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Real-time light absorption spectral measurement

Simultaneous measurements of soluble particle

absorption spectra and carbon mass
Long Optical Path Spectrometry
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(Hecobian et al., 2010)

* Complete absorption spectra (200 — 800nm) was saved every 15 min
* Absorption coefficients at selected wavelengths (365nm, 700nm) were saved

every 60 sec



Choice of wavelength: A =365nm

A =365nm : Absorption averaged between 360 and 370nm

* Soluble Brown Carbon, specifically associated with HULIS (Lukacs et al., 2007);

* Avoid interferes from other species: e.g. Nitrate;
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Sources of brown carbon: PMF result on FRM filters

PMF analysis on 900 FRM filters
collected at 15 sites in SE US
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WSOC/Oxalate Residual
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Fig. 7. PMF results on the 2007 average distribution of Aszgs
amongst (a) the four factors resolved for all FRM sites (rural and
urban) using a limited suite of species, and (b) the five factors re-
solved for only urban speciation sifes listed m Table 1. The fac-
tors were idenfified (Zhang et al., 2010a) as, F1: Biomass Bum-
ing, F2: Refractory Material, F3: WSOC/Oxalate, F4: Ammonium
Sulfate/WSOC, F5: Mobile Sources, remaining 1s the unresolved
fraction.

(Hecobian et al., 2010)

Major sources of Brown Carbon
(Abs;.:) in the southeast:

e Biomass burning;
* Primary emissions from vehicle;

» SOA formation (WSOC/Oxalate);

3

Possibly related to aqueous SOA
formation/chemical aging — oxalate
and brown carbon peak hours after
WSOC peak on diurnal average from
online dataset in Atlanta.

- 400x10°

- 380

-
)
o
e
B

F360 >
7

8
340 %

[
F320 O
(e}

p/CO

H
1 1
OxalateO/WSOCp
o
15

WSOC|
S
1

- 300

© ©

1 1
o
o
@

280

- 260
T T

o
=)
&




WSOC and brown carbon during CalNex
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CalNex: mass absorption efficiency

“primary” secondary
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Mass absorption efficiency: LA compared with Atlanta
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LA fresh secondary WSOC is much more light-absorbing than Atlanta

EC, pgC/m3

0.50 —

© o o
w > >
o S o
I I I

0.30 —

0.25 —

primary secondary

Slope = 1.8e-7 %°®

Abs365 Secondary
N w
1 1

'_\
]

0—

N
Abs;g; - 2.3
WSOC
— 2.2
— 2.1
\Z — 2.0
0 — 1.9
AAbs
v — 1.8
‘1_|_I_|_I'||||||||||||||||||||||||||||||||||||||||||
6:00 AM 12:00 PM 6:00 PM
-6 llllllllllllllllllllllll
4x10 ] —
X Slope =7.1e-7

cwy/obr ‘O0sSM



Angstrom exponent

Wavelength dependence of the absorption coefficient

. Plot on Ln-Ln scale
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For ambient aerosol
A ~1: black carbon (absorbs at all wavelength)
A ~2: ambient biomass burning aerosol (Kirchstetter et al., 2004)
A ~3.5: polluted region in China (Yang et al., 2009)

For liquid extracts (this study)
A ~7: water-soluble HULIS (Hoffer et al., 2006)
A ~7-16: smoldering smoke (Chen and Bond, 2010)
A ~7: fresh limonene SOA (Bones et al., 2010)
A ~4.7: aged limonene SOA (Bones et al., 2010)
A ~6-8: FRM filters in SE US (Hecobian et al., 2010)



Variation of Angstrom exponent

Example: 6.3.2010 — high concentration of Abs,,.
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night; A increased from “fresh” to “aged” SOA?
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e Avaries between 2 and 5.5, lower during daytime and higher at

* A derived from online measurement significantly lower than A

from filter-based measurement (discussed in the next slide);



Filter-based vs. online absorption measurements

Comparing Absorption coefficient (Abs;..) and Angstrém exponent
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* Some underestimation of Abs,. by high-vol filter;
* Online and filter A quite different; For filter less absorption at higher wavelengths;

Possible artifacts of filter-based brown carbon measurement:
* Storage: 1-yr in the freezer leading to changes?

* Extraction: extraction/sonication leading to degradation of larger chromophores
which absorb light at higher wavelengths? (Sun et al., 2007)
* Time resolution: filter liquid extracts sit for 1-2 days before analysis



Summary and Implications

Summary
* Major sources of brown carbon during CalNex is SOA formation and mobile emission ;

* Fresh LA WSOC is ~4 times more light-absorbing than fresh ATL WSOC, possibly due to a
larger fraction of anthropogenic aerosol in LA;

* Angstrom exponents lower during daytime and higher morning and night (evidence for
anthropogenic SOA evolution?);

* Filter-based measurement not consistent with online measurement (more experiments)

Why care about Brown Carbon?

e Generally not thought to have effect on radiative forcing due to small mass
absorption efficiency (Andreae & Gelencser, 2006), BUT
* SOA properties, source and evolution:
- Component of fresh anthropogenic SOA (related to aromaticity?) (Sun et al., 2007),
useful for contrasting SOA in different urban settings (e.g. LA vs ATL);
- Dissolve in liguid droplets, affect cloud absorption (Mayol-Bracero et al., 2002) &
useful to study heterogeneous processing;

Future work/collaboration
e Try to find correlation between brown carbon and specific SOA component?



