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ABSTRACT

We estimate regionally resolved methane (Lémissions foCaliforniaby comparingCH,4

mixing ratios measureak a network ofneasurement sites the CentralValley with transport
model predictions basexhtwo independent emission mapg.1 degeeseasonally varying
ACal i-$ pe admessianiap,calibrated to statevide byCH, emission totalsand the 0.1
degreegglobal EDGAR42 CH emissionmap Atmospheric particle trajectories and surface
footprints(sensitivity of CH signals to surfacemissionspare computed using the Weather
Research and Forecast (WRF) and Stochastic Tiraverted Lagrangian Transport (STILT)
models. Uncertainties due to wind velocity and boundary layer mixing depth are evaluated using
measurementisom radar wind pofilers. Bayesiarregionanalyses yieldnnually average@H,
emissiondor Californiatotaling1.2+0.1 and1.9+0.3times larger thathe currentState total

CH, emissiong32 Tg CQ ecuivalentyr™) for the California-specificCH, and EDGAR42 Chi
emission mays, respectivelywhile source analyses estimate slightly higher emissions for both
emission modeldNVhen emissions from large urban areas are estimated based on a recent study
in the larger Los Angeles metropolitan regtorbetter constrain urban essions State total Chl
emissions are estimated toh8&81 1.7times larger thathe currenState total CH emissions
These results based tie multiple emission models suggest thia Californiatotal of CH,4
emissions would account for approximat8®s - 13% of the Sate&d total greenhouse géd&HG)
emissionswhich is significantly higher than the CARB inventory (~6% of total GHG
emissions)Spatial resolution of emissions within the influence region reveal seasonality
expectd from several biogenisources, including rice agricultuM/e expect that additional
tower measurements in the South C@asBasinwill provide the data necessary for a complete
anal ysi s o0QGH;bQGdgét.i f or ni ads
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EXECUTIVE SUMMARY

Background

Methane (CH) is the secondighest contributor to climate change among greenhouses gas
(GHGs) behindcarbon dioxideCO,) based on its concentration changes in the atmosphere since
the start of the industrial revolution and its ability to absorb infrared radigiiotihe regional
scale, California currently emits approximately 500 (IgTg = 1 million metric tonof CO,
equivalent(CO,eq) GHGs, with CH currently estimated to contribute approximately 6% of the
total [California Air Resources Board (CARB), 2010].

Methods

This repot quantifies regional Cld emissionswithin California with a Bayesian inverse
modeling approach representing the first analysis of €Emissionsacross a large swath of
Californiaand acrosslifferent seasonasing atmospheriobservations from multipleites The
inverse modelingpproacHollows the approach taken in Zhao et al. [200@png et al. [201}
and Jeong et al. [20bR We calculate predicte@H, signals using twoelatively high resolution
(0.1 degreegmissions models, a California specifinodeland the EDGAR4.2 global emission
model. Central to this approach, we quantify moedetasurement uncertainties by estimating
errors in transport variablés.g., wind velocities and planetary boundary layer deptt)affect
footprints (sensitivity of CH, signals to surface emissions in units of concentration/faund
propagating those errors to produce uncertainty in predCkedsignals.The Bayesian inverse
analysis then estimatg@®steriorCH, emissiondor regions(region analysisand sourcesectors
(source analysis)

Results

This study shows that actu@lH, emissionsbased on inverseegion analysesare 1.2+0.1 -
1.9+0.3 timeslarger than the current inventory estima@2 Tg CQeq) Whenemissions from
large urban area®.g., Southern Qidornia region)are estimated based arrecent study ithe
larger Los Angeles metropolitan regi@amd combined with the emissions from the Central
Valley and other nomrban regionsState total Chemissions are 1.81.7times larger thathe
currentState total CH emissionsA Bayesian region analysis suggests that rielatively large
range oftotal emissiongeflects a current limitation to uniquely resolve urban versus Qifal
emissions, particularly from Southern California. A similar souet#os analysis suggests that
the dominantCH, emissions are derived from livestock and landfills, though as with the region
analysis, significant differences are obtained with tladif@nia-specific and EDGAR2 prior
emission maps.

Conclusiors
Atmospherc CH; measurementsan be combined to estimate to@H, emissions at regional
scales using thieverse modelingpproachC a | i f €H,Bmisgidns exceed current inventory

estimates, though considerable uncertainty remaRexommendations for work thwill likely
resolve these uncertaintieslude:
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The currenGHG network constrains annual averages@Hmi s si ons from Cal i
Central Valley tdbebetween 2681.8 Tg CO.eqand 27.42.1Tg COseqfor the

Californiaspecific and EDGAR42 emission mdsleespectivelySimilarly, emissios

from livestock(which are predominantly located in the Central Valley) are estihtate
be28.2:3.4Tg COeqand25.8:3.2Tg CO.eqfrom the Californiaspecific and

EDGAR42 emission models, respectively.

While dgnificant error reductionareobtained inCa | i f CGentnal Valkeysemissions

from other regions remain uncertain, with the ratio of emissions to the current California
CH, emission inventory (32 Tg G@q yf') ranging from 1.2+0.and1.9+0.3from the
Bayesan region analysis based on the Califorseecific and EDGAR42 emission

models Hence, dditional towemmeasurements in the San Francisco Bay and Southern
Californiaareas are required tmnstrainthose emissions.

Noting the large uncertainty in urbamissions estimated from measurements in the
Central Valley, eissions from large urban areas (San Francisco Bay Area and Southern
California region) are estimated based on a recent stutig ilarger Los Angeles
metropolitan regiomo better constrain tge urban emission€ombined with the

emissions from the Central Valley and other-ooban regionsState total Chlemissions
areestimated to b&.37 1.7times larger thathe currentState total CH emissionsvhere

the uncertainty is dominated by unteénty in the urban region3his further suggests

that alditionalmeasurements in the San Francisco Bay and Southern Caldoeasare
required taconstrainthose emissions.

Data from thecurrent CH measurementetwork are effective for use in corahing

emi ssions from different regions of Califo
uniquely attribute emissions to specific source sectorditibdal measurements of

source specific tracers (e.g., CO, VOCs, and potentibllysotopes) will hép separate

different sources of CH

Currently, uncertainty ithe inverse radel estimates of CiHemissions for regions
containingmeasurement sitese dominatetly uncetainty in the meteorological
modeling of trace gas transport (e.g., winter) andnasiton of background signals (e.g.,
summer). Additional work is needed to identify the source of these errors and reduce
them.



PROJECT REPORT

1. Introduction

vethane (Ch) is the second highest cotrior to climate change among greenhouse gas (GHG)
behnd carbondioxide (CO,) based on its concentration changes in the atmosphere since the start
of the industrial revolution, the long residence time of,@kd its ability to akorb infrared

ragiation. Earth's Cklhas increased by about 150% sih@g0in concentration, and accounts for

~ 25% of thgylobaltotal radiative forcing from all longived and globally mixed GHGs

[Hofman et al.2006;Montzka et al.2011]. Given the importance of Glds a GHG it is

important to be able to quantify change®imissions. However, there exists a large uncertainty
in bottomup emission inventorynodels that take known natural and anthropogemiccesof

CH, to produce emission estimates due to lack of understanding of emission processes and
driving dataMathemaical inversionmodek, which use concentration changes in/Gd

transport to infer sourcegrovide an effective tool for understanding £#hissions.
Correspondingly, attention has focused on inverse model assessment of(gioisai{ and

Uliasz 2003;Houweling et al. 1999;Miller et al., 200§, and regionalkKort et al, 2008;Zhao et

al., 2009;Jeong et a].2012] CH,4 sources

At the regional scale, California currently emits approximately 50QLTigg = 1 million metric
ton) of CO, equivalent GKBs, with CH, currently estimated to contribute approximately 6% of
the total [California Air Resources Board (CARB), 2D1Because California has committed to
an ambitious plan to redu€HG emissions to 1990 levels by 2020 through Assembly Bill 32
(AB-32), verifying the success of control strategies will require accounting fge@ik$sions.

Thisreportquantifies regional ClHemissions from California within a Bayesian inverse
modeling framework, representing the first analysis of, €dissionsn Caifornia using
atmospheric observations from multiple sites across different seasons during2®Q10The
work expands on studies Eyao et al[2009] and Jeong et al. [20d]Z2hat quantified CH
emissions from central California using a single tower W¢alnut Grove, Californi@VGC). In
Section 2we describe the methods we employed, including atmospheric measurenpeits,
CH,4 emissions inventories, mesoscale meteorology and trajectory transport modeling, and the
Bayesian inverse method. Sect®describes results, including the seasonal variations in
calculated footprints, and the inferred surface emissions @fitGhh California for different
regionsand sourcebased on simple correlation analysis afghyesiarninverseanalysis.
Section 4 sumarizes the results amidesents the recommendatidas CH, inverse modeling at
the regional scale, highlighting the importance of uncertainty in the spatial distribuion of
priori emissionsand the value of multiple measurement stations.
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2. Approach

The inverse modeling framework used in this study follows the approach taken in Zhao et al.
[2009], Jeong et al. [20H} and Jeong et al. [20bP As illustrated inFigure 1 theBayesian

inverse model requirdsvo direct inputs: 1) tower measurements, dhgredicted signal8y
comparing the measured signals at the tower with predicted signals, the inverse model estimates
scaling factorgor surface emissiorsuch that the scaled surface emissions yield predicted

signals that are statistically consistenth measurement®redicted signals are calculatsia

linear combination of footprints, which represdre sensitivity of signals measured at different
sites to emissions across the landscapd surface emissions. Because predicted signals
representocal enhancements of emissiphackground signals entering the study donaae

neeckd to compareredicted signal&ith measured signals, which include both local and
background signalg-ootprintsare quatified using a Lagrangian model fair parcelsarriving at

a tower Such footprints link the observedncentrationst a specific location and height to

surface fluxes within a large area. Numerical model outputs are used to define paths traveled by
parcels of air, or trajectories, which are a bémigootprint estimates. In this study we use the
coupled WRFSTILT model for trajectory calculations. Errors in modeling footprints due to
uncertainties in winds and planetary boundary layer (PBL) heights contribute to uncertainties in
inversion resultsrad confidence levels associated with optimized emissions vdlhegesult of

the Bayesian inverse modsla set ofoptimized scaling factors foregion or sourcemissions.

WRF
Meteorology
[ ~ J 7 Tower
‘ : Measurements
T v l l‘ .
e STILT Pr?ducted L) Bayes!an
Footprints Signals Inversion

Emission Emission
Model Estimation

Uy
v D
T

o

h

Figure 1. Inverse modeling approach used in the study
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2.1. CH Measurements and Boundary Condition s

CH, measurements were made at the collaborativesiesls HG net wor k i n Cal i f
Valley. In addition to the Central Valley siteSH, measuements were also made at Mt. Wilson,

but these measur@nts are not employed in this study because we have not develomdd a

tested meteorological model for atmospheric transport at Mt. Wilson at this Tialde 1
summarize the information for the measurement sites in mtheasuremenhetwork and the
measwement periods used in the inverse analysis. The Arvin (ARV) site is located at the
southern end of the San Joaquin Valley and constrains emission sources from livestock, and gas
and petroleum production fields. The Madera (MAD) and Tranquility (TRA) aitedocated in

the center of the San Joaquin Valley, constraining emission sources mainly from livestock. The
Sutter Butte site located in the Sacramento Valley represents an emission region that has
dominant CH emissions from rice agriculture. As debedl in detail in Zhao et al. [2009] and
Jeong et al. [20X, the site represents an emission region with mixed €Hission sources

such as crop agriculture, livestock, natural gas fields, wetlands and urban emissions.

CH, measurements at WGC were mati®1 and 483 m above ground level on attaller,

beginning in September 2007. The £hixing ratios at each height are measured every 15
minutes and averaged into thén@ur means used in this studys in Zhao et al. [2009] and

Jeong et al. [20H}, CH; measurements at 91 m are used for inverse modé€latgiled

information dout these measurementslescribed by Zhao et al. [2009] and Jeong et al.

[20123]. All other stations are measured at 10 meters above the ground using thgaofe
instrumensg and calibrated with standard gases from NOAA every six months. Each instrument
is programmed to measure from precision check standard gases every 11 hours to ensure data
quality. After examining precision checks and removing special events (e.g.inchilers),

raw data collected every few seconds are average@-imboirly measurements farverse

modeling.

Table 1. Measurement Sites and Periods

Site Name Heighf  Elevatio® Latitude Longitude M_easurement
Period (yyyymm)

Arvin (ARV) 10m 158 m 35.24°N  118.79°W  201009- 201106
Madera (MAD) 10 m 81lm 36.87°N  120.01°W  201009- 201106
Sutter Butte (STB) 10 m 640 m 39.21°N  121.82°W 201105 201106
Tranquility (TRA) 10 m 59m 36.63°N  120.38°W 201009 201106

Walnut Grove

(WGC) 91m Om 38.27°N  121.49°W  201009- 201106

®Above ground level (a.g.l.)
®Above sea level (a.s.l.)

CH,4 boundary values were estimated using data tteacific coast aircraft network GH
profiles (ttp://www.esrl.noaa.gov/gmd/ccgg/aircrafihd remote Pacific marine boundary layer
sampling siteghttp://www.esrl.noaa.gov/gmd/ccga/flask.hjmiithin the NOAA ESRL
Cooperative Air Sanimg Network.The data were smoothed and interpolated to create a
threedimensional (&D) curtain, varying with latitude, height and time. As in Zhao et al. [2009]

12
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http://www.esrl.noaa.gov/gmd/ccgg/aircraft/
http://www.esrl.noaa.gov/gmd/ccgg/flask.html

and Jeong et al. [20&R predicted background values are computed for each footprint siomula
by sampling the curtain at each of the 500 STILT trajectory endpoints and calculating the
average value.

Figure2 shows the measured GHit each of the five sites and the predicted background signals
based on the-B curtain. For inverse analysisgethourly measurements and predicted
background signals are aggregated intw@rly time periods as in Jeong et al. [28]12nlike
WGC, the other sites do not have multiple measurement levels. Therefore, it is difficult to
identify well-mixed periods witbut using vertical Cklgradients from multipléevel
measurements. In this study, we use data during day time (noon to afternoon) when vertical
mixing is strong. In general, the variability in measured, SHarger in winter than the other
seasons for mo®f the sites. However, the MAD site shows high variability during all seasons
although spring and summer seasons show slightly smaller variability than fall and winter. As
stated earlier, the MAD site constrains regions where dairy emissions areraagdition, the
minimum measured signals approximate the predicted background@igesting that the
estimated background signals are reasonable and there is no significant bias in the measured
signals.

ARV ¢
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5
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TRA o & %,
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Figure 2. Measurements & CH,4 from the five sites and WRFSTILT predicted CH 4
background signals using the @ curtain for the period between September 2010 and June
2011. The black circles show-Bourly measurements during the entire analysis period. The
filled blue circles indicate data measured during noorafternoon hours (127 17, local time)
which are used for the inverse study, and the reline shows predicted CH,4 background
signals.
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2.2. A priori CHs Emission Maps

This work adopts tha priori CH4 emission model frordeory et al.[2012a], which provides a

high spatial resolution (0.1° x 0.1°) for California and has seasonal components for wetlands and
crop agriculture. As described in Jeong et al. [2D1tRe high resolution emission model was
prepared bygcalingto the GARB inventory by sector [CARB, 2010]. The considered sectors
include: crop agriculture (CP), landfills (LF), dairy livestock (DLS), 1ulairy livestock

(NDLS), natural gas (NG), petroleum (PL), wastewater (WW), and wetlands (WL). Figure 3
shows CaliforniaspecificCH, emission maps for sectors without temporal variation.

Because there is no specific emission estimate for wetlands from CARB, wetlamuni3dions
aretaken from monthly averages of the Carnelymes StanfordApproach CH (CASA-CHy,)

model fran Potter et al[2006]. Also, seasonally varying Glemissions for CP Clsources

were taken from the denitrification and decomposition model (DNDC) output (assuming the
1983 high irrigation case) described by Salas et al. [2006]. Monthly averaggedrission

maps for county level agricultural GiHuxesareused. The temporalyarying emission maps

for CP and WL are averaged annually and shown in Figure 4. Table 2 summarizes the annual
mean CH emissions for the Californigpecific model by region an@stor. In this study, CH
emissions are scaled to g&quivalent using a 16¢ear global warming potential (GWP) of 21

g COeq/ g CH, [IPCC, 1995].

14
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Figure 3. California -specific CH4 emission maps forsourcesectors (a) LF, (b) WW, (c)
DLS, (d) NDLS, (e) NG, and (f) PL.

15



N AN
< <t |
2048.0 2048.0
1024.0 1024.0
- 5120 o 512.0
¥ 2560 ¥ 256.0
128.0 128.0
64.0 64.0
3 - 320 B 32.0
16.0 : 16.0
8.0 8.0
g | = 4.0 Q = 4.0
= 20 =20
= 1.0 =10
] I
3 = 05 5 = 05
= 0.2 = 0.2
(a) — 0.1 (b) 1 0.1
0.0 0.0
g h T T T T T T % a T T T T T x“
-124 -122 -120 -118 -116 -114 -124 -122 -120 -118 -116 -114

Figure 4. California -specific CH4 emission maps forsource sectors that have seasonal
components:(a) CP and (b) WL.

Table 2. Annual Average California-specific CH4 Emissions by Region and Sector (Tg
COzeC{)

RO1 R0O2 RO3 RO4 RO5 RO6 RO7 RO8 RO9 R10 R11 R12 Ri13 ST%‘;;”
cP 0.00 000 000 001 000 050 000 00L 000 000 00 00 00 054
LF 012 008 018 018 023 031 048 033 064 305 007 095 008 6.69

DLS 000 000 001 010 o001 036 008 379 002 171 003 577 0.01 11.90
NDLS 003 0.10 0.11 0.06 017 019 012 054 011 064 0.07 100 0.03 3.17
NG 000 001 004 002 001 033 033 010 005 091 002 011 0.03 1.95
PL 0.00 000 005 000 000 003 005 002 o0.07 019 000 0.712 0.00 1.13
WwW 000 000 00 001 000 00 017 008 0.06 133 001 011 0.01 192
WL 001 0.00 000 000 022 018 003 027 001 003 001 0.02 0.01 0.79
Total 016 028 041 040 065 192 126 514 0% 78 02 8638 018 280

The EDGAR42 European Commission Joint Research Centre (JRC) and Netherlands Environmental
Assessment Agency, Emission Database for Global Atmospheric Research (EDGAR), release version 4.2,
2011, http://edgar.jrc.ec.europa).€iH, emission model also provides higksolution emission maps and
its estimates areompared withestimates fronthe Californiaspecific modeln Figure 5. Compared with

the Californiaspecific model, EDGAR42 generally shows a similar spatial distribatid@@H, emissions.
However, EDGAR42 shows larger emissions in urban areas than the Cal#jpeciéic model. For the
Central Valleythe Californiaspecific model shows higher emissions than EDGAR42, mainly due to the
higher estimates of dairy emissiongguife 5d shows the swiegion classification described Zihao et al.
[2009] andJeong et a[20124]. The subregions were definebly considering the emission sources and
measurement sites, and roughly folltwe California Air BasinsEmissions from thesregions are

adjusted by the corresponding scaling factors estimated by the inverse model.
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Figure 5. (a) California-specific total CH, emission (nmol n¥ s), (b) EDGAR42 CH, total
emission (nmol n s, (c) the ratio of Cdifornia -specific CH, to EDGAR42 CH,, and (d)
sub-region classification forthe inverse analysis.

Figure 6 shows the comparison between the Califeapéxific and EDGAR42 emissions by

region. As can be seen in the figure, EDGIRRhows more weight in udm areathan the
Californiaspecificmodel For example, for Regions 7 and 10, which include San Francisco Bay
Area and the Southern California Air Basin, respectively, EDGAR estimates significantly higher
CH,4 emissions than the Califorrgpecific modelCurrently, Region 10 is a single large sub

region due to relatively weak sensitivity from the measurement sites in the Central Valley.
However, Region 10 needs to be divided into smalleireglons when more measurements sites
are available in the regioAs shown in the emission maps, the Califorspeecific model

estimates higher emissions than EDGAR in Region 8 where dairy is a dominant emission source
(more than 80%). The annual total emission for California from the Califspa@eific model

and theEDGAR42 model is 28.and 38.3 Tg Ceeq, respectively. As described in Jeong et al.
[20124], the Californiaspecific model iscaledo the 2008 statewidetal CH; emissions

contained in th€ARB CH, emission inventorypy sectof CARB, 201Q. Table 3 show the
comparison of Chlemissions by source between th&RB inventoryandthe EDGAR42

emission model.
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Figure 6. Comparison between the Californiaspecific and EDGAR42 emissions by region

Table 3. Comparison of CH4 Emissions by Source betweeG@ARB Inventory and
EDGAR42 Emission Model

CARB Emission EDG.AR42
CARB Category (Tg COeq) EDGAR42Category Emission
(Tg CGeq)
Rice crop area 0.5 Agricultural soils 0.7
Landfill 6.7 Solid waste 12.7
Dairy cows 11.9 Enteric fermentation 7.3
Non-dairy cows 3.2 Manure management 2.4
o Gas production and
Natural gas pipeline 1.9 distribution 10.2
Extraction, mobile, Oil production and
- 1.1 S 0.5
refining refineries
Wastewater treatment 1.9 Waste water 3.2
Others 1.2 1.4
CARB Total 28.5 EDGAR Total 38.3

2.3. Atmospheric Transport Modeling

Predicted contributions to GHinixing ratios from emissions within the modeling domain are
calculated a&E, whereF is footprint strength, anf is thea priori CH, emissions. Fotprints
represent the sensitivinf themixing ratioat the receptor locaticiw surfacesourcesin units of
ppb/(nmol n¥ sY). Footprints are calculated from particle trajectories simulated using the STILT
model Lin et al.,2003, 2004]. As in Jeond al. [2012], 500 particles are released hourly at

each measurement site and transported backward in time 7 damite that theajority of the
particles reach positions representative ofupwind boundary conditiond he meteorology
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used to driveltis transport model is from the simulation of Weather Research and Forecasting
(WRF3.2.1) model$kamarock et gl2008]. The WRF model has been slightly modified to be
coupled with STILT (WRFSTILT) by Nehrkorn et al[2010].

The WRF model simulationdasely follow those described in Jeong et al. [21idth the
following modifications. Five domains (d@1d05) of 36, 12, 4, antivo 1.3 km resolutiorwere
used inthe WRF simulations. Thd-km domain (i.e., d03) was configured to represent most of
California with the two B-km nested domains (d04 and d@@gtcoverthe San FranciscBay
Area and the metropolitan arebLos Angeles, respectively. In this study, wedidee
meteorologywithin thed01, d02 and dO8omaingo drive the STILT modeMWe didnot include
the 13-km resolution domainecause the GHG measurement sites are located in the Central
Valley. Figure 7 shows the WRID1, d02, and dOBomains used in this study. The simulations
were run with tweway nesting instead of orveay nestingused in Jeong et al. [204R As in

Jeong et al. [20H]}, 50 vertical levelsvere employed to resolve PBL heighigercomplex

terrain features of California. Initial and boundargteorologcal conditionswereprovided by

the North American Regional Reansiy (NARR) datasefMesinger et al.2006]. All simulation
durations were 30 hours allowing for 6 hours of model spin up and 24 hours of forecast time.
The model also incorporat@dD analysis nudging every three hours in 36e&m domain.

As in Jeonget al. [2012], the MellorYamadaJanjic (MYJ) schemé\ellor and Yamadal982,;

J a n 19P0] was used for the PBL schenttowever, we found that the Yonsei University

(YSU) scheme performs better than the MYJ scheme for some months depending on the wind
profiler site. For example, the WRF simulations for PBL heights based on thesdfgthe

agreed with wind profiler measurements better than those of the MYJ scheme at the Lost Hills
site. Therefore, we used the YSU scheme for the cases where YSU simulations are more
comparable with measurementsrthiaose of the MYJ scheme.

The landsurface model provides heat and moisture fluxes over land afickestsat provide

crucial information for the PBL schemes and other atmospheric processes to accurately predict
transport. These land surface models provide the lower boundary condititimes RiBL

schemes and can have a considerable effect on the boundary layer physics. This study examined
two different land surface models (LSM), the Noah LSM and theléiyer thermal diffusion

scheme LSM (8. LSM hereatfter) to evaluate the models in teohBBL and wind simulations.

The Noah LSM uses four soil layers with thicknesses of 10 cm, 30 cm, 60 cm, and 100 cm from
the top down. It includes vegetation processes, estimates of soil temperature, soil moisture, and
canopy moisture. Compared to theddd_-SM, the 8. LSM is a simpler LSM that usdiwe soil

layers with thicknesses of 1 cm, 2 cm, 4 cm, 8 cm, and 16 cm from the top Slkamdrock et

al., 2008]. It uses a static soil moisture estimate that is a function ofitsndnd seasowe

found that in general the-b LSM performs better than the Noah LSM during those months

when irrigation is significant in the Central Valley. This is likely related to the deficiency of the
Noah LSM in describing the irrigation component. Depending on the pefme, we choose
thebestLSM for a given season.
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Fropic-of-Cancer
Figure 7. WRF modeling domain configuration with three-level nested domaingd01, d02,
and d03 featuring 36, 12, and 4 km resolution, respectively)

2.4. Bayesian Inverse Model

Seasonally varying regionat10000km?) CHse mi ssi ons from Cali forni ab
estimated by scaling higtesolution (~10 km) Clklemission maps using a Bayesian inversion

model to provide optimal agreement with aggregate mixing ratio datauredast the fivesite

network. This inversion approach expands on the earlier efforts by Zhao et al, [Ra0g] et

al. [2012] and Jeong et al. [20bR. which used measurements from the WGC site to constrain

GHG emissions from central California. As debed inGerbig et al[2003], Lin et al [2003],

Zhao et al. [2009], and Jeong et al. [281he local CH mixing ratio at the receptdc) can be

modeled as

c=Ka+tv, (1)
whereK = FE, ais a state vector for scaling factors, which is used to adjust emissions from
sources or regionandv is a vector representing the modigta mismatch with a covariance
matrix R. We modeR as a diagonal matrix to represéime total variance associated with all

error sources such as the measurement error and the transport error. Following the Gaussian
assumptions, the posterior estimatedis

on = (K TRK +Q ) (KR c+Q; 10, ) 2)
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whereayior is thea priori estimate foley andQ..is the error covariance associated vaf. The
corresponding posterior covariance &g V ., = (K R'K +Q); ) . To determine ofmal

emissions, we use the inversimethod at monthly temporal scale based on the twg &H

priori emissionmodslBecause the measurements sites are
Valley that includes such uncertain £émission sources as rice agriculture, livestock and

natural gas fields, we use 50% uncertainty inagriori emission models as in Jeong et al.

[20124]. The inverse modeling approach is applied in two phasesBergamaschi et al2005]

and Jeong et al. [20&R After a first inversion, the second (final) inversion uses data points that

are accepted by applying the selection criteria (K 8 <UR,where U is a fixed
the first inversion, the final inversion is performed using the origin@liori emission maps, and
therefore the first inversion is used as a data selection tool for the atmospheric observations.

2.5. Uncettainty Analysis

Theuncertainty in the modeheasurement differenceentrol the relative weighting of the prior
flux estimates and the measured data in the inveradjusing posteriorCH, emissions relatie
to a priori emissionsFollowing Gerbig et al[2003], Zhao et al. [2009], Gtckede et al. [2010],
and Jeong et al. [20&R the modetmeasuremenincertaintymatrix, R, is representedsthe
linear sumof uncertaintiesrom several sources

Ri= Spart"' Saggr"' Sbkgd + StransPBLF StranswinD, 4)

wherethe particle number error (&) is due to the finitaumber of released particles at the
receptor locationvhile the aggregation error {g,) arises from aggregating heterogeneous fluxes
within a grid cell into a singlaverage fluxThe backgrounerror (Skqd) is due to the

uncertaintyin estimating the background contribution to the,@t¢asurements #te receptor.
StranspeLanNd Srranswinp represent the uncertainty in @hhixing ratioscaused byhe errorsn

wind speeds and directiorend the gorsin PBL heightsrespectivelyFor the aygregation error
(Saggy, We adopt the result from Jeong et al. [2§)EHhdusel1% ofthe backgrounesubtracted
mean signal

The background erroByq) is estimated bgombiring (in quadrature) the RMS error the
estimation of the -® curtain and the standard deviation of 500 W&RHLT background
samples, which were calculated as an average formeanth Only time points for which more
than 80% of the particles reachib@ western boundary of the domaiare included in the
study.

To estimate the uncertainty in predicted {&ifjnals due to errors from modeled PBL heights
(Srranspe) andwinds Srranswinp), We evaluated model errors in winds and PBL heights and then
calculated the RMS difference in ¢bignals obtained from simulations with and without input
of an additional stochastic component of wind and PBL errors in STlleTeVdluated PBL
heights Zi) and windsat four stations shown in FiguBWind and PBL height measurements
from the closest prdér to the GHG measurement site are used to evaluate WRF simulations.
For example, most relevant to thARV GHG measurement sjteve compar&i from WRF

STILT with measurements from theSH profiler. As in Jeong et al. [20BP,. we assume thahe
RMS scater in predicted versus measu@dan be represented as the sum of sepiaf
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measurement uncertainty 00 m,Dye et al, 1999 and WRFSTILT model uncertaintyAs an
example of the performance of the WRF model used in this study, Figure 9 sh@ws the
comparison result between profiler measurements and predictions from WRF for the month of
June. Due to the availability of profiler data, the comparison is made for daytime only. In
general, the WRF simulateti is consistent with the measurgd Althoughthe fitting slope for

the CCO site is slightly higher than unity, the diurnal cyclgighot shown) suggests that there

is no significant bias.

Uncertainty in modeled Ctsignals due to errors in modeled winds is estimated using modeled
and measuredindsfrom the wind profiler. As in the case &f, the wind error for a given GHG
site was evaluated using the nearby profiler winds. Depending on the season and measurement
location, the wind error varigangingfrom 21 5m s*, without significant biaes.In this study

we run the STILT model 10 timesd compute ensemble signfis a given siteand month to
estimate theombineduncertainty due to both winrranswinp) and particle numbeSyar)

errors. Based on 10 ensemble runs, we estimate thedi#fd&nce about the mean of the
ensemble signals for each model time step and use the aiRM&j@r the combined

uncertainty due to wind and particle number errBrgpagating a random wind component of

the velocity error through STILT yielded a typlsignal variation of ~ 10 % of the background
subtracted mean Ghignal.

Following Zhao et al. [2009] and Jeong et al. [28)1&e assuned thatall of the errorare
independent. fie errors were combined in quadrature to yield a total expected-oebdel
mismatch errarThe uncertainty in the inverse model estimateStdf emissions for regions
containing measurement sites are dominated by uncertainty in the meteorological modeling of
trace gas transport (e.g., winter) and estimation of backgroundss(gr@, summerDepending

on themonthand measurement location, the error ranged 80in60% of the background
subtracted mean signal.
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Figure 8. Location of GHG measurement sites (black) and wind profiler sites (red) in the
Central Valley with predicted monthly mean PBL heights (m) for June 2011, 14:00 LST
shown in color.
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