Stable Isotope Constraints on N Deposition and Cycling in Lake Tahoe

Greg Michalski
Purdue University
Isotope Notation

\[\delta \left(\%_{oo} \right) = \left(\frac{R_{\text{Sample}}}{R_{\text{Std}}} - 1 \right) \times 1000 \]

\[R = \frac{^{18}O}{^{16}O} \]

Oxygen Standard is Standard Mean Ocean Water (SMOW)
Stable Isotopes in Determining Biochemical Budgets:

Mass Balance

\[
\delta^{13}C_{(atm)} = a\delta^{13}C_{(fuel)} + b\delta^{13}C_{(wet)} + c\delta^{13}C_{(rice)} + d\delta^{13}C_{(ter)} + e\delta^{13}C_{(cattle)}
\]
3 Isotope System: Oxygen (16, 17, 18)

\[\Delta^{17}O = \delta^{17}O - 0.52 \times \delta^{18}O \]

Terrestrial Fractionation Line

- Cloud and rain water
- SMOW
- Air O₂
- Sedimentary and Igneous Rocks

\[\sqrt{m^{17}} / m^{16} \]

\[\sqrt{m^{18}} / m^{16} \]

\[\delta^{17}O = 60.7\% \]

\[\delta^{17}O = 30.8\% \]

\[\delta^{17}O = 0.52 \times \delta^{18}O \]
Mass-independent Isotope Fractionations: Mechanisms

\[\text{Mass Transfer} \]

\[\text{S(IV)} + \Delta \text{O}_3 \rightarrow \Delta \text{SO}_4^{2-} \ (\text{Savarino et al., } JGR \ 2000) \]

\[\text{CO}_2 + \Delta \text{O}^1\text{D} \rightarrow \text{CO}_3^* \rightarrow \Delta \text{CO}_2 + \text{O} \]

(Thiemens et al., Science, 1995; Yung, GRL, 1991)
Nitrate Oxygen Isotopic Analysis

\[\text{NO}_3^-, \text{SO}_4^{2-}, \text{CO}_3^{2-}, \text{Cl}^-, \text{DOC, Particulate matter} \]

.2 micron filtered, activated carbon

\[\text{NO}_3^-, \text{SO}_4^{2-}, \text{CO}_3^{2-}, \text{Cl}^-, (\text{DOC}) \]

BaCl\(_2\), HCl

\[\text{NO}_3^-, \text{Cl}^-, (\text{DOC}) \]

Cation exchange

Anion exchange

C18 Resin

\[\text{NO}_3^-, \text{Cl}^- (\text{in column}) \]

Elute HCl

\[\text{HNO}_3, \text{HCl} \]

\[\text{HCl} + \text{HNO}_3 + \text{Ag}_2\text{O} \rightarrow \text{AgNO}_3 + \text{AgCl}_2 \]

\[\text{AgNO}_3 \xrightarrow{\Delta} \text{Ag}_2 + \frac{1}{2} \text{O}_2 + \text{NO}_2 \]

\[\Delta^{17}\text{O}(\text{USGS}-35) \text{ vs. } \text{O}_2 \text{ Sample Size} \]

USGS-35

\[\Delta^{17}\text{O Standard} \]

(Michalski et al., *Analytical Chemistry*, 2002)
Seasonal Variation of Nitrate $\Delta^{17}O$ in La Jolla, Ca

$\Delta^{17}O = 21\%_o$

$\Delta^{17}O = 28\%_o$

Michalski et al. *GRL*, 2002
Atmospheric Nitrate $\Delta^{17}O$ from Multiple Environments

$\delta^{18}O$ vs $\delta^{17}O$ graph

Streamlines with markers for Bakersfield, Riverside, South Pole, and La Jolla.

$\Delta^{17}O$ values indicated with arrows:
- 20\%
- 30\%
Tracing Nitrate Source Using Stable Isotopes

Atmospheric Nitrate

Kinetic/equilibrium fractionations

Stable Isotopes in Catchment Hydrology
Carol Kendal, editor

Tracing Atmospheric Nitrate Using $\Delta^{17}O$

(Michalski et al., GRL, 2002)
NO$_3^-$ atm Detection using Δ^{17}O

Michalski et al., Envi. Sci. and Tech, 2004
Quantifying $\text{NO}_3^-_{\text{atm}}$ using $\Delta^{17}\text{O}$

![Graph showing the relationship between $\% \text{NO}_3^-_{\text{atm}}$ and $\delta^{18}\text{O}$ with data points and error bars. The graph includes annotations for peak stream flow in October and March.](image-url)
Atmospheric Nitrate $\Delta^{17}O$ from Multiple Environments

$\delta^{17}O$ vs $\delta^{18}O$ plot with data points for Bakersfield, Riverside, South Pole, and La Jolla. The graph shows a trend with $\Delta^{17}O$ values ranging from 20‰ to 30‰.
FIGURE 5. Streamflow hydrograph for Devil Canyon (solid line), stream NO$_3^-$ concentration for site 2 (dotted line) and site 7 (dashed line), and Δ^{17}O variations for site 2 (■) and site 7 (○) during November and March rainstorms in the Devil Canyon watershed. The November storm was preceded by an 8 month dry period. The March storm came at the end of the rainy season.
Lake Tahoe Water Column NO$_3^-$ $\Delta^{17}O$
Lake Tahoe Water Column Nitrate Dynamics

Paerl et al. *Limnology and Oceanography*, 1975
Lake Tahoe Water Column NO_3^- $\Delta^{17}\text{O}$

- **Spring**
- **Summer**
- **Fall**

Depth (m)

- 0
- 1
- 2
- 3
- 4
- 5

$\Delta^{17}\text{O}$ %

- 0
- 1
- 2
- 3
- 4
- 5
A Simple Nitrate Isotopic Balance Model

- **NO₃⁻ In flow**
- **Atm** \(\Delta^{17}O = 23\%\)
- **Denitrification** \(N₂, N₂O \)
- **NO₃⁻ Out-flow** \(\Delta^{17}O \approx 3\% \)
- **Uptake** \(\Delta^{17}O = 0\% \)
Nitrate $\Delta^{17}O$ Mass Balance Calculation

\[
\Delta^{17}O_{\text{Lake}} = X \cdot \Delta^{17}O_{\text{ATM}} + (1-X) \cdot \Delta^{17}O_{\text{nitrif.}}
\]

\[
X = 13\% \quad (1-X) = 87\%
\]

NO_3^- Deposition (wet and dry) = 26 μmol m2 d$^{-1}$ = 0.13 g N m2 yr$^{-1}$

Jassby et al., *Water Resources Research*, 1994

Nitrification NO_3^- = 200 μmol m2 d$^{-1}$ = 1.0 g N m2 yr$^{-1}$

IF we apply a lake wide NO_3^- steady state approximation

e.g. Input + mineralization = uptake

Then algal uptake \sim 1.13 g N m2 yr$^{-1}$

10 μg N-NO_3^- L$^{-1}$ = (1000 L m$^{-3}$•100 m) = 1.0 g N m2 yr$^{-1}$

Paerl et al. *Limnology and Oceanography*, 1975
Difficulties with the Study:

Analytical Interference by Organic Material!

\[\text{AgNO}_3 + \text{C (organic)} \xrightarrow{\Delta} \text{CO}_2 + \text{CO} + \text{Ag}^{(s)} \]
A Bacterial Method for the Nitrogen Isotopic Analysis of Nitrate in Seawater and Freshwater

D. M. Sigman,* † K. L. Casciotti, † M. Andreani, ‡ C. Barford, § M. Galanter, † and J. K. Bohlke^†

*Anal. Chem. 2001, 73, 4145-4153

Sample size 20-100 nmol, No anion or DOC removal required
Isobaric interference inhibits accurate Δ^{17}O measurements

High-Precision Isotopic Determination of the 18O/16O and 17O/16O Ratios in Nitrous Oxide

Steven S. Cliff and Mark H. Thiemens'

Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton

*Julie Granger*¹
Department of Earth and Ocean Sciences, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada

Daniel M. Sigman
Department of Geosciences, Princeton University, Guyot Hall, Princeton, New Jersey 08544

*Joseph A. Needoba and Paul J. Harrison*²
Department of Earth and Ocean Sciences, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada

Emiol. Oceanogr., 49(5), 2004, 1763–1773
© 2004, by the American Society of Limnology and Oceanography, Inc.
Conclusions

• $\Delta^{17}O$ values in Lake Tahoe aerosols are similar to those previously measured.
• $\Delta^{17}O$ in Lake Nitrate is a sensitive tracer of atmospherically deposited NO_3^-.
• Lake nitrate $\Delta^{17}O$ variations over time and space will give new insights into lake mixing dynamics and nitrification rates.
• Simultaneous measurements of nitrate $\Delta^{17}O$, $\delta^{15}N$, $\delta^{18}O$ can help determine overall N cycle functionality in the Lake.
Acknowledgements

Mark Thiemens, Robin Young, Carolyn Beoris - UCSD

John Reuter, Bob Richards, Brant Allen – Tahoe Research Group

California Air Resources Board

Carol Kendall, Scott Wankel USGS/Stanford University
Work in Progress

Continue Weekly Aerosol collections and begin wet deposition collections

Isotopically Characterize watershed NO$_3^-$

Include δ^{18}O and δ^{15}N using denitrifier method

Future Work

Utilize Δ^{17}O, δ^{18}O and δ^{15}N at much higher temporal and spatial resolution
Lake Tahoe Objectives and Strategies

Atmospheric Component

• Characterize NO$_3^{-}$ atm Δ^{17}O signature within the basin
• Characterize NO$_3^{-}$ atm Δ^{17}O signature along transport gradient
• Measure NO$_3^{-}$ atm Δ^{17}O during transport event

Lake and watershed component

• Sample and measure Δ^{17}O,δ^{18}O (δ^{15}N) in NO$_3^{-}$ in Lake Tahoe
• Sample and measure Δ^{17}O,δ^{18}O (δ^{15}N) in NO$_3^{-}$ in feed streams
• Sample and measure Δ^{17}O,δ^{18}O (δ^{15}N) in NO$_3^{-}$ in soils
Lake Tahoe Facts

Surface area 500 km²
Volume 156 km³
Watershed area 800 km²
Oligotrophic
Annual Visitors > 23,000,000
Hybrid Cars 6