system. The air parcel
of interest is assumed to travel solely with the prevailing horizontal wind and
to retain its vertical shape as it is advected; actual winds are approximated
by a mean wind velocity that is assumed to be constant with height. Hence,
vertical wind velocities and wind shear are neglected. Trajectory models
typically assume that the horizontal dimensions of the air parcel remain constant
and unaffected by convergence and aivergence of the windfield. Many trajectory
models ignore horizontal dispersion effects but consider the dynamics of a
several vertically stacked cells. Other models assume uniform mixing in the
vertical direction. The entrainment of ambient air into the air parcel is also
often ignored; still, even those trajectory models that include entrainment of
ambient air may not account for the chemical evolution of ambient air prior to
its entrainment. The practices of neglecting vertical winds, wind shear,
dispersion processes, and possibly entrainment processes, and of assuming coherent
air parcels, can have significant impact on the reasonableness of the predictions,
especially in the case of complex windfields and in calculations for long downwind

distances.

The limitations of trajectory models that are a consequence of the above
practices have been detailed elsewhere (e.g., Liu and Seinfeld, 1975; Ghim and
Seinfeld, 1988; Seinfeld, 1988). The usefulness trajectory models is in quickly
evaluating the effect of input parameter changes on pollutant levels, i.e., for
efficient,low-cost,sensitivityanalyses.Althoughtrajectorynmdelscanincorpo—
rate nearly all the chemical detail of a grid-based model, they do suffer from
a number of serious and well-known limitations that restrict the applicability
of the model concept. 1In particular, trajectory models are inappropriate for
situations involving complex terrain, overnight carryover of pollutants, flows

where the parcel assumption is violated (e.g., wind speed or direction shear),
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and regions where strong concentration gradients occur. Yet, in some simple
cases, one may estimate the sensitivity of ozone predictions to variations in
initial conditions, emissions, and upper level boundary conditions with this
'class of photochemical model (see, for example, Lurmann et al., 1986; Derwent

and Hov, 1988).

A low-cost screening (or preliminary) analysis can often be performed
using tfajectory models. Such an analysis should employ EPA Guideline models
(i.e., RPM and PIMSTAR) that incorporate up-to-date versions of the chemical
mechanisms and of the descriptions of removal processes. The quality of the input
data used for applying these models should be comparable to that expected to be
used with the grid-based model. The objectives of this type of analysis should
be limited and well defined: it should focus on identifying questions to be

answered through a full scale performance evaluation procedure.

Sensitivity analyses using a trajectory model may focus specifically
on the chemical transformation and the removal (deposition) components of the
photochemical model. The trajectory model should use the same chemistry and
removal components (modules) as the grid based model and the same constitutive
parameters (reaction rates, deposition velocities, etc.). Not only the conceptual
framework for these components but also the algorithmic or numerical
implementation should be identical or equivalent for the two models. The complete
input parameter set of the trajectory model (involving windfield components,
dispersion parameters, etc.) should be a subset of the corresponding input set
for the grid model. The same vertical resolution and the same cell size should

be used for both models.

A suggested list of sensitivity tests that can be performed using a
trajectory model follows: it includes typical factors for calculating high and

low values for the sensitivity variables from the baseline case values.

. Low (x .33) and high (x 1.5) ozone aloft;
. Low (x .5) and high (x 2) VOC aloft;

. Low (x .1) and high (x 10) NO, aloft;

. Low (x .5) and high (x 2) initial VOC;
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. Low (x .2) and high (x 5) initial NO, ;

. Low and high initial VOC and NO, (together/factors as above);
. Low (-30%) and high (+30%) VOC and NO, emissions;

. Low (x .1) and high (x 3) initial aldehydes surface and aloft;
. Low (x .2) and high (x 5) HONO formation rate: and

. Zero dry deposition.
-4.5.3 Suggested Uses of Simplified Photochemical Models

Simplified simulation models such as photochemical box models and
trajectory models (including EKMA) should not be in general considered as
alternatives to grid-based photochemical models. The reason for this lies in
the severe limitations inherent in the formulations of these simplified models
(see, e.g., Seinfeld, 1988). The potential usefulness of trajectory models is
their utiliéy in (1) performing a preliminary analysis of the application(s)
relevant to which the grid-based model is going to be evaluated, to identify
aspects of the modeling task that need to be studied in detail and therefore are
appropriate as focal points of the full scale performance evaluation process,
and (2) in quickly evaluating the effect of input data and parameter changes on
pollutant levels, i.e., in performing efficient, low-cost, sensitivity analyses
specifically relevant to the transformation/removal components of grid-based
photochemical models. Box models can be used to perforh mass balances and check

sensitivity to boundary and initial conditions for the entire region covered.

Simplified formulations thét manage to retain certain of the salient
characteristics of comprehensive photochemical models may be developed as adequate
substitutes to photochemical grid models for certain limited, well-specified,
sets of conditions. The methodologies underlying these potential developments
can be found in classical chemical reactor theory which offers a wide range of
semi-empirical approaches for non-ideally mixed continuous flow reactors. The
main idea is to replace the well mixed cell with a simple network of cells (in
series and/or in parallel) and appropriately assign mixing and chemical processes
"in these cells. Such formulations, still at the research stage, have been proposed
for continental scale aﬁpliéations (e.g., Jacob et al., 1989). Possibly, some

alternatives that represent compromises between large-scale, grid-based models

4-41



and trajectory (including EKMA) models may eventually prove useful for urban and

regional scale applications and for a variety of semsitivity analyses.



5.0 SUMMARY AND RECOMMENDATIONS
5.1 Summary

Urban ozone medeling techniques have matured significantly since the
original development work in the South Coast Air Basin two decades ago (Roth,
1988). Possibly the most pressing challenge today is determining whether a
photochemical model performs well enough for use in regulatory decision-making.
For many years, there have been no standardized procedures for conducting model
performance evaluations or agreed-upon criteria for rejecting simulation results
(Fox, 1981; Roth et al., 1989). The California Air Resources Board recently
sponsored this study to establish the basis for consistent photochemical grid
model performance evaluations in the near term and to provide a framework for
performance evaluation research over the longer term. The specific study
objectives include: (1) develop improved evaluation procedures for photochemical
grid ﬁodels, (2) develop evaluation procedures supporting regulatory decision-
making concerning ozone control programs, (3) develop new procedures consistent
with improved aerometric data bases such as the Southern California Air Quality
Study (SCAQS), and (4) exemplify the use of the recommended procedures and

performance measures.

A specific set of statistical and graphical performance evaluation
procedures were developed for operational use in photochemical modeling studies
in California. Included is a group of diagnostic simulations and tabular and

graphical examples of ways in which the results might be analyzed portrayed.

Diagnostic model evaluation methods were also developed. While often
coupled with operational performance evaluations, these strongly recommended
procedures are intended to develop greater insight into the strengths and
weaknesses of a particular model, data base and photochemical simulation than
is afforded by the routine procedures. They seek to provide a method for stress
testing models and for causing flawed models to fail in a demonstrable manner.

In complex modeling situations or when the operational performance evaluation
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results are suspect, these diagnostic procedures are an essential component of

the overall evaluation process.

Emergent and longer term performance evaluation issues and research
needs were addressed. In some cases, these needs have been identified for a some
time; only recently have data bases and numerical hodeling techniques become
available to deal with them. In time, some of the extant research needs will
be addressed successfully, leading to an improved set of model and data base

testing procedures.
5.2 RECOMMENDATTONS

5.2.1 Operational Evaluation Procedures

Several numerical and graphical procedures are developed for assessing
the performance of grid-based photochemical dispersion models. The methods
suggested include the calculation of peak prediction accuracy indices, statistics
based on concentration residuals, and time series of predicted and observed
hourly concentrations. Graphical procedures are also suggested to complement

the numerical measures, providing additional insight into model performance.

Numerical Performance Procedures

Ten numerical measures, involving specific comparisions between hourly
predictions and observations, may be used to typify a model’s overall performance
in a photochemical simulation. While these measures may be applied to any
primary or secondary pollutant for which adequate monitoring data are available,
for the present, their use is recommended primarily for ozome and NO,

concentrations. The recommend numerical performance measures are as follows.

Paired Peak Prediction Accuracy. The paired peak prediction accuracy,

A,,, examines the discrepancy between the magnitude of the peak one-hour average
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concentration measurement at a monitoring station, ¢, (i,E), and the
concentration at the same location, %, and at the same time, t. The predictions
and observations are thus "paired in time and space."” The paired peak prediction
accuracy is a very stringent model evaluation measure. The predicted
concentration recommended for numerical all comparisons with observations is the
four cell weighted average determined by éimple bilinear interpolation among the

four grid cells nearest the monitoring location.

Temporally-Paired Peak Prediction Accuracy. The temporally-paired peak

prediction accuracy, A,, examines the model’'s ability to reproduce the highest
observed concentration in the subregion surrounding the monitoring‘station at
the same time of occurrence of the measured maximum. Relaxation of the spatial-
pairing requirement (compared with A,;) is allowed, up to a maximum subregional
distance of 25 km.

Spatially-Paired Peak Prediction Accuracy. The spatially-paired peak

prediction accuracy, A;, describes the discrépancy between the magnitude of the
peak one-hour average concentration measurement at a monitoring station and the
highest predicted concentration at the same monitor, within three hours of the
peak. When interpreted along with other measures, A; provides some insight into
the reasonableness of the simulated transport processes leading to the maximum

concentration.

Unpaired Peak Prediction Accuracy. The unpaired peak prediction

accuracy, 4A,, describes the difference between the magnitude of the peak one-
hour average observed concentration and the highest value predicted anywhere in
the modeling region. This is the least stringent of the peak prediction accuracy

measures,

Average Station Peak Prediction Accuracy. The average station peak
prediction accuracy, A, is the mean of the spatially-paired peak prediction

accuracies averaged overall monitoring station locations. A is calculated by
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first determining the spatially-paired peak prediction accuracy at each
monitoring station, A,,. The average station peak prediction accuracy is simply
the algebraic mean of the absolute value of the A, scores. The temporal offset
between predicted and observed maximum at any monitoring station should not
exceed three hours. The average station peak prediction accuracy describes how

well the maximum concentrations throughout the monitoring network are reproduced.

Mean Biags. The mean bias (i.e. mean bias error) is calculated both
as a residual quantity and one that is normalized by the observed concentrations.
The bias is determined from the average signed deviation of the concentration
residuals. It indicates the degree to which predicted one-hour concentrations
are over- or underestimated. Based on the ensemble of prediction-observation
pairs, this measure reveals the presence of systematic deviation from observed
concentrations. The non-normalized bias is calculated to aid in developing a
robust data base on photochemicdl model performance evaluation. The mean
normalized bias, generally of greater interest, is useful in identifying
systematic errors in the model’s temporal or spatial reéponse. Since the bias
reveals the tendency for systematic over- or underestimation, it should be zero
in the ideal case. Caution must be exercised in the interpretation of bias
because it is possible for large, compensating subregional biases to produce a

* mean zerc estimate.

Variance. The variance of the distribution.of residuals, S2, describes
the dispersion of the residual distribution about the mean. As the second moment
of the concentration residual distribution, the variance is a measure of the
average "spread" of the residuals, independent of any systematic bias in the
predictions. The variance provides no direct information about subregional
errors or about large discrepancies occurring within portions of the diurnal

cycle.

Gross Error. The gross error, reported both as normalized and non-

normalized measures, describes the average absolute signed deviation of the

concentration residuals. It indicates the average (signed) discrepancy between
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hourly predictions and observations, and is one of the most useful measures for

comparing different model simulations. The normalized gross error is a robust
measure of overall model performance, representing the average error in

prediction.

Graphical Performance Procedures

Certain features of a photochemical grid model simulation are best
analyzed through graphical means. In addition to revealing important qualitative
relationshipé, graphical displays can also be used to give quantitative
information. Nine different graphical methods are recommended that provide the

following information:

. The relationship between the various measures of peak prediction
accuracy;

. The temporal correlation between predictions and observations;

. The spatial distribution of predicted concentration fields;

° The correlation between hourly pairs of predictions, observations

and residuals;

. The variation in bias and error estimates as functions of time

and space; and

. The degree of mismatch between model predictions and point

measurements.

Accuracy Plot. Two accuracy plots are recommended; one depicts
relationships between the five numerical peak prediction measures, and the other
plot provides a comprehensive summary of the peak prediction accuracy at all

monitoring stations. i
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Time Series Plots. Probably the most useful graph for depicting

photochemical model results is the time series plot. Developed for each
monitoring station for which observed concentrations are available, this plot
presents the hourly predictions and observations throughout the simulation
~period. The absolute value of the concentration residual value is also presented
on the same plot. One may determine the model’'s ability to reproduce the peak
prediction, the presence or absence of significant bias and errors within the
diurnal cycle, and whether the "timing" of the predicted concentration maximum
agrees with the observations. By including the residual plot on the same graph,

prediction bilases are more apparent.

Spatial Time Series Plots. Spatial time series plots provide informa-

tion about the degree to which model discrepancies result from the procedure for
selecting the predicted values. Time series plots are constructed for each
monitoring station by plotting the hourly observations together with three sets

of model predictions:

i The four cell weighted average ("weighted") based on bilinear
interpolation;

. The prediction in the grid cell containing the monitor ("cell”);
and

. The prediction closest in magnitude to the observed value, where

the prediction at a given hour is drawn from one of the four

nearest grid cells ("best").

The spatial time series plot provide useful diagnostic information about the
"steepness" of the concentration gradients in the simulated fields. Spatial time
series plots are ome method of revealing the commensurability between volume-

averaged model predictions and point measurements.



Ground Level Isopleths. Ground-level isopleths display the spatial

distribution of predicted concentration fields for any selected hour. Developed
by computer-contouring the hourly, gridded model predictions, these isopleths
supply direct information about the magnitude and location of pollutant
concentrations and help to identify situations were subregional biases may be
attributed to spatial misalignment of the predicted and observed concentration
fields.

Scatter Plot of Predictions and Observations. Scatter plots depict

the extent of bias and error in the ensemble of hourly prediction-observation
pairs. Bias is indicated by the preponderance of data points falling above or
below .the perfect correlation line. The dispersion of points is a measure of
error in the simulation. Scatter plots are helpful in identifying potential
outlier prediction-observation pairs. These plots provide little diagnostic
information about subregional performance problems, temporal or spatial

misalignments, or other inadequacies in the simulation.’

Scatter Plot of Residuals and Observations. The residual scatter

plots reveal the distribution of hourly model discrepancies (positive and
negative) as a function of concentration level. The plot does not reveal the
existence or causes of subregional or timing performance problems. The smaller
the scatter about the ordinate, the smaller the modeling error. Absence of bias

is indicated by no systematic tendency for the data points to fall above or below

the ordinate.

Bias Stratified by Concentration. The bias-concentration plot depicts
the degree of systematic bias in hourly-averaged model predictions (paired in
time and space) as a function of observed concentration level. The bias-
concentration plot reveals the existence of under- or overestimation within any

concentration interval.

Gross Error Stratified by Concentration. The gross error-concentration

plot depicts the degree of error in model prediction (paired in time and space)

%
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as a function of observed concentration level. The gross error-concentration
plot, revealing the variation in model error at various intervals throughout the
concentration range, must be interpreted carefully because the residual error

is normalized by the observed concentration.

Bias Stratified by Time. The bias-time plot identifies specific time
periods within the photochemical simulation when systematic tendencies toward
under- or overestimation occurs. The bias-time plot is comstructed in a manner
similar to as the bias-concentration plot, except that the simulation peried is

discretized into a number of time intervals, usually 1-2 hours in duration.

Gross Error Stratified by Time. The gross error-time plot identifies

specific time periods when gross errors in the model predictions may be a
problem. The gross error-time plot is constructed in a similar manner as the

error-concentration plot.

Diagnostic Simulations

Six diagnostic simulations are suggested as the minimum set of tests

to accompany the numerical and graphical procedures previously outlined.

Zero Emissions. The purpose of the zeroc emission diagnostic simulation

is to ensure that the base case simulation results are influenced appropriately
by the emissions inputs. Zeroing out all emissions should lead to significantly-
reduced reactive species concentrations on the second and subsequent simulation
days. The zero emissions simulation is performed by exercising the base case
run with all emission values reduced to zero, All other model input files remain

unchanged from the base case.

Zero Initial Conditions. The zero initial conditions simulation

quantifies how much of the second (or third) day predictions are the direct re-
sult of the initial conditions used to start the simulation. This simulation

is performed by setting all initial concentration fields in the model to zero.
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If the initial field is completely "washed out" of the model domain by the second
or third day, simulation results will indicate essentially no differences between

the diagnostic and base case runs on the following day(s).

Zero Boundary Conditions. The purpose of the zero boundary condition

simulation is to quantify the influence of boundary conditions on second (or
third) day concentrations, particularly in regions where the base case
predictions are highest. This simulation helps identify situations where the
base case results are "driven" by the boundary conditions. The zero boundary
conditions simulation is performed by setting all inflow and outflow boundary
values, including the region top, to zero. Unless there is reason to suspect
that a portion of the peak concentration measurements within the region derive
from transport from outside the modeling region, the model results should reveal
little impact of the boundary conditions in the interior of the computational

domain.

Zero Surface Deposition. The zero deposition simulation quantifies
the influence of dry surface deposition removal on primary and'secondary species
- concentrations. The zero deposition diagnostic run is exércised by setting
deposition velocities for all species to zero and re-running the base case
simulation. Deposition tests have not been reported in previous model evaluation
studies so the analyst has little historical information at present to serve as

a guide in interpreting the results of this investigation.

Increased Mixing Heights. The objective of the mixing height
diagnostic simulation is to reveal the degree to which ozone concentrations are
influenced by the height of the mixed layer. At a minimum, one run is suggested
in which the hourly mixing height values are uniformly increased by 50 percent
above the base case values. This diagnostic simulation should provide a bound
on the change in ozone predictions resulting from uncertainties in this input.
One might choose, instead, to reduce the hourly mixing heights by 50 percent.

The resultant increase in ozone concentrations under this scenario will typically

5-9



be comparable in magnitude but of opposite sign as those for the mixing height

increase case.

Reduced Wind Speeds. This diagnostic simulation entails a 50 percent
reduction in the magnitude of the winds input to the photochemical model, thus
providing an initial characterization of the ozone model’'s sensitivity to
ventilation. This simulation is performed by decreasing all grid-point wind
components by 50 percent and re-running the photochemical model. The magnitude
of the hourly ozone concentrations, including the peak value, should increase
relative to the base case although the percentage increase should be less than

proportional with wind speed reduction.

Guidelines for Assessing Simulation Results

We do not endorse setting rigid criteria for model "acceptance" or
"rejection” largely for the technical and policy reasons discussed by Fox (1981)
and Roth et al., (1988). 1Instead, the following approach is suggested. From
over 15 years of photochemical model development and testing, photochemicél grid
model simulations generally produce peak (unpaired) predictiom accuracy, overall
bias, and gross error statistics in the approximate ranges of 15-20 percent, 5-
15 percent, and 30-35 percent, respectively. A study following an approved Ozone
Modeling Protocol that falls below all of these ranges would not be rejected
unless evidence from the model sensitivity simulations ard the other numerical
measures and diagnostic tests suggest unusual or aberrant behavior. For model
simulations falling within these ranges, some additional diagnostic analyses
(such as those proposed in Sections 3.0 and 4.0) may be appropriate to lend
further support to the contention that the simulation is acceptable. For model
results outside any one of these general ranges, it should be incumbent on the
modeler to explain why the performance is poorer than that commonly achieved in
similar applications. The modeler should also explain whether the causes of
poorer performance will adversely affect the use of the model in control strategy
evaluations. This methodology provides reviewing agencies with a general model

performance target, but still guardé against the inappropriate rejection of less
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accurate model simulations when appropriate and explainable reasons can be

provided.

5.2.2 Optional but Stongly Recommended Evaluation Procedures

Sensitivity analysis is an essential component of model performance
evaluation and should be conducted as part of the overall study. Sensitivity
analyses help to reveal internal inconsistencies in the model, identify the
inputs that dominate the model’'s operationm, clarify error propagation through
the model, and their results help develop guidance for model refinement and data
collection programs.

Sensitivity-Uncertainty Analvysis

A sensitivity analysis should normally -accompany a major model
performance evaluation study. The key input variables and parameters need to
be identified and their levels of uncertainty estimated. These uncertainty
bounds are then propagated through the model, either singly or in concert, to
provide estimates of the uncertainties in the predictions. The modular should
discuss the results of the sensitivity runs from the viewpoint of the response
of the model expected from its underlying physics and chemistry. Typical inputs

and parameters that should be considered for sensitivity analysis include:

. Key emission parameters, such as VOC rates and speciation;
. Mixing height;
. Wind field; and

. Deposition velocities.

Ideally, comparisons of predictions and observations should account
for uncertainties in both observational data and model predictions. One then
seeks to determine if the uncertainty envelopes around the data and the

predictions overlap sufficiently. The prediction envelope is generated by a
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sensitivity-uncertainty analysis. We recommend that performance statistics when

reported reflect this concept.

Multi-Species Comparisions. The development of evaluation procedures that test

photochemical model performance for species other that ozone has been strongly
recommended by the Urban Airshed Model Technical Advisory Committee (Seinfeld
et al., 1987) and the SCAQS Model Working Group and Data Analysis Group (Seinfeld
et al., 1988). The reasoning for these recommendations is that multi-species
comparisons can provide a more robust basis for accepting or rejecting a model
(or a model simulation); they significanﬁly improve the chances that a flawed
model will be identified. Adequate model performance for several reactive
species incteases the decision-maker’s assurance that correct ozone predictions
are not a result of chance or fortuitous cancellation of errors introduced by
various assumptions. We recommend in addition to ozone the following species

for performance evaluation if suitable data are available:
. NO, NO,, VOC, VOC speciated,
. H,0,, HCHO, PAN; and

N HNO,, particulate nitrate.

Mass Fluxes and Budgets. Only recently have attempts been made to derive mass

balances and carry out flux calculations for photochemical grid model
simulations. Four mass balance and flux calculations are suggested to accompany

detailed performance evaluations. These include:

. Mass fluxes into and out of domain boundaries;

. Mass fluxes into and out of the mixed layer;

a Surface deposition fluxes; and,

° Reconciliation of emission, transport, transformation and removal

terms in a closed budget.

Mass balances and flux calculations have been performed only to a very limited

extent in the past and there is little present guidance that can be offered with
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respect to how these results should be judged. The true values of these
calculations for diagnostic performance evaluation and stress testing will evolve

as more experilence is gained in their use and interpretation.

Analysis of Residuals. The set of residuals generated in a typical performance
evaluation exercise contains significant information about contributions to
"error" of: (a) the concentration data used for comparison with model output,
(b) the soundness of the model formulation, and (c) the adequacy of the data
supplied as input to the model. 1In addition to the operational evaluation
procedurs that are heavily based on the analysis of residuals, the evaluation
may also profit from plotting residuals against selected variables in order to
identify patterns of aberrant behavior. If correlations (relationships) between
the residuals and one or more selected variables can be found, the emergent
pattern (s) may be suggestive of the cause(s) of failure or inadequacy in the
model. Variables that may be selected for plotting against residuals include
time, geograhical location, concentration levels, meteorological wvariables,
emissions, and deposition rates. Plots can be made for the full region of
interest and for the full duration of the simulation, or for subregions, selected

time periods, and specified ranges in variables.

5.2.3 Longer Term Needs in Performance Evaluation

Testing Model Respsonse to Emission Changes. The adequacy of a photochemical

model in correctly predicting the effects of emission changes on ambient air
quality should be evaluated directly, by examining model performance for
applications involving significantly altered emission strengths and spatial
patterns. Ideally, such a performance evaluation should be performed with
emission inventories for the same region that correspond to years sufficiently
apart. If such a procedure is not feasible, then, as an alternativé it is
suggested to evaluate the model for two or more different regions, using input
data of comparable quality. The significant effects of metecrclogy on
calculating the effects of emissions changes should be taken carefully into

account in the evaluation process.

%



Emissions Model Testing. The emissions inventory input to a photochemical model

is itself a model but it has received far less consideration in the modeling
context despite the belief that the inventory may be the least accurate input
in the photochemical modeling process. Estimation of uncertainties associated
with emissions inventories is of considerable importance since any control
strategy decisions made, with or without the aid of models, are only as good as
the emissions estimates upon which they are based. New directions in the

evaluation of emission inventory models include the following:

@ Perform "Top down" vs. "Bottom up" Calculations. The emissions

inventory should be developed for a pollutant, where possible,
By estimating emissions of individual sources or groups of sources
and then aggregating them and, independently, by calculating

gross or integrated emissions rates.

° Perform Mass Balances. Mass balance calculations need to be

considered as part of the inventorying- process. For example,
nitrogen balances can be made for determining emissions estimates
and uncertainties for animal wastes, chemical fertilizer use,

wastewater treatment plant emissions, and so on.

° Compare Ambient Air Ratios_vs. Emissions Ratios. One should

compare ratios of ambient concentrations of selected pollutant
species, measured near the source, with estimated ratios of
emissions rates of the two species. Analysis of differences in
ratios may be used in estimating the magnitudes of emissions

uncertainties.

. Consider Indirect Confirmations. External information should be
used to the fullest extent possible to corroborate direct
emissions estimates. For example, an energy balance on fuel
consumption statistics has been used in estimating sulfur emission

rates.
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. Perform Source Testing. Emissions of selected sources should be
determined through direct measurément. Because of the. large
attendant costs, one must develop specific guidelines for
establishing this need and procedures for cost-benefit assess-

ment.

. Carry Out Specially Designed Field Studies. Field studies should
be considered specifically for the purpose of emissions de-

termination. Examples include the SCAQS tunnel study (Ingalls

.et al., 1989) for corroborating estimates of emissions from
vehicles.
° Improve Motor Vehicle Emissions Modeling. There is a clear need

to improve the characterization of the driving cycle, including
the degree of representativeness, extent of variability due to
changes in commute characteristics, driver characteristics, and

other influences.

Meteorological Model Testing. A wide range of meteorological models are
available to support grid-based photochemical modeling. Progno§ticlneteorological
models are becomming used more frequently, although the more sophisticated models
are not necessarily superior to simpler models in all cases. If the
observational network is exceptionally dense, interpolation techniques or simple
diagnostic models may be cost-effective alternatives to the more complicated
"primitive equation" models. Nevertherless, the prognostic meteorological models
are expected to provide greater overall consistency in their predictions since
theylcontairlmore of the relevant atmospheric physics. Eleven numerical measures

for quantifying the performance of diagnostic and prognostic meteorological

models are:

. Mean prediction;
. Mean observation;
. Standard deviation of predictions:
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° Standard deviation of observations;

. Ratio of the predicted and observed standard deviations;

N Least squares regression statistics (slope and intercept);

° Root mean square error;

. Systematic root mean square error;

. Unsystematic root mean square error,;

. Index of agreement; and

. Skill measures based on error and variance statistics.
Recommended graphical performance procedures include: (a) "slice plots”, (b)

surface windfields vector plots, (c) residual plots of hourly predicted and
observed wind speeds, directions, mixing heights, and temperatures, and (e) plots
of the mean wind speed, direction, wind speed standard deviation, the three root

mean square errors, and the index of agreement as a function of simulation time.

Chemistry Model Testing. The chemistry module is one of the few components of
photochemical models that has long been independently gvaluated. Multi-species
mechanism testing with environmental chamber data is the best available method
of evaluating the chemistry for urban photochemical modeling. The recommended
procedure for mechanism testing follows the hierarchy approach (Whitten 1983;
Atkinson et al. 1987). Testing is initiated at the lowest level in the hierarchy
(ie., NO,-air experiments to test the inorganic reactions and the chamber
characterization procedures) and proceeds to the highest level (>C2 hydrocarbons)

by step-wise addition of species with increasingly complex chemistry.

The research needs to improve mechanistic evaluation of chemistry
models include: (1) acquiring chamber data from existing facilities and with
existing methods for organic species for which there are 1little data; (2)
developing and applying methods to collect data for species not presently
measured in existing facilities; and (3) development of cleaner environmental
chambers. The data collection and methods development efforts should focus on
the following major areas of uncertainty in current photochemical mechanisms:

the identification and subsequent reactions of aromatic ring-fragmentation
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products, the radical yields in ozone-olefin reactions, the oxidation mechanisms

of >C5 alkanes, and photolytic data for carbonyls.

Deposition Model Testing. Photochemical grid models include transport algorithms

and chemical reaction resistance calculations to estimate dry deposition rates
as a function of time and location. A theoretical evaluation of this methodology
should be conducted to ensure that the procedures used agree with currently-
accepted boundary layer theory and surface resistance experiments (see, for
example, Hubbe, 1989). Field data should be sought on the atmospheric
concentration and deposition of a pollutant that has essentially zero chemical
reaction resistance to deposition. Since a theoretical test of the chemical
reaction resistance algorithm in most deposition models is not practical, a
literature survey the experimental data on the chemical reaction resistance for
specific pollutant-surface pairs should be conducted. Then, sensitivity analysis
procedures can be used to assess the uncertainty in the deposition module results

due to the underlying uncertainty in the chemical reaction resistance values.

Treating - Incommensurability. Photochemical grid models estimate average

concentrations in each grid cell whereas measurements are made at a peint.
These different spatial (and temporal) scales of measurements and model
predictions give rise to the so-called incommensurability problem. Potential
solutions to this problem fall in several research areas:
. Sub-grid Scale Modeling. One may include in grid-based models
those dynamic processes, such as chemical reaction, mixing,
dispersion and deposition, that occur at spatial scales less than

the size of the modeling grid.

° Finer Grid Resolution. One may reduce the dimensions of a grid

cell size, although this leads to increased computing requirements
and raises questions about how small the cell size can be reduced

before the theoretical formulation of the model is compromised
(Lamb, 1973).
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° Remote Measurements. Multiple measurements employing remote

sensing techniques may permit local concentrations to be compared
directly with grid cell-averaged model predictions. Equipment

potentially useful for this purpose is still in development.

. Multiple Measurements Within a Cell. Monitoring at multiple
sites within a grid cell provides an alternate means for
estimating grid-averaged concentrations, although current in-situ
measurement costs make this approach impractical except for

research purposes.

No widely applicable approach for resolving the commensurability problem is now
available. The development of economical remote measurement systems and very
low cost surface monitoring devices provide the most attractive routes to

resolution.

Stress Testing. “Stressing a model® is designing and carrying out mechanistic
tests that cause a model to reveal its flaws and weaknesses if it is indeed
inadequate. Stressful testing is intended to reduce (or avoid) the risks associ-
ated with "weak" or otherwise inadequate tests, wherein a model is not challenged
sufficiently to reveal its flaws and weaknesses or appears to- be perforﬁing
acceptably despite significant inadequacies in formulation or inputs. No
prescription of "stress testing" now exists; however, certaln requirements
might reduce the risk of inappropriately accepting a flawed model for use in

control strategy assessment. These include:

° Give equal, or mnearly equal, weight to accurate estimation of

NO, and volatile organic compounds as that given to ozone;

. Attempt, insofar as possible, to assure commensurateness in space
and time of predictions and observations; that is, attempt to

assure that observations are representative of predictions;
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. Test the performance of individual model components, such as the
chemical mechanism or deposition algorithm, prefatory to examin-

ing overall model performance, whenever possible;

. Test the performance of "preprocessor models", notably the meteo-

rological and emissions models, whenever possible;

. Examine performance of the model over the range of meteorologi-
cal, air quality (chemical), and emissions conditions available

for study; and

. Require "hands off" testing after an adequate period of time is
allowed for the "hands on" testing that is traditionally carried
out during model development. Also, require testing by indepen-
dent parties (who have no vested interest in the outcome) after

the inception of the period of "hands off" testing.
Stress tests of a model should be "reasonable." A test should not attempt to
demonstrate that a model cannot do what it was not designed to do and tests

should not require data that cannot be acquired.

Use of Simplified Models. Simplified simulation models such as photochemical

box models and trajectory models (including EKMA) should not be in general
considered as alternatives to grid-based photochemical models. The potential
usefulness of trajectory models is their utility in (1) performing a preliminary
analysis of the application(s) relevant to which the grid-based model is going
to be evaluated, to identify aspects of the modeling task that need to be studied
in detail and therefore are appropriate as focal peints of the full scale
performance evaluation process, and (2) in quickly evaluating the effect of input
data and.parameter changes on pollutant levels, i.e., in performing efficient,
low-cost, sensitivity analyses specifically relevant to the transformation and

removal components of grid-based photochemical models. Box models can be used



L3
to perform mass balances and check sensitivity to boundary and initial conditions

for the entire region covered.

Model Modifications. Improved techniques are avallable for measuring nitric
acid and aerosol nitrate as well as PAN in the field. The inorganic nitrate
predictions from existing models are fairly inaccurate because they lump together
two species that deposit at very different rates (i.e., nitric acid deposits very
rapidly, while aerosol nitrate deposits slowly). Modifying the models to
incorporate the nitric acid-aerosol nitrate equilibrium chemistry will make it
possible to evaluate the nitric acid and aerosol nitrate predictions, as part
of a muliti-species evaluation. Comparison of the observed and predicted ratios
of PAN to total nitrate and TIN to total nitrate should be made toc assess

possible biases in the VOC and NO, inputs to the models.
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