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ABSTRACT 
 

 

We estimate regionally resolved methane (CH4) emissions for California by comparing CH4 

mixing ratios measured at a network of measurement sites in the Central Valley with transport 

model predictions based on two independent emission maps: a 0.1 degree seasonally varying 

ñCalifornia-specificò emission map, calibrated to state-wide by CH4 emission totals, and the 0.1 

degree global EDGAR42 CH4 emission map. Atmospheric particle trajectories and surface 

footprints (sensitivity of CH4 signals to surface emissions) are computed using the Weather 

Research and Forecasting (WRF) and Stochastic Time-Inverted Lagrangian Transport (STILT) 

models. Uncertainties due to wind velocity and boundary layer mixing depth are evaluated using 

measurements from radar wind profilers. Bayesian region analyses yield annually averaged CH4 

emissions for California totaling 1.2±0.1 and 1.9±0.3 times larger than the current State total 

CH4 emissions (32 Tg CO2 equivalent yr
-1

) for the California-specific CH4 and EDGAR42 CH4 

emission maps, respectively, while source analyses estimate slightly higher emissions for both 

emission models. When emissions from large urban areas are estimated based on a recent study 

in the larger Los Angeles metropolitan region to better constrain urban emissions, State total CH4 

emissions are estimated to be 1.3 ï 1.7 times larger than the current State total CH4 emissions. 

These results based on the multiple emission models suggest that the California total of CH4 

emissions would account for approximately 8% - 13% of the Stateôs total greenhouse gas (GHG) 

emissions, which is significantly higher than the CARB inventory (~6% of total GHG 

emissions). Spatial resolution of emissions within the influence region reveal seasonality 

expected from several biogenic sources, including rice agriculture. We expect that additional 

tower measurements in the South Coast Air Basin will provide the data necessary for a complete 

analysis of Californiaôs CH4 budget. 
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EXECUTIVE SUMMARY  

Background  

Methane (CH4) is the second highest contributor to climate change among greenhouse gases 

(GHGs) behind carbon dioxide (CO2), based on its concentration changes in the atmosphere since 

the start of the industrial revolution and its ability to absorb infrared radiation. At the regional 

scale, California currently emits approximately 500 Tg (1 Tg = 1 million metric ton) of CO2 

equivalent (CO2eq) GHGs, with CH4 currently estimated to contribute approximately 6% of the 

total [California Air Resources Board (CARB), 2010]. 

 

Methods 

This report quantifies regional CH4 emissions within California with a Bayesian inverse 

modeling approach, representing the first analysis of CH4 emissions across a large swath of 

California and across different seasons using atmospheric observations from multiple sites. The 

inverse modeling approach follows the approach taken in Zhao et al. [2009], Jeong et al. [2012a] 

and Jeong et al. [2012b]. We calculate predicted CH4 signals using two relatively high resolution 

(0.1 degree) emissions models, a California specific model and the EDGAR4.2 global emission 

model. Central to this approach, we quantify model-measurement uncertainties by estimating 

errors in transport variables (e.g., wind velocities and planetary boundary layer depth) that affect 

footprints (sensitivity of CH4 signals to surface emissions in units of concentration/flux) and 

propagating those errors to produce uncertainty in predicted CH4 signals. The Bayesian inverse 

analysis then estimates posterior CH4 emissions for regions (region analysis) and source sectors 

(source analysis). 

 

Results 

This study shows that actual CH4 emissions based on inverse region analyses are 1.2±0.1 - 

1.9±0.3 times larger than the current inventory estimates (32 Tg CO2eq). When emissions from 

large urban areas (e.g., Southern California region) are estimated based on a recent study in the 

larger Los Angeles metropolitan region and combined with the emissions from the Central 

Valley and other non-urban regions, State total CH4 emissions are 1.3 ï 1.7 times larger than the 

current State total CH4 emissions. A Bayesian region analysis suggests that the relatively large 

range of total emissions reflects a current limitation to uniquely resolve urban versus rural CH4 

emissions, particularly from Southern California.  A similar source sector analysis suggests that 

the dominant CH4 emissions are derived from livestock and landfills, though as with the region 

analysis, significant differences are obtained with the California-specific and EDGAR42 prior 

emission maps. 

 

Conclusions 

Atmospheric CH4 measurements can be combined to estimate total CH4 emissions at regional 

scales using the inverse modeling approach. Californiaôs CH4 emissions exceed current inventory 

estimates, though considerable uncertainty remains.  Recommendations for work that will likely 

resolve these uncertainties include: 
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¶ The current GHG network constrains annual average CH4 emissions from Californiaôs 

Central Valley to be between 26.3±1.8 Tg CO2eq and 27.4±2.1 Tg CO2eq for the 

California-specific and EDGAR42 emission models respectively. Similarly, emissions 

from livestock (which are predominantly located in the Central Valley) are estimated to 

be 28.2±3.4 Tg CO2eq and 25.8±3.2 Tg CO2eq from the California-specific and 

EDGAR42 emission models, respectively. 
 

¶ While significant error reductions are obtained in Californiaôs Central Valley, emissions 

from other regions remain uncertain, with the ratio of emissions to the current California 

CH4 emission inventory (32 Tg CO2eq yr
-1

) ranging from 1.2±0.1 and 1.9±0.3 from the 

Bayesian region analysis based on the California-specific and EDGAR42 emission 

models. Hence, additional tower measurements in the San Francisco Bay and Southern 

California areas are required to constrain those emissions. 

 

¶ Noting the large uncertainty in urban emissions estimated from measurements in the 

Central Valley, emissions from large urban areas (San Francisco Bay Area and Southern 

California region) are estimated based on a recent study in the larger Los Angeles 

metropolitan region to better constrain large urban emissions. Combined with the 

emissions from the Central Valley and other non-urban regions, State total CH4 emissions 

are estimated to be 1.3 ï 1.7 times larger than the current State total CH4 emissions where 

the uncertainty is dominated by uncertainty in the urban regions. This further suggests 

that additional measurements in the San Francisco Bay and Southern California areas are 

required to constrain those emissions. 

 

¶ Data from the current CH4 measurement network are effective for use in constraining 

emissions from different regions of Californiaôs Central Valley but cannot be used to 

uniquely attribute emissions to specific source sectors. Additional measurements of 

source specific tracers (e.g., CO, VOCs, and potentially CH4 isotopes) will help separate 

different sources of CH4. 

 

¶ Currently, uncertainty in the inverse model estimates of CH4 emissions for regions 

containing measurement sites are dominated by uncertainty in the meteorological 

modeling of trace gas transport (e.g., winter) and estimation of background signals (e.g., 

summer). Additional work is needed to identify the source of these errors and reduce 

them. 
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PROJECT REPORT 

1. Introduction  

 

Methane (CH4) is the second highest contributor to climate change among greenhouse gas (GHG) 

behind carbon dioxide (CO2), based on its concentration changes in the atmosphere since the start 

of the industrial revolution, the long residence time of CH4 and its ability to absorb infrared 

radiation. Earth's CH4 has increased by about 150% since 1750 in concentration, and accounts for 

~ 25% of the global total radiative forcing from all long-lived and globally mixed GHGs 

[Hofman et al., 2006; Montzka et al., 2011].  Given the importance of CH4 as a GHG it is 

important to be able to quantify changes in emissions. However, there exists a large uncertainty 

in bottom-up emission inventory models that take known natural and anthropogenic sources of 

CH4 to produce emission estimates due to lack of understanding of emission processes and 

driving data. Mathematical inversion models, which use concentration changes in CH4 and 

transport to infer sources, provide an effective tool for understanding CH4 emissions. 

Correspondingly, attention has focused on inverse model assessment of global [Gimson and 

Uliasz, 2003; Houweling et al., 1999; Miller et al., 2008], and regional [Kort et al., 2008; Zhao et 

al., 2009; Jeong et al., 2012a] CH4 sources.  

 

At the regional scale, California currently emits approximately 500 Tg (1 Tg = 1 million metric 

ton) of CO2 equivalent GHGs, with CH4 currently estimated to contribute approximately 6% of 

the total [California Air Resources Board (CARB), 2011].  Because California has committed to 

an ambitious plan to reduce GHG emissions to 1990 levels by 2020 through Assembly Bill 32 

(AB-32), verifying the success of control strategies will require accounting for CH4 emissions.  

 

This report quantifies regional CH4 emissions from California within a Bayesian inverse 

modeling framework, representing the first analysis of CH4 emissions in California using 

atmospheric observations from multiple sites across different seasons during 2010 - 2011. The 

work expands on studies by Zhao et al. [2009] and Jeong et al. [2012a] that quantified CH4 

emissions from central California using a single tower near Walnut Grove, California (WGC). In 

Section 2, we describe the methods we employed, including atmospheric measurements, a priori 

CH4 emissions inventories, mesoscale meteorology and trajectory transport modeling, and the 

Bayesian inverse method. Section 3 describes results, including the seasonal variations in 

calculated footprints, and the inferred surface emissions of CH4 from California for different 

regions and sources based on simple correlation analysis and a Bayesian inverse analysis. 

Section 4 summarizes the results and presents the recommendations for CH4 inverse modeling at 

the regional scale, highlighting the importance of uncertainty in the spatial distribution of a 

priori  emissions, and the value of multiple measurement stations. 
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2. Approach  
The inverse modeling framework used in this study follows the approach taken in Zhao et al. 

[2009], Jeong et al. [2012a] and Jeong et al. [2012b]. As illustrated in Figure 1, the Bayesian 

inverse model requires two direct inputs: 1) tower measurements, and 2) predicted signals. By 

comparing the measured signals at the tower with predicted signals, the inverse model estimates 

scaling factors for surface emissions such that the scaled surface emissions yield predicted 

signals that are statistically consistent with measurements. Predicted signals are calculated as a 

linear combination of footprints, which represent the sensitivity of signals measured at different 

sites to emissions across the landscape, and surface emissions. Because predicted signals 

represent local enhancements of emissions, background signals entering the study domain are 

needed to compare predicted signals with measured signals, which include both local and 

background signals. Footprints are quantified using a Lagrangian model for air parcels arriving at 

a tower. Such footprints link the observed concentrations at a specific location and height to 

surface fluxes within a large area. Numerical model outputs are used to define paths traveled by 

parcels of air, or trajectories, which are a basis for footprint estimates. In this study we use the 

coupled WRF-STILT model for trajectory calculations. Errors in modeling footprints due to 

uncertainties in winds and planetary boundary layer (PBL) heights contribute to uncertainties in 

inversion results and confidence levels associated with optimized emissions values. The result of 

the Bayesian inverse model is a set of optimized scaling factors for region or source emissions. 

 
Figure 1. Inverse modeling approach used in the study. 
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2.1. CH4 Measurements and Boundary Condition s 
CH4 measurements were made at the collaborative five-site GHG network in Californiaôs Central 

Valley. In addition to the Central Valley sites, CH4 measurements were also made at Mt. Wilson, 

but these measurements are not employed in this study because we have not developed a well-

tested meteorological model for atmospheric transport at Mt. Wilson at this time. Table 1 

summarizes the information for the measurement sites in the measurement network and the 

measurement periods used in the inverse analysis. The Arvin (ARV) site is located at the 

southern end of the San Joaquin Valley and constrains emission sources from livestock, and gas 

and petroleum production fields. The Madera (MAD) and Tranquility (TRA) sites are located in 

the center of the San Joaquin Valley, constraining emission sources mainly from livestock. The 

Sutter Butte site located in the Sacramento Valley represents an emission region that has 

dominant CH4 emissions from rice agriculture. As described in detail in Zhao et al. [2009] and 

Jeong et al. [2012a], the site represents an emission region with mixed CH4 emission sources 

such as crop agriculture, livestock, natural gas fields, wetlands and urban emissions.  

 

CH4 measurements at WGC were made at 91 and 483 m above ground level on a tall tower, 

beginning in September 2007. The CH4 mixing ratios at each height are measured every 15 

minutes and averaged into the 3-hour means used in this study. As in Zhao et al. [2009] and 

Jeong et al. [2012a], CH4 measurements at 91 m are used for inverse modeling. Detailed 

information about these measurements is described by Zhao et al. [2009] and Jeong et al. 

[2012a]. All other stations are measured at 10 meters above the ground using the same type of 

instruments and calibrated with standard gases from NOAA every six months.  Each instrument 

is programmed to measure from precision check standard gases every 11 hours to ensure data 

quality.  After examining precision checks and removing special events (e.g., changing filters), 

raw data collected every few seconds are averaged into 3-hourly measurements for inverse 

modeling. 

 

Table 1. Measurement Sites and Periods 

Site Name Height
a 

Elevation
b 

Latitude Longitude 
Measurement 

Period (yyyymm) 

Arvin (ARV) 10 m 158 m 35.24°N 118.79°W 201009 - 201106 

Madera (MAD) 10 m 81 m 36.87°N 120.01°W 201009 - 201106 

Sutter Butte (STB) 10 m 640 m 39.21°N 121.82°W 201105 - 201106 

Tranquility (TRA) 10 m 59 m 36.63°N 120.38°W 201009 - 201106 

Walnut Grove 

(WGC) 
91 m 0 m 38.27°N 121.49°W 201009 - 201106 

a
Above ground level (a.g.l.) 

b
Above sea level (a.s.l.) 

 

CH4 boundary values were estimated using data from the Pacific coast aircraft network CH4 

profiles (http://www.esrl.noaa.gov/gmd/ccgg/aircraft/) and remote Pacific marine boundary layer 

sampling sites (http://www.esrl.noaa.gov/gmd/ccgg/flask.html) within the NOAA ESRL 

Cooperative Air Sampling Network. The data were smoothed and interpolated to create a 

three-dimensional (3-D) curtain, varying with latitude, height and time. As in Zhao et al. [2009] 

http://www.esrl.noaa.gov/gmd/ccgg/aircraft/
http://www.esrl.noaa.gov/gmd/ccgg/flask.html


13 
 

and Jeong et al. [2012a], predicted background values are computed for each footprint simulation 

by sampling the curtain at each of the 500 STILT trajectory endpoints and calculating the 

average value.  

Figure 2 shows the measured CH4 at each of the five sites and the predicted background signals 

based on the 3-D curtain. For inverse analysis, the hourly measurements and predicted 

background signals are aggregated into 3-hourly time periods as in Jeong et al. [2012a]. Unlike 

WGC, the other sites do not have multiple measurement levels. Therefore, it is difficult to 

identify well-mixed periods without using vertical CH4 gradients from multiple-level 

measurements. In this study, we use data during day time (noon to afternoon) when vertical 

mixing is strong. In general, the variability in measured CH4 is larger in winter than the other 

seasons for most of the sites. However, the MAD site shows high variability during all seasons 

although spring and summer seasons show slightly smaller variability than fall and winter. As 

stated earlier, the MAD site constrains regions where dairy emissions are large. In addition, the 

minimum measured signals approximate the predicted background CH4, suggesting that the 

estimated background signals are reasonable and there is no significant bias in the measured 

signals. 

 

Figure 2. Measurements of CH4 from the five sites and WRF-STILT predicted CH 4 

background signals using the 3-D curtain for the period between September 2010 and June 

2011. The black circles show 3-hourly measurements during the entire analysis period. The 

filled blue circles indicate data measured during noon-afternoon hours (12 ï 17, local time), 

which are used for the inverse study, and the red line shows predicted CH4 background 

signals. 
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2.2. A priori CH4 Emission Maps 
This work adopts the a priori CH4 emission model from Jeong et al. [2012a], which provides a 

high spatial resolution (0.1º × 0.1º) for California and has seasonal components for wetlands and 

crop agriculture. As described in Jeong et al. [2012a], the high resolution emission model was 

prepared by scaling to the CARB inventory by sector [CARB, 2010]. The considered sectors 

include: crop agriculture (CP), landfills (LF), dairy livestock (DLS), non-dairy livestock 

(NDLS), natural gas (NG), petroleum (PL), wastewater (WW), and wetlands (WL). Figure 3 

shows California-specific CH4 emission maps for sectors without temporal variation. 

 

Because there is no specific emission estimate for wetlands from CARB, wetland CH4 emissions 

are taken from monthly averages of the Carnegie-Ames-Stanford-Approach CH4 (CASA-CH4) 

model from Potter et al. [2006]. Also, seasonally varying CH4 emissions for CP CH4 sources 

were taken from the denitrification and decomposition model (DNDC) output (assuming the 

1983, high irrigation case) described by Salas et al. [2006]. Monthly averaged CH4 emission 

maps for county level agricultural CH4 fluxes are used. The temporally-varying emission maps 

for CP and WL are averaged annually and shown in Figure 4. Table 2 summarizes the annual 

mean CH4 emissions for the California-specific model by region and sector. In this study, CH4 

emissions are scaled to CO2 equivalent using a 100-year global warming potential (GWP) of 21 

g CO2 eq / g CH4 [IPCC, 1995]. 
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Figure 3. California -specific CH4 emission maps for source sectors: (a) LF, (b) WW, (c) 

DLS, (d) NDLS, (e) NG, and (f) PL.  
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Figure 4. California -specific CH4 emission maps for source sectors that have seasonal 

components: (a) CP and (b) WL. 

 

Table 2. Annual Average California-specific CH4 Emissions by Region and Sector (Tg 

CO2eq)  

 
R01 R02 R03 R04 R05 R06 R07 R08 R09 R10 R11 R12 R13 

Sector 

Total 

CP 0.00 0.00 0.00 0.01 0.00 0.50 0.00 0.01 0.00 0.00 0.01 0.00 0.02 0.54 

LF 0.12 0.08 0.18 0.18 0.23 0.31 0.48 0.33 0.64 3.05 0.07 0.95 0.08 6.69 

DLS 0.00 0.00 0.01 0.10 0.01 0.36 0.08 3.79 0.02 1.71 0.03 5.77 0.01 11.90 

NDLS 0.03 0.10 0.11 0.06 0.17 0.19 0.12 0.54 0.11 0.64 0.07 1.00 0.03 3.17 

NG 0.00 0.01 0.04 0.02 0.01 0.33 0.33 0.10 0.05 0.91 0.02 0.11 0.03 1.95 

PL 0.00 0.00 0.05 0.00 0.00 0.03 0.05 0.02 0.07 0.19 0.00 0.71 0.00 1.13 

WW 0.00 0.09 0.02 0.01 0.00 0.03 0.17 0.08 0.06 1.33 0.01 0.11 0.01 1.92 

WL 0.01 0.00 0.00 0.00 0.22 0.18 0.03 0.27 0.01 0.03 0.01 0.02 0.01 0.79 

Total 0.16 0.28 0.41 0.40 0.65 1.92 1.26 5.14 0.96 7.85 0.21 8.68 0.18 28.09 

 

 
The EDGAR42 (European Commission Joint Research Centre (JRC) and Netherlands Environmental 

Assessment Agency, Emission Database for Global Atmospheric Research (EDGAR), release version 4.2, 

2011, http://edgar.jrc.ec.europa.eu) CH4 emission model also provides high-resolution emission maps and 

its estimates are compared with estimates from the California-specific model in Figure 5. Compared with 

the California-specific model, EDGAR42 generally shows a similar spatial distribution of CH4 emissions. 

However, EDGAR42 shows larger emissions in urban areas than the California-specific model. For the 

Central Valley, the California-specific model shows higher emissions than EDGAR42, mainly due to the 

higher estimates of dairy emissions. Figure 5d shows the sub-region classification described in Zhao et al. 

[2009] and Jeong et al. [2012a]. The sub-regions were defined by considering the emission sources and 

measurement sites, and roughly follow the California Air Basins. Emissions from these regions are 

adjusted by the corresponding scaling factors estimated by the inverse model.  
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Figure 5. (a) California-specific total CH4 emission (nmol m

-2
 s

-1
), (b) EDGAR42 CH4 total 

emission (nmol m
-2

 s
-1

), (c) the ratio of California -specific CH4 to EDGAR42 CH4, and (d) 

sub-region classification for the inverse analysis. 

 

Figure 6 shows the comparison between the California-specific and EDGAR42 emissions by 

region. As can be seen in the figure, EDGAR42 shows more weight in urban areas than the 

California-specific model. For example, for Regions 7 and 10, which include San Francisco Bay 

Area and the Southern California Air Basin, respectively, EDGAR estimates significantly higher 

CH4 emissions than the California-specific model. Currently, Region 10 is a single large sub-

region due to relatively weak sensitivity from the measurement sites in the Central Valley. 

However, Region 10 needs to be divided into smaller sub-regions when more measurements sites 

are available in the region. As shown in the emission maps, the California-specific model 

estimates higher emissions than EDGAR in Region 8 where dairy is a dominant emission source 

(more than 80%). The annual total emission for California from the California-specific model 

and the EDGAR42 model is 28.1 and 38.3 Tg CO2eq, respectively. As described in Jeong et al. 

[2012a], the California-specific model is scaled to the 2008 statewide total CH4 emissions 

contained in the CARB CH4 emission inventory by sector [CARB, 2010]. Table 3 shows the 

comparison of CH4 emissions by source between the CARB inventory and the EDGAR42 

emission model. 
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Figure 6. Comparison between the California-specific and EDGAR42 emissions by region  

 

Table 3. Comparison of CH4 Emissions by Source between CARB Inventory  and 

EDGAR42 Emission Model 

CARB Category 
CARB  Emission 

(Tg CO2eq) 
EDGAR42 Category 

EDGAR42  

Emission 

(Tg CO2eq) 

Rice crop area 0.5 Agricultural soils 0.7 

Landfill 6.7 Solid waste 12.7 

Dairy cows 11.9 Enteric fermentation 7.3 

Non-dairy cows 3.2 Manure management 2.4 

Natural gas pipeline 1.9 
Gas production and 

distribution 
10.2 

Extraction, mobile, 

refining 
1.1 

Oil production and 

refineries 
0.5 

Wastewater treatment 1.9 Waste water 3.2 

Others 1.2 
 

1.4 

CARB Total 28.5 EDGAR Total 38.3 

 

2.3. Atmospheric Transport Modeling  
Predicted contributions to CH4 mixing ratios from emissions within the modeling domain are 

calculated as FE, where F is footprint strength, and E is the a priori CH4 emissions. Footprints 

represent the sensitivity of the mixing ratio at the receptor location to surface sources, in units of 

ppb/(nmol m
-2

 s
-1
). Footprints are calculated from particle trajectories simulated using the STILT 

model [Lin et al., 2003, 2004]. As in Jeong et al. [2012a], 500 particles are released hourly at 

each measurement site and transported backward in time 7 days to ensure that the majority of the 

particles reach positions representative of the upwind boundary conditions. The meteorology 
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used to drive this transport model is from the simulation of Weather Research and Forecasting 

(WRF3.2.1) model [Skamarock et al., 2008]. The WRF model has been slightly modified to be 

coupled with STILT (WRF-STILT) by Nehrkorn et al. [2010].  

 

The WRF model simulations closely follow those described in Jeong et al. [2012a] with the 

following modifications. Five domains (d01 ï d05) of 36, 12, 4, and two 1.3 km resolution were 

used in the WRF simulations. The 4-km domain (i.e., d03) was configured to represent most of 

California with the two 1.3-km nested domains (d04 and d05) that cover the San Francisco Bay 

Area and the metropolitan area of Los Angeles, respectively. In this study, we used the 

meteorology within the d01, d02 and d03 domains to drive the STILT model. We did not include 

the 1.3-km resolution domains because the GHG measurement sites are located in the Central 

Valley. Figure 7 shows the WRF d01, d02, and d03 domains used in this study. The simulations 

were run with two-way nesting instead of one-way nesting used in Jeong et al. [2012a]. As in 

Jeong et al. [2012a], 50 vertical levels were employed to resolve PBL heights over complex 

terrain features of California. Initial and boundary meteorological conditions were provided by 

the North American Regional Reanalysis (NARR) dataset [Mesinger et al., 2006]. All simulation 

durations were 30 hours allowing for 6 hours of model spin up and 24 hours of forecast time.  

The model also incorporated 3-D analysis nudging every three hours in the 36-km domain.   

 

As in Jeong et al. [2012a], the Mellor-Yamada-Janjic (MYJ) scheme [Mellor and Yamada, 1982; 

Janjiĺ, 1990] was used for the PBL scheme.  However, we found that the Yonsei University 

(YSU) scheme performs better than the MYJ scheme for some months depending on the wind 

profiler site. For example, the WRF simulations for PBL heights based on the YSU scheme 

agreed with wind profiler measurements better than those of the MYJ scheme at the Lost Hills 

site. Therefore, we used the YSU scheme for the cases where YSU simulations are more 

comparable with measurements than those of the MYJ scheme.  

 

The land surface model provides heat and moisture fluxes over land and sea-ice that provide 

crucial information for the PBL schemes and other atmospheric processes to accurately predict 

transport.  These land surface models provide the lower boundary conditions for the PBL 

schemes and can have a considerable effect on the boundary layer physics. This study examined 

two different land surface models (LSM), the Noah LSM and the five-layer thermal diffusion 

scheme LSM (5-L LSM hereafter) to evaluate the models in terms of PBL and wind simulations. 

The Noah LSM uses four soil layers with thicknesses of 10 cm, 30 cm, 60 cm, and 100 cm from 

the top down.  It includes vegetation processes, estimates of soil temperature, soil moisture, and 

canopy moisture. Compared to the Noah LSM, the 5-L LSM is a simpler LSM that uses five soil 

layers with thicknesses of 1 cm, 2 cm, 4 cm, 8 cm, and 16 cm from the top down [Skamarock et 

al., 2008].  It uses a static soil moisture estimate that is a function of land use and season. We 

found that in general the 5-L LSM performs better than the Noah LSM during those months 

when irrigation is significant in the Central Valley. This is likely related to the deficiency of the 

Noah LSM in describing the irrigation component.  Depending on the performance, we choose 

the best LSM for a given season. 
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Figure 7. WRF modeling domain configuration with three-level nested domains (d01, d02, 

and d03 featuring 36, 12, and 4 km resolution, respectively).  

2.4. Bayesian Inverse Model 
Seasonally varying regional (~10,000 km

2
) CH4 emissions from Californiaôs Central Valley are 

estimated by scaling high-resolution (~10 km) CH4 emission maps using a Bayesian inversion 

model to provide optimal agreement with aggregate mixing ratio data measured at the five-site 

network. This inversion approach expands on the earlier efforts by Zhao et al. [2009], Jeong et 

al. [2012a] and Jeong et al. [2012b], which used measurements from the WGC site to constrain 

GHG emissions from central California. As described in Gerbig et al. [2003], Lin et al. [2003], 

Zhao et al. [2009], and Jeong et al. [2012a], the local CH4 mixing ratio at the receptor (c) can be 

modeled as  

 

c = Kɚ + v,    (1) 

 

where K  = FE,  ɚ is a state vector for scaling factors, which is used to adjust emissions from 

sources or regions, and v is a vector representing the model-data mismatch with a covariance 

matrix R. We model R as a diagonal matrix to represent the total variance associated with all 

error sources such as the measurement error and the transport error. Following the Gaussian 

assumptions, the posterior estimate for ɚ is 

 

( )( )prior

TT

post ɚQcRKQKRKɚ
11111 ----- ++= ll   (2) 
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where ɚprior is the a priori estimate for ɚ, and Qɚ is the error covariance associated with ɚprior. The 

corresponding posterior covariance for ɚ is ( )111 --- += lQKRKV
T

post . To determine optimal 

emissions, we use the inversion method at a monthly temporal scale based on the two CH4 a 

priori  emission models. Because the measurements sites are located in Californiaôs Central 

Valley that includes such uncertain CH4 emission sources as rice agriculture, livestock and 

natural gas fields, we use 50% uncertainty in our a priori emission models as in Jeong et al. 

[2012a]. The inverse modeling approach is applied in two phases as in Bergamaschi et al. [2005] 

and Jeong et al. [2012a]. After a first inversion, the second (final) inversion uses data points that 

are accepted by applying the selection criteria |ci ï (Kɚ)i|
2
 < ŬRi, where Ŭ is a fixed value. As in 

the first inversion, the final inversion is performed using the original a priori emission maps, and 

therefore the first inversion is used as a data selection tool for the atmospheric observations.  

 

2.5. Uncertainty Analysis  
The uncertainty in the model-measurement differences control the relative weighting of the prior 

flux estimates and the measured data in the inversion, adjusting posterior CH4 emissions relative 

to a priori emissions. Following Gerbig et al. [2003], Zhao et al. [2009], Göckede et al. [2010], 

and Jeong et al. [2012a], the model-measurement uncertainty matrix, R, is represented as the 

linear sum of uncertainties from several sources: 

Ri = Spart + Saggr + Sbkgd + STransPBL + STransWIND,  (4) 

where the particle number error (Spart) is due to the finite number of released particles at the 

receptor location while the aggregation error (Saggr) arises from aggregating heterogeneous fluxes 

within a grid cell into a single average flux. The background error (Sbkgd) is due to the 

uncertainty in estimating the background contribution to the CH4 measurements at the receptor. 

STransPBL and STransWIND represent the uncertainty in CH4 mixing ratios caused by the errors in 

wind speeds and directions, and the errors in PBL heights, respectively. For the aggregation error 

(Saggr), we adopt the result from Jeong et al. [2012a] and use 11% of the background-subtracted 

mean signal. 

The background error (Sbkgd) is estimated by combining (in quadrature) the RMS error in the 

estimation of the 3-D curtain and the standard deviation of 500 WRF-STILT background 

samples, which were calculated as an average for each month. Only time points for which more 

than 80% of the particles reached the western boundary of the domain were included in the 

study.  

 To estimate the uncertainty in predicted CH4 signals due to errors from modeled PBL heights 

(STransPBL) and winds (STransWIND), we evaluated model errors in winds and PBL heights and then 

calculated the RMS difference in CH4 signals obtained from simulations with and without input 

of an additional stochastic component of wind and PBL errors in STILT. We evaluated PBL 

heights (Zi) and winds at four stations shown in Figure 8. Wind and PBL height measurements 

from the closest profiler to the GHG measurement site are used to evaluate WRF simulations. 

For example, most relevant to the ARV GHG measurement site, we compare Zi from WRF-

STILT with measurements from the LSH profiler. As in Jeong et al. [2012a], we assume that the 

RMS scatter in predicted versus measured Zi can be represented as the sum of squares of 
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measurement uncertainty [~ 200 m, Dye et al., 1995] and WRF-STILT model uncertainty. As an 

example of the performance of the WRF model used in this study, Figure 9 shows the Zi 

comparison result between profiler measurements and predictions from WRF for the month of 

June. Due to the availability of profiler data, the comparison is made for daytime only. In 

general, the WRF simulated Zi is consistent with the measured Zi. Although the fitting slope for 

the CCO site is slightly higher than unity, the diurnal cycle of Zi (not shown) suggests that there 

is no significant bias.   

 

Uncertainty in modeled CH4 signals due to errors in modeled winds is estimated using modeled 

and measured winds from the wind profiler. As in the case of Zi, the wind error for a given GHG 

site was evaluated using the nearby profiler winds. Depending on the season and measurement 

location, the wind error varies ranging from 2 ï 5 m s
-1

, without significant biases. In this study 

we run the STILT model 10 times and compute ensemble signals for a given site and month to 

estimate the combined uncertainty due to both wind (STransWIND) and particle number (Spart) 

errors. Based on 10 ensemble runs, we estimate the RMS difference about the mean of the 

ensemble signals for each model time step and use the average RMS for the combined 

uncertainty due to wind and particle number errors. Propagating a random wind component of 

the velocity error through STILT yielded a typical signal variation of ~ 10 % of the background-

subtracted mean CH4 signal. 

 

Following Zhao et al. [2009] and Jeong et al. [2012a], we assumed that all of the errors are 

independent. The errors were combined in quadrature to yield a total expected model-data 

mismatch error. The uncertainty in the inverse model estimates of CH4 emissions for regions 

containing measurement sites are dominated by uncertainty in the meteorological modeling of 

trace gas transport (e.g., winter) and estimation of background signals (e.g., summer). Depending 

on the month and measurement location, the error ranged from 30 ï 60% of the background-

subtracted mean signal. 
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Figure 8. Location of GHG measurement sites (black) and wind profiler sites (red) in the 

Central Valley with predicted monthly mean PBL heights (m) for June 2011, 14:00 LST 

shown in color. 

 


