
i 

DRAFT FINAL REPORT 
CALIFORNIA AIR RESOURCES BOARD 

CONTRACT NO. 07-310 
 

IN-VEHICLE AIR POLLUTION EXPOSURE MEASUREMENT AND MODELING  
 
 

Submitted by 
Ralph J. Delfino, MD, PhD, and Jun Wu, PhD 

Co-Principal Investigators 
Department of Epidemiology, School of Medicine, University of California, Irvine, 92697-7550 

 
Prepared for the California Air Resources Board and  

the California Environmental Protection Agency. 
 

Co investigators: 
Scott Fruin, PhD,  Keck School of Medicine, Environmental Health Division, University of 
Southern California 
Constantinos Sioutas, ScD, Department of Civil & Environmental Engineering, University of 
Southern California. 
Lianfa Li, PhD, Program in Public Health, University of California, Irvine 
Rufus Edwards, PhD, Department of Epidemiology, School of Medicine, University of 
California, Irvine 
Beate Ritz, MD, PhD, Department of Epidemiology, UCLA School of Public Health 
Norbert Staimer, PhD, Department of Epidemiology, School of Medicine, University of 
California, Irvine 
 

February 7, 2012 

 



ii 

 
CONTENTS 

Disclaimer ............................................................................................................................ vii 

Acknowledgements ............................................................................................................. vii 

LIST OF FIGURES ............................................................................................................... viii 

LIST OF TABLES ................................................................................................................... x 

ABSTRACT ........................................................................................................................... xii 

EXECUTIVE SUMMARY ...................................................................................................... xiii 

BODY OF REPORT .............................................................................................................. 15 

Chapter One: Introduction .................................................................................................. 15 

1.1. Background ................................................................................................................. 15 

1.2 Scope and Purpose of the Project ............................................................................... 20 

1.3 Tasks ........................................................................................................................... 15 

Chapter Two: A Predictive Model for Vehicle Air Exchange Rates based on a Large, 
Representative Sample ....................................................................................................... 30 

2.0 Introduction .................................................................................................................... 30 

2.1  Materials and Methods ............................................................................................. 32 

2.1.1 Vehicle selection ....................................................................................................... 32 

2.1.2  Instruments. .......................................................................................................... 33 

2.1.3  Air Exchange Rate Determinations. ...................................................................... 33 

2.1.4 Mathematical Equation and Assumptions. ............................................................ 33 

2.1.5  Determination of Source Strength ......................................................................... 35 

2.1.6 Determination of Equilibrium Concentration .......................................................... 35 

2.1.7 Speed .................................................................................................................... 35 

2.1.8 Data Analysis ........................................................................................................ 35 

2.2. Results and Discussion ........................................................................................... 37 

2.2.1 Vehicles Tested ..................................................................................................... 37 

2.2.2 Equilibrium Values and AERs Calculated ............................................................. 37 

2.2.3 GEE Model Results. .............................................................................................. 38 

2.3 Summary and Conclusions .......................................................................................... 41 



iii 

References ........................................................................................................................... 41 

Chapter Three: Factors that Determine Ultrafine Particle Exposure in Vehicles ........... 44 

3.0  Introduction ................................................................................................................... 44 

3.1 Methods .......................................................................................................................... 46 

3.1.1 Vehicle Selection and Conditions Tested .................................................................. 46 

3.1.2 Particle Concentration Measurements ...................................................................... 46 

3.1.3 Air Exchange Rate Measurements ........................................................................... 47 

3.2 Results and Discussion ................................................................................................ 48 

3.2.1 Effect of AER on AF .................................................................................................. 48 

3.2.2 Effect of Vehicle Speed and Age on AER and AF ..................................................... 49 

3.2.3 Effect of Particle Size on AF ..................................................................................... 50 

3.2.4 Effect of Ventilation Fan Setting on AF ..................................................................... 51 

3.2.5 Effect of Cabin Air Filter and Loading on AF ............................................................. 53 

3.3 Implications for In-Vehicle Particle Models ................................................................. 55 

3.4  implications for Exposure assessment ...................................................................... 55 

3.5 Summary and Conclusions .......................................................................................... 56 

References ........................................................................................................................... 57 

Chapter Four: Freeway Emission Rates and Vehicle Emission Factors of Air Pollutants 
in Los Angeles ..................................................................................................................... 59 

4.0  Introduction ................................................................................................................... 59 

4.1 Methods .......................................................................................................................... 61 

4.1.1 Mobile Measurement Platform (MMP) and continuous measurement instruments ... 61 

4.1.2 Sampling Routes ....................................................................................................... 62 

4.1.3 Mathematical calculations and equations.................................................................. 63 

4.1.3.1 Emission Factor (EF) .......................................................................................... 63 

4.1.3.2 Traffic Characterization ...................................................................................... 65 

4.1.3.3 Freeway emission rate calculations .................................................................... 65 

4.2  Results and Discussion ............................................................................................... 66 

4.2.1 Pollutant Concentrations ........................................................................................... 66 



iv 

4.2.2  LDV and HDV emission factors ................................................................................ 66 

4.2.3 Fraction contribution of HDV to total emissions ........................................................ 67 

4.2.4 Freeway Pollutant Emission Rates ........................................................................... 69 

4.2.4.1 Annual average emission rates .......................................................................... 69 

4.2.4.2 Diurnal variation in freeway emission rates ........................................................ 70 

4.2.4.3 Freeway-to-freeway variability in emission rates ................................................ 71 

4.3 Summary and Conclusions .......................................................................................... 72 

References ........................................................................................................................... 73 

Chapter Five, Part I. Linking In-Vehicle Ultrafine Particle Exposures to On-Road 
Concentrations .................................................................................................................... 76 

5.0 Introduction ............................................................................................................... 76 

5.1 Methods ..................................................................................................................... 77 

5.1.1 Vehicle selection and ventilation conditions tested ................................................... 77 

5.1.2 Speed and routes driven ........................................................................................... 78 

5.1.3 Particle concentration measurement, I/O and AER determination ............................ 78 

5.1.4 Predictive models .................................................................................................. 79 

5.2 Results and Discussion ........................................................................................... 80 

5.2.1 In-vehicle-to-roadway concentration ratios ................................................................ 80 

5.2.2 Predictive model for ln(AER) at RC and OA setting .................................................. 80 

5.2.3 Predictive model for logit(I/O) under RC and OA setting ........................................... 85 

5.2.4. Fleet-wide distributions of AER and I/O ................................................................... 87 

5.2.5 Expected in-cabin concentrations for given roadway concentrations ........................ 89 

5.3. Summary and Conclusions ......................................................................................... 90 

References ........................................................................................................................... 91 

Chapter Five, Part II.  Develop and validate the on-road exposure models for particle-
bounded PAH, PNC, PM2.5, NOx, and BC  (based on Task 4: Develop and validate in-
vehicle exposure models for BC, UFP number, PM2.5, particle-bounded PAH, and NOx.)
 .............................................................................................................................................. 93 

5.4. Introduction ................................................................................................................... 93 

5.5. Materials ........................................................................................................................ 94 

5.5.1 Mobile Measurement Platform and Concentrations Measured ................................. 94 



v 

5.5.2  Road and Traffic Classification ................................................................................ 95 

5.5.3 Meteorological Parameters ....................................................................................... 95 

5.5.4 Independent and Dependent Variables ..................................................................... 96 

5.6. Methods ......................................................................................................................... 98 

5.6.1 Exploratory Data Analysis ......................................................................................... 98 

5.6.2 Selection of Predictor variables ................................................................................. 99 

5.6.3 General Linear and Non-Linear Models with Inclusion of Factor Variables ............. 100 

5.6.3.1  Basic model: linear regression with factor variables ........................................ 100 

5.6.3.2 Non-linear model: generalized additive model with factor variables ................. 100 

5.6.4 Time series model with temporal autocorrelation and factor variables .................... 102 

5.6.5  Model validation ..................................................................................................... 103 

5.6.5.1 Holdout validation as an independent test and validation ................................. 103 

5.6.5.2 3x3 cross-validation .......................................................................................... 104 

5.6.5.3 Measurement criteria ........................................................................................ 104 

5.7. Results and Discussion ............................................................................................. 105 

5.7.1 Dependent variable concentrations ......................................................................... 105 

5.7.2 Transformation and correlation analysis ................................................................. 107 

5.7.3 Grouping Comparison ............................................................................................. 113 

5.7.3.1 Roadway types ................................................................................................. 113 

5.7.3.2 Time of day ....................................................................................................... 115 

5.7.3.3. Atmospheric Stability ....................................................................................... 118 

5.7.4 Regression models for prediction ............................................................................ 120 

5.7.4.1 PAH modeling .................................................................................................. 120 

5.7.4.2 PNC modeling .................................................................................................. 123 

5.7.4.3 PM2.5 modeling ................................................................................................. 125 

5.7.4.4 NOX modeling ................................................................................................... 128 

5.7.4.5 BC modeling ..................................................................................................... 130 

5.7.5 Time series analysis................................................................................................ 132 

5.7.6 Discussion ............................................................................................................... 135 



vi 

5.7.6.1 Correlation analysis and scatter plots ............................................................... 135 

5.7.6.2 Influence of roadway types ............................................................................... 136 

5.7.6.3 Influence of time of day .................................................................................... 136 

5.7.6.4 Influence of traffic variables .............................................................................. 136 

5.7.6.5 Influence of meteorological factors ................................................................... 137 

5.7.6.6 Linear vs. non-linear models ............................................................................ 138 

5.7.6.7 Validation of predictive models ......................................................................... 138 

5.7.6.8 Consideration of temporal autocorrelation ........................................................ 138 

5.8 Summary and Conclusions ........................................................................................ 139 

5.9 References ................................................................................................................... 140 

Chapter 6. Task 5: Validate the in-vehicle exposure model for PAH against 
measurements from representative subjects. ................................................................ 142 

6.1.  Materia ls  and  Methods  .............................................................................................. 142 

6.2. Res ults  and  Dis cus s ion  ............................................................................................. 145 

6.3  Summary and Conclusons ..….………………………………………………………….  150 

6.4 References ……………………………………………………………………...……………..152 

Chapter 7. Study Limitations ............................................................................................ 150 

Chapter 8. Overall Summary and Conclusons ................................................................ 150 

Chapter 9. Recommendations .......................................................................................... 154 

List of Publications Produced .......................................................................................... 155 

 
APPENDIX A ……………………………………………………………………………………….158 
 
APPENDIX B ……………………………………………………………………………………….173 
 
APPENDIX C ……………………………………………………………………………………….181 
 
 
 
 
 
 
 
 



vii 

DISCLAIMER 
The statements and conclusions in this report are those of the University and not necessarily 
those of the California Air Resources Board. The mention of commercial products, their 
source, or their use in connection with material reported herein is not construed as actual or 
implied endorsement of such products.  
 
 

ACKNOWLEDGEMENTS 
We thank Neelakshi Hudda, graduate student research assistant at the Department of Civil & 
Environmental Engineering, University of Southern California, for her diligent and superb 
work on this project.  We also thank Evangelia Kostenidou, James Liacos, Sandrah P. Eckel, 
and Luke D. Knibbs in the Department of Civil & Environmental Engineering, University of 
Southern California.   We thank Thomas Tjoa, Department of Epidemiology, UCI, for his work 
in constructing datasets and help in programming the data analysis.  
 

This Report was submitted in fulfillment of California Air Resources Board contract no. 07-
310 by the University of California, Irvine under the sponsorship of the California Air 
Resources Board. Work was completed as of June 28, 2012. 



viii 

LIST OF FIGURES 

 

Figure 2.1: Typical Time-series plot for runs conducted at Cemetery along with Freeway 
section. 

Figure 2.2: Model-predicted AER increase with age and speed for median age study vehicle. 

Figure 2.3: AER results for all 59 vehicles tested  

Figure 2.4:  Model predictions versus actual measurements of Ln(AER), and the normality of 
the residuals. 

Figure 2.5: Comparison of model predictions and results from Knibbs et al., 2009. 

Figure 3.1: AF dependence on AER for particles of size 25-400 nm at recirculation and 
outside air setting.  

Figure 3.2: Agreement between Attenuation Factors (AF) measured at Rose Bowl and short 
trips on other roadways. 

Figure 3.3: Size range specific AF at three speeds and two ventilation conditions tested. The 
dashed lines join values from the same vehicle.  

Figure 3.4: Comparison of AF at RC and OA ventilation setting at key determinants of AF at 
each setting (driving speed at RC and ventilation fan strength at OA).  

Figure 3.5: Attenuation of particles in the absence and presence of filter in the outside air 
ventilation mode, tested in 2010 Toyota Prius. 

Figure 3.6: Impact of change in particle size distribution on number concentration weighed 
Attenuation Factors (AF). 

Figure 4.1: Contribution of HDV to total emissions 

Figure 4.2: Annual average hourly freeway emission rates 

Figure 4.3: Diurnal profiles for freeway emission rates 

Figure 5.1: Distribution of Dependent Variables.  

Figure 5.2: Predicted values for lnAER plotted against two most significant variables under 
RC and OA ventilation modes.  

Figure 5.3: Predicted values for I/O under RC and OA ventilation mode versus two most 
important model variables for each mode.  Bottom subsets show actual measurements 
versus surface of median model predictions. 

Figure 5.4: Distribution for AER and I/O for a fleet similar to U.S. passenger car fleet in terms 
of manufacturer’s market share, vehicle volume and age. 

Figure 5.5: Expected in-cabin concentration for U.S. vehicle fleet travelling on Los Angeles 
arterial roads and freeway  



ix 

Figure 5.6: Routes of on-road pollutant measurements involved in Task 4 

Figure 5.7: Box plots for four concentrations, PAH, PNC, PM2.5, NOX and BC  

Figure 5.8: Histograms for raw air pollutant concentrations without transformation  

Figure 5.9: Normal histograms for the transformed values of air pollutant concentrations   

Figure 5.10: Scatter plots of several covariates with the log dependent variable of PAH 

Figure 5.11: Scatter plots of several covariates with the square root dependent variable of 
PNC  

Figure 5.12: Scatter plots of several covariates with the log dependent variable of PM2.5  

Figure 5.13: Scatter plots of several covariates with the log dependent variable of NOX   

Figure 5.14: Scatter plots of several covariates with the log dependent variable of BC   

Figure 5.15: Box plots of pollutant concentrations across roadway types  

Figure 5.16: Box plots of pollutant concentrations by time of day   

Figure 5.17: Box plots of pollutant concentrations by stability groups 

Figure 5.18: Autocorrelation and partial-autocorrelation autocorrelogram for the residuals 
from the ordinary least squares (OLS) regression of concentrations  

Figure 6.1: Box plot for 1-minute average PAH concentrations (N=8785 in 25 subjects). 

Figure 6.2: Box plot for series average PAH concentrations (N=36 weekly series in 25 
subjects). 
 



x 

LIST OF TABLES 

 

Table 2.1: AER model coefficients, 95% confidence intervals, and P values. 

Table 3.1: Attenuation factors for three filter scenarios. 

Table 4.1: Instruments used in this study. 

Table 4.2: Comparison of Emission factors from current study to previous studies. 

Table 4.2: Analysis of freeway-to-freeway variability in hourly emission rates (p-value < 0.05 
for freeways having different distribution of hourly emission rates). 

Table 5.1: AER under RC Model Coefficients, Confidence Intervals, and P Values.  

Table 5.2: AER under OA Model Coefficients, Confidence Intervals, and P Values. 

Table 5.3: I/O GEE Model Coefficients, confidence intervals and p-values. 

Table 5.4: Summary statistics for the one-minute average on-road air pollutants.    

Table 5.5: Correlation of predictor variables with dependent air pollutant variables PAH, PNC, 
PM2.5 and NOX.  

Table 5.6: Correlations of predictor variables with BC concentration measurements.  

Table 5.7: Grouping statistics by roadway types.  

Table 5.8: Grouping statistics by time of day.  

Table 5.9: Grouping statistics by modeled atmospheric stability.  

Table 5.10: Prediction performance for grouping PAH by roadway types.  

Table 5.11: Prediction performance for grouping PAH by time of day.  

Table 5.12: Prediction performance for grouping PAH by stability.    

Table 5.13: Coefficients regressed and variance explained for the prediction of PAH. 

Table 5.14: Independent 1/3 holdout and 3 x3 cross validation of predictive models for PAH. 

Table 5.15: Prediction performance for grouping particle number concentrations by roadway 
type.  

Table 5.16: Prediction performance for grouping particle number concentrations by time of 
day.  

Table 5.17: Prediction performance for grouping particle number by atmospheric stability.  

Table 5.18: Coefficients regressed and variance explained for the prediction of particle 
number.  



xi 

Table 5.19: Independent 1/3 hold-out and 3x3 cross validation of predictive models for 
particle number. 

Table 5.20: Prediction performance for grouping PM2.5 by roadway type.  

Table 5.21: Prediction performance for grouping PM2.5 by time of day.  

Table 5.22: Prediction performance for grouping PM2.5 by stability class. 

Table 5.23: Coefficients regressed and variance explained for the prediction of PM2.5.  

Table 5.24: Independent 1/3 holdout and 3x3 cross validation of predictive models for PM2.5.  

Table 5.25: Prediction performance for grouping NOx by roadway type.  

Table 5.26: Prediction performance for grouping NOx by time of day. 

Table 5.27: Prediction performance for grouping NOx by stability. 

Table 5.28: Coefficients regressed and variance explained for the prediction of NOx. 

Table 5.29: Independent holdout and 3x3 cross validation of predictive models for NOx.  

Table 5.30: Prediction performance for grouping BC by roadway type. 

Table 5.31: Prediction performance for grouping BC by time of day.  

Table 5.32: Prediction performance for grouping BC by stability.  

Table 5.33: Coefficients regressed and variance explained for predictive models of BC. 

Table 5.34: Independent holdout and 3x3 cross validation of predictive models for BC.  

Table 5.35: Temporal autocorrelation among different daily lags.  

Table 5.36: Evaluation of the time series models constructed.    

Table 5.37: Shrinkage on 3x3 cross validation of predictive time series models for the air 
pollutants.  

Table 6.1: Subject Vehicles. 

Table 6.2:  Multivariate regression models for the prediction of particulate PAH: continuously 
measured or estimated predictors. 

Table 6.3:  Multivariate regression models for the prediction of particulate PAH: continuously 
measured or estimated predictors plus time-invariant subject-reported vehicle 
characteristics. 

 



xii 

ABSTRACT 

On-road concentrations of traffic-related pollutants are typically much higher than 
concentrations measured at ambient monitoring stations. This results in in-vehicle 
microenvironments contributing disproportionately to the total exposure with exposures 
frequently being as high as on-road concentrations. However, under conditions of low air 
exchange rate, pollutants with significant in-vehicle losses, such as particles, in-vehicle 
concentrations can have in-vehicle concentrations that are significantly lower than those 
outside the vehicle. We tested a large sample of vehicles selected to be representative of the 
California fleet for air exchange rate (AER) at various speeds and found that AER is a 
predictable function of vehicle age or mileage, speed, and ventilation setting choice (outside 
air, recirculation, or open windows). We demonstrated that AER is the dominant factor in 
determining the inside-to-outside ratio for pollutants like ultrafine particles. Models were 
developed that explain over 80% of the variability in AER and ultrafine particle indoor/outdoor 
ratios across the California fleet and across the expected range of normal driving conditions. 
To better determine on-road concentrations, we also conducted extensive on-road 
measurements using a mobile platform hybrid vehicle with real-time instrumentation. Models 
were developed and validated to estimate on-road traffic-related pollutant concentrations that 
can be combined with subject information about their vehicle, ventilation choices, and 
commute route to estimate in-vehicle exposures. 
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EXECUTIVE SUMMARY 

 
Background:  In-vehicle exposures to vehicle-related pollutants can be up to a magnitude 
higher than ambient levels for traffic-related pollutants such as ultrafine particles (UFP) and 
black carbon, and such exposures have been estimated to contribute as much as half of the 
total daily exposure to ultrafine particles, for example, by nonsmoking Los Angeles urbanites 
for open window driving conditions. However, under some conditions of low air exchange rate 
(e.g., low speed, newer vehicles, and recirculating air setting) in-vehicle particle losses are 
significant and in-vehicle concentrations can be significantly reduced. To assess differences 
in in-vehicle exposure in a systematic way, we measured in-cabin concentrations of key air 
pollutants in the Los Angeles air basin and modeled the factors determining their variability.  
We then applied the results of this work to develop models for use in estimating in-transit 
exposures of subjects in epidemiological studies.   
Methods:  We conducted the following five tasks: 
Task 1. a) Examine the primary differences between vehicles for in-cabin pollutant 
concentrations by vehicle type and age during realistic driving conditions in southern 
California, and conduct a comprehensive evaluation of air exchange rate (AER); and 
b) (from Phase I of the proposal revisions, page 6). Test a large, representative sample of 
vehicle AERs at various fixed speeds and ventilation conditions. 
Task 2). Examine the impact of important influential factors that contribute to in-cabin 
pollutant concentrations. Factors included roadway type (freeway, major arterial, and minor 
surface streets), total traffic counts diesel truck counts, mixing height, temperature, relative 
humidity, AC use, season (summer, winter), day of week, time of day (morning rush hours, 
noon, afternoon rush hours, night).  
Task 3). Estimate emission factors of pollutants based on roadway and urban background 
site measurements and carbon dioxide (CO2)-based dilution adjustments. 
Task 4). Develop and validate in-vehicle and on-road exposure models for selected pollutants 
measured in this study using data collected from Tasks 1-3.  
Task 5). Validate an in-vehicle exposure model for polycyclic aromatic hydrocarbons (PAH) 
against measurements in representative subjects under realistic driving conditions. Predictor 
variables from Task 4 were used.  
Results:  Task 1: We developed a simplified yet accurate method for determining AER using 
the occupants’ own production of CO2. By measuring initial CO2 build-up rates and 
equilibrium values of CO2 at fixed speeds, AER was calculated for 59 vehicles representative 
of California’s fleet. Multivariate models captured 70% of the variability in observed AER 
using only age, mileage, manufacturer and speed. AER increases strongly with increasing 
vehicle age and mileage, speed, and is very high if windows are open or outside air 
ventilation settings are chosen. High AER results in in-vehicle concentrations equaling on-
road concentrations. Low AER tends to reduce particle mass and number concentrations.    

Task 2: We focused on ultrafine particle (UFP) number concentrations, the particle 
pollutant with the highest and most widely-varying loss rates. Six vehicles were tested at 
different driving speeds, fan settings, cabin filter loadings, and ventilation conditions (outside 
air or recirculation). During outside air conditions, the fraction of particles removed averaged 
0.33 ± 0.10 (SD).  The fraction removed did not vary with vehicle speed but decreased at the 
higher ventilation flow rates of higher fan settings. During recirculation conditions, AER was 
much lower and the removal fraction higher. Removal fraction averaged 0.83 ± 0.13 and was 
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highly correlated with and a strong function of AER. Under both ventilation condition types, 
particle removal was primarily due to losses unrelated to filtration. Filter condition, or even the 
presence of a filter, played a minor role in particle fraction removed.   

Extensive on-road measurements were made on two arterial and three freeway routes. 
Measurements of real-time black carbon, UFP, particulate matter less than 2.5 µm in 
aerodynamic diameter (PM2.5), oxides of nitrogen (NOx), carbon monoxide (CO), CO2, and 
particle-bound PAHs were made, with GPS and video to capture time, location, and 
surrounding traffic conditions. Analyses below combined these data into freeway and arterial 
roadway concentration models. 

Task 3: Using data from Task Two, fuel-based emission factors (EF) were calculated 
based on simultaneous pollutant and CO2 measurements.  EFs for light-duty vehicles (LDV) 
were generally in agreement with the most recent studies but lower for heavy-duty vehicles 
(HDV), and significantly lower only for NOx. Annually on I-710, a major truck route, the 6.5% 
fraction of total vehicle miles travelled (VMT) associated with HDV, was estimated to 
contribute 69% to total NOx emissions..  

Task 4: We developed models for predicting in-cabin UFP concentrations if roadway 
concentrations are known, taking into account vehicle characteristics, ventilation settings, 
driving conditions and air exchange rates (AER). Particle concentrations and AER were 
measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving 
speeds.  AER was the most significant determinant of UFP indoor/outdoor ratios, and most 
strongly influenced by ventilation setting (recirculation or outside air intake). Additional 
inclusion of ventilation fan speed, vehicle age or mileage, and driving speed explained 
greater than 79 % of the variability in measured UFP indoor/outdoor ratios.  

We also developed and validated predictive models for on-road concentrations of PAH, 
UFP, PM2.5, NOX and BC that can be combined with information from the above tasks to 
evaluate exposure to in-vehicle pollutants among study subjects. The on-road measured data 
were compiled with traffic variables, meteorological factors and time of day to develop linear 
regression models and non-linear generalized additive models.  We found that time of day 
was significant, accounting for 5.2%-30.3% of variance explained. Traffic variables, roadway 
type, and number of lanes were significant for traffic-derived pollutants but not PM2.5. Final 
prediction models showed the variance in the air pollutant explained ranged from 37% to 73% 
depending on the air pollutant and modeling method (linear or nonlinear). 

Task 5: Using personal in-vehicle PAH exposure data and geographic information system 
(GIS) data for 25 subjects we examined the predictive ability of model variables tested in 
Task 4.  Although many predictors were significant and in the direction anticipated, the overall 
predictive power of models was lower for the subject-collected data in Task 5 compared to 
the models from the technician-administered testing in Tasks 1-4.   
Conclusions:  We conclude that models developed in this study will enable us to directly 
study the relationship between in-vehicle air pollutant exposures and the health of the people 
of California.  It is expected that the models developed will help to predict exposure with 
sufficient accuracy for large epidemiologic studies of chronic disease outcomes using 
information that can be gathered in large part by questionnaire and GIS-based exposure 
assessment methods.  The findings of this study will have direct application to health effect 
studies or epidemiological studies, to the CARB’ Vulnerable Populations Research Program, 
and eventually to evaluations of air quality standards for particle and gas pollutants.
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CHAPTER ONE: INTRODUCTION  

1.1. Background 

Exposure to traffic related pollutants has been associated with detrimental health 
outcomes like asthma (1-2), and cardiovascular outcomes (3), coronary artery 
atherosclerosis (4), and an increase in mortality (5). Numerous studies (e.g., 6-8) 
have shown that pollutant concentrations on or in the vicinity of roadways are 
frequently almost one order of magnitude higher than ambient levels.  

In-vehicle exposures to vehicle-related pollutants are frequently high, due to a 
vehicle's proximity to relatively undiluted emissions from other vehicles and the 
typically rapid air exchange rate (AER) inside vehicles (9-11), which drives pollutants 
to and from the cabin.  Often, In-vehicle pollutant concentrations are approximately a 
magnitude higher than ambient levels for ultrafine particles (UFP) and volatile 
organic compounds (VOCs) (6-8, 12,13).  This has important implications for 
exposure assessment.  For example, the less than 10% of daily time that is 
estimated to be spent in vehicular transit microenvironments (14) has been predicted 
by Fruin et al. (15) to contribute 35-50% of total UFP and 30-55% of black carbon 
(BC) exposure for nonsmoking urbanites in Los Angeles under open window 
conditions and 17% of UFP by Wallace and Ott (16) for more suburban locations. 
 
On an average 95 min per day spent in the in-vehicle microenvironment among 
Californians Furthermore, the Southern California Association of Governments 
(SCAG) predicts that commuting times will double by 2020 due to population growth 
in the LA area (17), adding urgency to research evaluating the impact of increased 
vehicle-related exposures on people’s health.  But despite the demonstrated 
contribution of transit/vehicular microenvironment to the total exposure, it remains 
largely uncharacterized to date.   
 
Compared to other microenvironments, vehicles typically have rapid air exchange 
rates and more complex structure whereby a multitude of factors including traffic mix 
and density, type and age of the vehicle, roadway type, vehicle speed, ventilation 
setting, and weather conditions combine interactively to determine the in-vehicle 
pollution levels.  In effect, these factors can be divided into two categories; one of 
those that affect the I/O ratios (mostly physical characteristics of the car and drivers 
ventilation preferences) and the other of those factors that influence the roadway 
concentrations (like traffic and meteorological parameters). Therefore, to accurately 
assess the in-vehicle exposure, not only is it crucial to know the AERs and I/O ratios 
for pollutants but also the roadway concentrations. Also, large variations in exposure 
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incurred inside vehicles are expected to occur not only due to differences in roadway 
environments but also because inside-to-outside ratios (i.e., in-vehicle to roadway 
concentration ratios) (I/O) vary from vehicle to vehicle due to differences in 
ventilation conditions and other vehicle characteristics that affect air exchange rate 
(AER), which is defined as the number of times per hour vehicle cabin air is replaced 
by roadway/outside air. In general, I/O ratios in vehicles can range from nearly zero 
to nearly one. Recent studies (18) have shown that I/O is strongly dependent on 
AER. 
 
A few studies also characterized in-cabin air exchange rates (AER) under different 
driving conditions (9-11).  All the studies showed a wide range of AERs during 
commuting.  For example, the Ott et al. study (10) found that the in-cabin AER 
ranged from 1.6 h-1 to 71 h-1, depending on vehicle speed, window position, 
ventilation system, and air conditioner setting.  For closed windows and passive 
ventilation, the AER was linearly related to the vehicle speed over a range from 15 to 
72 mph.  The lowest AERs (<6.6 h-1) occurred when windows were closed and the 
ventilation system was off.  Opening a single window by 7.6 cm increased the AER 
by 8–16 times.   
 

Pui et al. (19) and Qi et al. (20) have experimentally demonstrated that a dramatic 
reduction can be achieved in UFP concentration in-cabin with use of recirculation 
setting and consequent filtration, but did not establish a link with AER.  Only two 
major studies have been identified that have observed the behavior of UFP inside 
the vehicle cabin when moving in real on road conditions.  Recently, Knibbs et al. 
(18) studied the UFP in five cars and reported a high correlation between inside-to-
outside UFP concentration ratios and AER (r2 = 0.81), with somewhat higher losses 
with the recirculation ventilation setting.  They report ratios in the range 0.08-0.47 
when recirculation setting was on with low fan and 0.17-0.68 with fan off.  Another 
major study by Zhu et al. (8) also report that maximum particle losses (~85% 
reduction in in-cabin concentrations) were observed at recirculation settings.  This 
study tested three vehicles on Los Angeles freeways. They also suggest that an hour 
of commute in Los Angeles can be responsible for as much as 50% of daily UFP 
exposure. Both of these studies performed measurements under real driving 
conditions (multiple speed and ventilation conditions) and found that ventilation 
preference (windows open, outside air intake or in-cabin air recirculation) and 
ventilation fan setting strongly influences AER and the resulting I/O ratio. However, 
these studies are limited in nature and the current state of literature does not 
sufficiently address the epidemiological needs to assess exposure at a large scale. 
No studies have been identified that systematically assess exposure to gaseous 
pollutants during in-vehicle transit.  
 



17 

As mentioned previously, accurate prediction of in-vehicle exposures requires not 
only an estimate for I/O but also knowledge of on-road pollutant concentration.  
Recently, a few studies have tried to characterize the roadway concentration of 
pollutants. Westerdahl et al. (7) conducted a mobile platform study in Spring, 2003 
using a 1998 electric Toyota RAV4 SUV. The study showed relatively high 
correlation of UFP with nitrogen oxides (NOx), black carbon (BC), and PM-bound 
polycyclic aromatic hydrocarbons (PM-PAH).  Fruin et al. (15) conducted in depth 
data analysis for this mobile platform study.  They showed that on freeways, 
concentrations of UFP, BC, NOx, and PM-PAH are generated primarily by diesel-
powered vehicles, despite the relatively low fraction (6%) of diesel-powered vehicles 
on Los Angeles freeways.  However, UFP concentrations on arterial roads appeared 
to be driven primarily by proximity to gasoline-powered vehicles undergoing hard 
accelerations.  The Fruin et al. (15) results were promising since it demonstrated that 
in-vehicle exposures can be estimated using statistical models that incorporate traffic 
activity, meteorological conditions, and other relevant parameters.  However, most of 
their measurements were conducted from 9 AM to 3 PM, which deliberately avoided 
traffic congestion times.  Results from the southern California Regional Travel 
Survey showed that approximately 35% of trips occur from 9 AM to 3 PM, while 41% 
of the trips occur during rush hour from 6 AM to 9 PM and from 3 PM to 7 PM (17).  
Considering much higher pollutant concentrations during congestion and the 
significant fraction of commuting time people spent during morning and afternoon 
traffic congestion hours, it is important to characterize and model in-cabin exposure 
during traffic congestion conditions.  Moreover, the study provided insight into 
different patterns of concentrations on freeways and arterials; however, their results 
were not generalized for arterials streets although approximately half of the vehicle 
miles traveled are on major arterials in the region (21).   
 
Nonetheless, the interest in assessing transit time exposures has been growing. A 
recent review by Knibbs et al. (22) identified 47 UFP exposure studies performed 
across 6 transport modes: automobile, bicycle, bus, ferry, rail and walking. They 
concluded the following  

“While the mean concentrations were indicative of general trends, we found that 
the determinants of exposure (meteorology, traffic parameters, route, fuel type, 
exhaust treatment technologies, cabin ventilation, filtration, deposition, UFP 
penetration) exhibited marked variability and mode-dependence, such that it is not 
necessarily appropriate to rank modes in order of exposure without detailed 
consideration of these factors.“ 

 
In summary, at the time of undertaking this study, the following limitations existed in 
the literature. 
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1. AER measurement existed for only 16 vehicles in real driving conditions, 
which were not systematically tested. Only Fletchers and Sunders et al. (9) 
had made an attempt to quantify the AER. As a result of a) small sample size 
b) differing methodologies in different studies, and c) missing information on 
variables that determine AER in many studies, the results on AER could not 
be conclusively tied to determinant factors. Furthermore, they could not be 
extrapolated with confidence to produce estimates at a fleet-wide level as is 
desired in an epidemiological study or for population risk assessment.  

2. I/O measurements existed in even fewer vehicles. Only two studies measured 
them under realistic condition (8, 18). Of them only one study (18), measured 
I/O rations in such a manner that they could be related to a quantifiable 
parameter like AER or vehicle speed. Nonetheless, no systematic attempt had 
been made towards understanding the following:  a) what factors drive I/O 
under real driving conditions, and b) the order of influence of these factors 
that could help epidemiologists design a questionnaire to gather such data for 
large population studies. 

The gap in knowledge prior to the present study prevented any generalization based 
on the above previous studies to predict in-transit exposure of individual subjects in 
epidemiological studies.  In addition, none of the previous studies were directly 
intended for linkage to any health outcome research.   
 

1.2. Scope and Purpose of the Project  
 
The main purpose of the study was to collect in-vehicle air pollution data in Southern 
California, develop and validate in-vehicle exposure models, and apply the model 
results to help estimate in-vehicle exposure for subjects in epidemiologic studies.  
These results may be used to develop similar models elsewhere in California or the 
US, but they would likely have to be validated by other investigators for the specific 
region.  We were especially interested in developing these modes for use in cohort 
studies of chronic disease risk from air pollution exposures as these studies 
generally involve large numbers of subjects (in the thousands), which prohibits the 
use of personal exposure monitors due to high costs and participant burden.  The 
modeling approach was designed for such use as discussed below and was 
intended to be useable with data collected in epidemiologic studies having detailed 
time-activity data and information about a subject’s vehicle including easily-
obtainable information like make, mileage and year.   
 
To this end, we measured and modeled in-cabin concentrations of key air pollutants 
that are expected to serve as markers of exposure to complex mixtures of primary 
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combustion aerosols and gases (e.g., BC, NOx and ultrafine particle numbers [UFP]).  
We aimed to produce data to fully characterize the variability in a range of different 
pollutant concentrations in vehicles, including validating the in-vehicle exposure 
models using separate measurements of particle-bound PAH. 
  
This project was intended to enhance our ability to estimate personal exposure to 
vehicle-related air pollutants. This could then be used in future studies to evaluate 
hypotheses regarding the role of air pollution exposure from the in-vehicle 
environment on the development and exacerbation of chronic diseases, including 
asthma and cardiovascular disease. The results and products of the proposed study 
are anticipated to be crucial in obtaining funding to study the health impacts of in-
vehicle exposures. There are few published studies to our knowledge that have 
systematically examined in-vehicle exposure and the health effects of such 
exposure.  The exception being studies of acute cardiorespiratory effects using 
quasi-experimental in-vehicle exposures (23-25).  However, epidemiologic studies 
have explored the associations between traffic generated pollution and risk of 
developing asthma (e.g., 1,2) adverse birth outcomes (e.g., 26-28), and evidence of 
coronary artery disease (4).  The present study will provide measurement data and 
develop models to estimate chronic exposure-response relationships in future cohort 
studies. This research is envisioned to augment exposure assessments for the work, 
home and neighborhood environments.  
 
We built models that are intended to enhance our ability to incorporate estimated 
exposure from time in vehicles into health effects models.  The in-vehicle 
environment has been largely ignored in previous epidemiological studies.  The 
availability of data generated from this study will present a unique opportunity in 
future studies.  For instance, it is not known whether in-vehicle exposure to air 
pollution during pregnancy adversely affects birth outcomes and promotes the 
occurrence of atopic sensitization and childhood respiratory diseases, including 
asthma.  It is conceivable that health impacts from in-vehicle exposures will be as 
important, or more so, than exposures linked to the outdoor home environment, 
especially in the region of study.  The exposure modeling provides results that will 
allow quantitative estimates of in-vehicle exposure to key pollutants given known 
driving conditions and other parameters.  It will guide epidemiological studies 
focused on commuters’ health outcomes, and help inform policy decision makers 
concerning motor vehicle emissions control. 
 
The present research is among the first to systematically examine in-transit exposure 
and the conditions that drive major changes in exposure, and to develop models that 
can be used to estimate in-transit exposure for subjects in epidemiological studies.  
Methods could be adapted to regions where driving conditions and meteorology 
differ from southern California.  The real-time data on gases and particulate air 
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pollutants within vehicles will also provide information needed to support emission 
regulations for vehicles and effective pollution control strategies.   
Three major strengths of this study are:  
1) Use of representative vehicle types, roadway types, traffic fleets, driving 

conditions, seasons, and time of day;  
2) Combining in-cabin measurements with real-time route information (through a 

GPS device), roadway information, and available traffic count data; and  
3) Testing of identified predictors of exposure using subjects under normal 

commuting conditions.   
 
Models developed in this study will enable us to directly study the relationship 
between in-vehicle air pollutant exposures and the health of Californians.  The 
findings of this study will have direct application to CARB’s Vulnerable Populations 
Research Program and to evaluations of air quality standards for PM and gas 
pollutants.  Results are expected to advance understanding of the potential for 
adverse effects of vehicle-related air pollutants. 
 

1.3 Tasks 

Overview 
We conducted an in-vehicle exposure monitoring and modeling study.  The target 
study region for this proposal included the counties of the South Coast Air Basin that 
are anticipated to be of interest for epidemiologic research, namely, Los Angeles, 
San Bernardino, Riverside and Orange Counties.  Effort was made to collect 
representative measurements on not only freeways but also arterial roads – over 
varying traffic conditions, time of day, day of week and seasons. This enhanced 
variability in characteristics of particles, and enhanced the external validity of findings 
to populations at risk.   

 
The following tasks were completed: 

Task 1. Examine differences between vehicles for in-cabin pollutant 
concentrations by vehicle type and age during realistic driving conditions in 
southern California.   

1a. Field Measurements.  We measured AERs in over 60 vehicles at 3-4 speeds 
per vehicle (Phase I of III), in addition to stationary measurements to establish 
baseline AER. Two lower speeds (20 and 35 MPH) helped estimate AERs during 
typical arterial driving conditions and two higher speeds (55 and 65 MPH) helped 
estimate AERs during freeway driving. In addition to AERs, measurements were 
made for PM2.5 and total particle number concentration. Furthermore, vehicles 
were selected to match the distribution in California fleet for age, mileage, and 
vehicle class and manufacturer.  
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1b. Data Analyses.  First, we developed a novel methodology to derive AER 
measurements.  Second, we examined the influence of vehicle type, age, 
mileage, manufacturer and driving speed on AER, in addition to the most crucial 
determinant of AER ventilation choice (outside air intake or recirculation of cabin 
air). Third, we developed a model to estimate AER.  

Task 2. Examine the impact of important influential factors that contribute to 
in-cabin pollutant concentrations. 

2a. Field Measurements.   

This task was conducted in two additional phases. Phase II explored the factors 
that determine I/O ratios.  We sought to examine the factors that influence I/O 
ratio and factors that influence roadway concentrations separately. This approach 
allowed the development of a systematic understanding in each phase and 
allowed us to conduct additional roadway sampling to successfully capture data 
under varying conditions (ranging from seasons to time of day).  

In Phase II, we measured a number of pollutant concentrations using a hybrid-
electric vehicle on five selected routes that covered the southern California region 
of interest.  Measurements were conducted on weekday/weekends, different 
times of day, and in both warm and cool conditions.   Air pollutants included 
Aethalometer BC, total particle counts (CPC), particle-bound PAHs (PAS), NO-
NOx, CO, and CO2.  In addition to measuring PM2.5 mass using a DustTrak we 
also stored particle filter samples for future analysis of chemical species as a 
function of particle size (PCIS) after measuring gravimetric mass. 

Phase III explored the factors that determine I/O ratios. In Phase III, six 
representative cars were chose from the fleet previously tested in Task 1 and 
tested at different driving speeds, fan settings, cabin filter loadings, and 
ventilation conditions (outside air or recirculation). 

2b. Data Analyses.   

We examined the impact of roadway types, traffic characteristics, temporal 
factors, and meteorology (including seasonal effects) on roadway pollutant 
concentrations. Further the influence of speed, ventilation fan setting, filter 
loading and particle size was quantified for UFP I/O.Estimate emission factors of 
PM pollutant concentrations based on roadway and urban background site 
measurements and CO2-based dilution adjustments. 

Measurements for gas and particulate phase pollutants were performed using a 
mobile platform during the summer of 2011 on various Los Angeles freeways.  
Fuel-based emission factors (EF) were calculated for light-duty vehicles (LDV) 
and heavy-duty vehicles (HDV).  The fractional contribution of HDV to total NOx 
was calculated for different freeways including those with larger proportions of 
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HDV.  We also compared morning and afternoon rush hours, and midday traffic 
for speeds, truck fraction, VMT and per mile emissions.   

Task 3. Estimate emission factors of PM pollutant concentrations based on 
roadway and urban background site measurements and CO2-based dilution 
adjustments. 

For each roadway type (freeway/surface streets), traffic characteristics (e.g. 
speed, HDV vs. LDV fractions), and meteorological conditions (e.g. mixing 
height) we determined the degree to which dilution factor alone (based on CO2) 
predicts the on-road exposures.  The latter was based on our published emission 
rates for various PM species (mass, total and size–fractionated number, EC-OC, 
particle-bound PAH, hopanes and steranes) from HDV and LDV obtained at the 
Caldecott tunnel.  The methodology of these calculations is discussed in detail in 
subsequent sections of this proposal. 

Task 4. Develop and validate in-vehicle exposure models for UFP number and 
on-road models for UFP number, BC, PM2.5, particle-bounded PAH, and NOx.  

The models incorporated data from Tasks 1-2 on time of day, season, car types, 
driving conditions, roadway types, traffic characteristics, and meteorological 
conditions and were developed based on a training dataset (70% of randomly-
selected measurements) that was validated against the remaining 30% random 
validation sample.  K-fold cross-validation was also used to validate the models for 
each of the selected pollutants.   

Task 5.  Validate an in-vehicle exposure model for particle-bound PAH against 
measurements in representative subjects.   

Data from a group of human subjects who carried personal PAH samplers were used 
as a first test the predictive ability of variables identified from the models developed 
in Task 4.  These data are from working subjects in real world driving conditions.  
The data are from a pregnancy cohort of  92 women who completed a time-activity 
questionnaire at baseline and carried a GPS devise to track movements over one-
week for three different pregnancy periods (<20 weeks, 20-30 weeks, and >30 
weeks of gestation).  Twenty-five of these subjects also carried portable personal 
exposure monitors for particle-bound PAH (EcoChem PAS) for one-week (including 
weekdays and weekends) during their commutes.  BC data from MicroAeth AE51 
samplers collected in 9 of those subjects but were insufficient for modeling due to 
instrument problems.   
 
In-vehicle Testing Procedures for Tasks 1-3 

Vehicle testing was conducted in three phases as follows: 
Phase I (Task 1) tested a large, representative sample of vehicles for air exchange 
rate (AER).  This was performed by measuring the decay rate of CO2 at various fixed 
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speeds and ventilation conditions.  In addition, a series of alternating closed (with 
recirculation) and open window tests were conducted to test each vehicle’s air 
movement systems for losses of particle number or particle mass.    
 
Phase II comprehensively measured on-road concentrations on various road types 
across the LA Basin for multiple pollutants at different times of day and in different 
traffic conditions.   
 
Phase III involved simultaneously measuring inside and roadway (outside) 
concentrations for various pollutants under different ventilation conditions to measure 
attenuation factors (AF), the loss rates for each pollutant. 
 
On-road concentrations drive in-vehicle concentrations.  We can assume that in-
vehicle concentrations are a predictable function of on-road concentrations with 
losses reflected by some pollutant-specific AF such that: 
C in-cabin = C on-road * (1 – AF) 
where  C on-road  = f (traffic and truck volumes, meteorology, road type, lane, speed, 
etc.); 
AF = f (AER, pollutant, cabin surface-to-volume ratio, fan setting) (see Phase III); 
and  
AER = f (speed, vehicle type, age / mileage) if windows closed and ventilation is set 
to recirculate (see Phase I), otherwise, 
AER = f (speed) if windows open or ventilation is set to outside air with fan on. 
The latter situation tends to produce much higher AERs.  
 
Of all the measurements proposed, the on-road concentrations are the most widely-
ranging and rapidly-changing measurement we needed to make, being a function of 
constantly-changing traffic mix, traffic conditions and meteorology, which all vary 
greatly.  By measuring AERs and AFs under more controlled conditions in separate 
tests, we were able to determine each with greater accuracy.  Furthermore, by 
measuring on-road concentrations directly without the modifying effects of different 
AERs and AFs, we gain simplicity and reduce measurement variability, which was 
intended to make the effects of on-road variables more distinct and easier to model. 
 
Phase I.  Testing of Air Exchange Rates 
We measured air exchange rates (AERs) in vehicles using a hand-held QTrak 
(and/or LI-COR 820) to measure CO2 decay rates while driving at near-constant 
speeds (e.g., 20, 40 and 60 mph, or similarly-spaced intervals, depending on 
available routes and speed limits).  Windows were closed and the ventilation 
conditions set to:  
-- fan off and recirculation off  
-- fan on low and recirculation off (outside air)  
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-- fan on medium or next higher level and recirculation off (outside air) 
-- fan on low and recirculation on (with air conditioning on) 
 
The LI-COR 820 CO2 monitor was used because it has a faster response since it is 
pump driven and has a higher upper range than the QTrak, although the QTrak was 
certainly adequate for AER tests.  The LI-COR was needed for on-road 
measurements (Phase II) where CO2 is used to calculate dilution rates or emission 
factors.  In those tests, CO2 concentrations frequently fluctuate rapidly.  During and 
after the AER tests, several battery-operated instruments (DustTrak, Aethalometer, 
and CPC) were run to provide supplementary pollution concentration measurements, 
since these instruments could be included with no additional fixturing required and 
little additional labor.   
 
Routes were chosen for low traffic levels and the ability to drive continuously at a 
given speed with no stops for the duration needed. Duration needed is determined 
by the lowest AER expected.  The lowest AER for a moving vehicle reported in the 
literature is 1.6 hr-1 at 20 mph, as reported by Ott et al. (10).  This AER would require 
about 26 minutes to halve a given CO2 concentration, and require about 9 miles of 
driving.  Minimum distances to reduce CO2 a given amount will decrease as speeds 
increase due to the non-linear increase in AER with speed.  Most vehicles will have 
much higher AERs than this example and require much shorter driving distances. 
 
The test began at the start of the selected route with two researchers building up in-
cabin CO2 levels inside the test vehicle via respiration with windows closed and the 
car motionless.  Because the rate of CO2 build-up rate will reflect the source CO2 
term and the air exchange rate while stationary, the QTrak also recorded during this 
build-up time.  During build-up and all decay tests, cabin air was kept well mixed by a 
battery-operated fan or vehicle fan set to recirculate.  The target CO2 level for build-
up was 4000 ppm. 
 
When 4000 ppm CO2 was reached, the car was driven at a fixed speed, ideally 
within ±2 mph, according to the judgment of the driver, traffic conditions, and safety 
(to be later verified by on-board GPS).  The passenger seat observer recorded the 
time, to the second, for each 100 ppm decrease in CO2 as back-up to the QTrak 
memory.  The test was complete when the CO2 concentrations reach 1000 ppm or 
begin to flatten out, whichever comes first.  If constant speed was significantly 
interrupted, the test was repeated.  If the vehicle AER appeared too low to complete 
the test on the selected route, the next higher speed was attempted. 
 
When AER tests were complete, a series of alternating open and closed window 
tests (with air set to recirculate) were made at constant speed to test the effect of 
each vehicle’s air handling unit on particle losses.  Losses were determined by 
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comparing inside and outside PM mass, black carbon, and particle number from the 
battery-operated instruments.  Each condition was held for two minutes or until 
conditions reach steady state, whichever was longest, and a minimum of five 
alternating pairs of measurements were collected for each vehicle. 
 
Cars were chosen in an attempt to get representative data for the California fleet.  
Each vehicle tested for AER had its mileage, age, internal and external condition 
recorded, its internal dimensions measured, and the ventilation system options and 
operation were carefully noted, especially as to what the default ventilation settings 
are and if the system is semi-automated, what the most common settings end up 
being. 
 
Phase II.  Measurement of On-Road Concentrations  
Depending on instrument availability, black carbon, particle number, PM2.5, particle-
bound PAHs, NOx, CO and CO2 were continuously measured.  Measurements took 
place in a hybrid vehicle outfitted with instruments, batteries and inverter, along with 
GPS and video.  Hybrid vehicles have the advantage of no emissions while stopped, 
which is a situation where a vehicle’s own exhaust can sometimes get sampled.  
Measurements were made in morning rush hour, noontime non-rush hour, afternoon 
rush hour, and nighttime non-rush hour with realistic driving. 
 
Phase III  Measurement of Pollutant Loss Rates (Attenuation Factors) 
Pollutants with significant surface reaction or deposition loss rates will have 
potentially important losses at low AERs, and these losses will increase as AER is 
reduced.  The losses will likely be highest for ultrafine particles (UFP), semi volatile 
species and may be potentially significant at sufficiently low AERs for black carbon, 
PM2.5, NO2 and CO.  Although CO is non-reactive, significant CO removal rates can 
occur due to uptake from passengers at low AERs.  Under conditions of low AER, 
measurable particle uptake from passengers can also occur, but we could not 
distinguish between occupant-driven particle losses and those due to surfaces.  
Thus, we assumed that under most circumstances, loss rates were not significantly 
different between one, two, and three occupants and that in the case where particle 
losses due to occupants is significant, our measurements reflected particle losses 
with two occupants present. We also assumed that any non-reactive, non-depositing 
pollutant will have 0% attenuation.   
 
We characterized the AF for each pollutant as a function of three variables: 1) AER, 
2) cabin volume to cabin surface ratio, and 3) fan setting (at low AER and 
recirculating air).  We also included low fan settings of outside air since this is a 
frequent default setting in many cars.  (The case of newer cars with particle filtration 
systems is addressed at the end of this section.)    
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AER is a dominant factor because it drives the renewal rate of the pollutant being 
removed.  We can assume 0% AF for all pollutants when AER is high enough, such 
as with open windows at moderate speeds or higher, so these loss tests should 
emphasize closed windows conditions with ventilation set to recirculate.  After our 
extensive AER testing described below we knew identified vehicles with low AERs 
when outside air was being pulled in by the ventilation system (the common default 
setting noted above).  We also included both recirculation and outside air fan 
settings in our tests.   Because AER is a non-linear function of speed for closed 
window conditions, relatively constant speeds were important for these tests, as 
described in Phase I. 
 
The ratio of vehicle surface area to cabin volume may affect AF by increasing or 
decreasing the relative fraction of pollutant available to interact with surfaces, but we 
expect this effect to be not as pronounced as the effect of AER.  Vehicle interior 
surface area is difficult to measure, but can be approximated by assuming surface 
area from vehicle to vehicle is proportional to the seat area plus the area equivalent 
to the rectangular inner cabin dimensions.  Likewise, the cabin volume can be 
approximated by the rectangular volume of the inner cabin dimensions.  A 
distribution of the ratios based on these dimensions was collected from the vehicles 
used in the AER tests earlier in the study.                                                                                                                            
 
For removal processes that are diffusion rate limited, fan setting may also affect 
losses by enhancing mixing at higher fan speeds (and reducing boundary layer 
depletion next to surfaces) and also by inducing turbulence in the air movement 
system, which tends to increase deposition rates.    
 
To include all of these variables, we used a measurement matrix of 6 surface-to-
volume ratios (using three vehicles) x 10 combinations of AER and fan settings (low 
and high settings for recirculating air and a low setting for outside air, all with 
windows closed).  AERs can be based on our measured AER quartiles (25, 50, and 
75th percentiles).  Surface-to-volume ratios were chosen to cover low, medium, and 
high ratios.                
 
For newer cars less than five years old that may have particle filtration systems, we 
first tested for the presence of filtration by observing the difference in UFP 
concentration when the ventilation setting is set to outside air and the fan is on 
medium or high, while alternating between open and closed windows.  If incoming air 
is being filtered, closed windows will cause sharp drops in UFP levels.  For cars with 
filtration systems, we established the filtration efficiency for UFP and PM2.5 at low 
vehicle speeds (i.e., 20 mph) by multiple iterations of the above closed versus open 
window tests, alternating every 60 seconds on roadways with low traffic and 
reasonably stable UFP concentrations.  When the filter efficiency is established, we 
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assumed this is the dominant loss mechanism for particles and the AF were 1.0 
minus the filter efficiency.  Tests were then conducted as described above.  We 
assumed that few if any vehicles have working activated carbon filtration systems for 
removal of gaseous pollutants.  
 
Lastly, if the open/closed window tests in Phase I indicated that significant particle 
losses occur in certain vehicle types (or certain air movement system types) when 
the ventilation system is set to recirculation, one or more of each of these vehicle 
types (or air movement system) were included in Phase III tests, excluding the 
modifications of surface-to-volume ratios. 

 

In the each of the following Chapters, which are divided by Tasks, we give an 
introductory overview, describe the materials and methods, present the results 
with discussion, and end with a summary and conclusions section. 
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CHAPTER TWO: A PREDICTIVE MODEL FOR VEHICLE AIR EXCHANGE 
RATES BASED ON A LARGE, REPRESENTATIVE SAMPLE 

(based on Task 1. Examine the primary differences between vehicles for in-
cabin pollutant concentrations by vehicle type and age during realistic driving 
conditions in southern California, and add a comprehensive evaluation of air 
exchange rates [AER]) 

 

2.0 INTRODUCTION 

The in-vehicle microenvironment is an important route of exposure to traffic-related 
pollutants. In-vehicle exposures are high due to vehicles’ frequent proximity to 
relatively undiluted emissions from other vehicles, particularly in urban areas; the 
typically rapid air exchange rate (AER) inside vehicles (1-6); and the average 80 min 
per day spent by people in the U.S. in the in-vehicle microenvironment (7). Jenkins 
et al. (8) reported that Californians spend 7% of their time (100 minutes) in enclosed 
transit.  
 
On-road and in-vehicle concentrations of traffic-related pollutants are typically an 
order of magnitude higher than urban ambient concentrations (9-11). The pollution 
concentrations inside a vehicle generally match the roadway concentrations when 
there is sufficiently high air turnover. This occurs whenever windows are open, 
whenever outside air is drawn into the vehicle through the ventilation system, or 
when a vehicle is sufficiently leaky. However, under conditions of sufficiently low air 
exchange rate, i.e., only a few air changes per hour, there can be significant 
reductions in particle mass and particle number due to losses to vehicle internal 
surfaces (12, 13). Conditions of low air exchange usually only occur for newer cars, 
for which door seals and insulation are tightest, and/or at low speeds where air flow 
dynamics are not producing large differences in pressure around the vehicle. If the 
air exchange rate (AER) of a vehicle is known, the particle losses can be estimated 
(12); however, AERs are usually not known, and are highly variable even for the 
same vehicle, as they vary widely with speed (1, 4, 6).  For example, Knibbs et al. (1) 
found AERs to vary from 1 to 33 air changes per hour (hr-1) across six cars at a 
speed of 60 km hr-1. 
   
Few studies have characterized AERs.  The largest study to date has been Knibbs et 
al. (1) who measured AER using SF6 as a tracer gas for six vehicles spanning an 
age range of 18 years at various speeds and under different ventilation settings. At 
speeds of 60 km hr-1 and 110 km hr-1, they found AER to range from 1 to 33 hr-1 
(mean 11.2) and 2.6 to 47 hr-1 (mean 18), respectively.  They also tested cars at 
zero speed and reported AERs within the range 0.1-3.3 hr-1  with five cars having 
AERs <1/hr.  Ott et al. (4) reported AERs in the range of 1.6-8.2 hr-1 for vehicles up 
to 10 years old tested using CO as a tracer gas.  They also provide an excellent 
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review of previous studies on the subject.  Batterman et al. (14) report an AER of 92 
hr-1 for a vehicle (Subaru Legacy 2000) traveling at 105 km hr-1 when ventilation was 
set to intake fresh air.  Kvisgaard and Pejtersen et al. (15) also report AERs for a 
traveling vehicle for fresh air intake ventilation setting at various speeds.  
 
AERs observed during conditions that bring fresh air into the cabin (either via 
ventilation system set to fresh air supply or by opening windows) can be a magnitude 
or higher compared to those observed at internal air recirculation settings.  Knibbs et 
al. (1) conducted experiments for six cars and showed that even at lowest fan 
settings, AERs were typically over 100 hr-1, even at zero speed, thus making the 
determination of AER unnecessary from an exposure standpoint, as in-vehicle 
concentration will equal on-road concentration at such high levels of air turnover.  Ott 
et al. (4) found similar results when opening the windows by 3 inches increased 
AERs 8-16 times.  
 
When windows are closed and recirculation is used, AER tends to be minimized and 
in-vehicle particle concentrations are also minimized due to particle losses.  Knibbs 
et al. (16) tested the same five cars used in previous AER measurements of 2009 
and found high correlation between inside-to-outside UFP concentration ratios and 
AER (r2 = 0.81), with somewhat higher losses with the recirculation fan on.  They 
report ratios in the range 0.08-0.47 when recirculation setting was on with low fan 
and 0.17-0.68 with fan off.  Zhu et al. (11) also report that maximum particle losses 
(~85% reduction in in-cabin concentrations) were observed at recirculation settings.  
Pui et al. (17) and Qi et al. (18) have experimentally demonstrated that a dramatic 
reduction can be achieved in UFP concentration in-cabin with use of recirculation 
setting and consequent filtration.  
 
Beside the work by Ott et al. (3, 4), Knibbs et al. (1), Rhodes et al. (6) and Fletcher 
and Saunders (19), (a total of 16 cars tested), others have tested AERs in stationary 
vehicles, but not during on-road conditions, where most of the travel time exposure 
occurs.  
 
The purpose of this task was to test a sufficiently large number of cars to develop 
robust predictive models of AER that allow estimating vehicle AER as a simple 
function of readily-available information, such as vehicle age, mileage, manufacturer, 
and average speed.  One important application of these models is epidemiological 
studies of particulate matter (PM), especially for coarse PM (CPM, PM2.5-10, 2.5 µm< 
Dp< 10 µm) or ultrafine particulate matter (UFP, Dp < 0.1µm).  CPM and UFP show 
sharp near-road gradients and high on-road concentrations.  For these pollutants, 
excluding commute and/or travel time in exposure assessment introduces large 
exposure estimate errors.  However, excluding CPM or UFP in-vehicle loss rates in 
in-vehicle exposure assessment would also produce significant exposure estimate 



32 

errors for drivers of newer cars and drivers with significant time at slow speeds. 
Nevertheless, there is a particularly important need to better characterize exposure 
to ultrafine particles, since few such epidemiological investigations have been 
attempted.  Fruin et al. (20) calculated that 33-45 % of UFP exposure occurs while 
driving based on typical micro-environmental concentrations and time spent in each.  
 
In this task, we measured AERs at three speeds for each of 59 California vehicles, 
chosen to represent the California fleet with regard to age, vehicle type, and 
manufacturer.  These results more than triple the number of vehicle AERs reported 
in the literature and provide for the first time a sample of vehicles that is large 
enough to be considered reasonably representative of the current fleet of California 
vehicles and/or the U.S.  
 
This task also demonstrated that using CO2 to calculate vehicle AER is a relatively 
straightforward and accurate alternative to the use of tracer gases, which require 
more specialized measurement instruments.  The ease of this method was one 
reason for the large number of vehicles tested.  Since vehicle AER varies more than 
an order of magnitude between vehicles, a large sample number is necessary to fully 
characterize vehicle AERs. 

   

2.1  MATERIALS AND METHODS 

2.1.1 Vehicle selection   
Vehicles were selected to approximate the distribution of the California fleet in terms 
of vehicle size type (e.g., subcompact, compact, midsize, etc.), mileage, and age. 
Vehicle size data were based on  the dataset of the 2002 report by the California 
Department of Motor Vehicles to the California Air Resources Board in support of 
their mobile source Emission  Factors model (EMFAC)  database), the latest 
available at the time of initial study design (21). Data on fleet mileage and age were 
based on 2009 data. Target numbers of test vehicles for each size category were 
calculated based on the frequency of these size categories multiplied by the fraction 
of the fleet that was five years old or newer (30%), 6 to 14 years (53%), and 15 years 
or older (17%) (California New Car Dealers Association (CNDCA), 2010) (22). Within 
these categories, an attempt was also made to select vehicles from the 
manufacturers having the largest sales in California (e.g., Toyota Corolla, Honda 
Civic, etc.) but there were no specific requirements by manufacturer. 
   
80% of the cars tested were obtained through California Air Resources Board 
(CARB) vehicle testing programs. The CARB selects cars for its dynamometer 
emissions testing program through randomly selecting cars from California 
Department of Motor Vehicle records. Each car tested was selected for AER testing 
if it fulfilled any of the size and age categories described above. Thus, the cars 
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tested for our AER testing were randomly selected within a size and age category. 
However, there is some bias in actual participation rates of the program, with fewer 
very new cars obtained than in the California fleet. To remedy this under-
representation of very new cars, we rented additional cars of model year 2007 and 
newer from an hourly car rental business. Lastly, certain size categories of older cars 
were relatively rare, so to obtain older cars of certain size, word-of-mouth recruiting 
was conducted among USC graduate students. This provided five cars of average 
age 1998 and one new 2010 model car. The three groups of cars, new rentals, 
CARB-selected, and USC student-owned were analyzed both as separate groups 
and collectively, as a test to ensure that no particular group gave AER results that 
indicate significantly different AER behavior, as described in the results section.  

 
2.1.2  Instruments.  
CO2 was measured both inside and outside the vehicle simultaneously using two or 
more TSI Q-Traks, Model 7565 (TSI Inc., MN, USA) and one or more LI-COR Li-820 
units (LI-COR Biosciences, NE, USA). Both units use a non-dispersive infrared 
(NDIR) detection technique, but the LI-COR unit is pump driven, thus allowing a 
faster response time than the Q-Trak unit, e.g., several seconds versus 20 seconds. 
The LI-COR’s optical bench requires 10 minutes to warm-up to specified 
temperature but a longer warm-up of approximately 1.5 hours is required to bring the 
performance of the unit to within 1 to 2% of reading. All instruments used for a given 
vehicle test were run simultaneously and ambient concentrations before and after a 
run were checked for consistency. An on-board GPS device (Garmin GPSMAP 
76CSC) recorded the location and speed of the car at 1-second intervals. All 
instruments were synced to within 1 sec of the time recorded by GPS.  

 
2.1.3  Air Exchange Rate Determinations.  
Carbon dioxide was chosen as an AER indicator for its low toxicity, ease of 
measurement, and its ready availability when using car occupants as the source. At 
a fixed vehicle speed (and hence fixed AER), in-vehicle CO2 concentrations change 
until an equilibrium concentration is reached whereby the source of CO2 from vehicle 
occupants is balanced by the losses of CO2 due to exchange of low-CO2 outside air 
with high-CO2 inside air. This difference is typically hundreds or thousands of parts 
per million (ppm) of CO2, so it is easy to measure with high relative accuracy. Well-
mixed conditions were created by mixing the in-vehicle air with a fan during these 
measurements. The well-mixed assumption was verified for each test by checking 
agreement with Q-Trak and Li-820 instruments located in different locations within 
the car. 

  
2.1.4 Mathematical Equation and Assumptions.  
AER increases with increasing vehicle speed due to pressure differences and/or 
turbulence around the vehicle. However, for a given vehicle speed (strictly-speaking, 
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the vehicle air speed), the AER is nearly constant and the CO2 concentrations inside 
the car will reach an equilibrium value when the CO2 source rate is balanced by the 
replacement of high, in-vehicle CO2 with lower outside CO2 concentrations, 
according to the mass balance Equation 2.1: 
   
Equation 2.1 

�
𝑑𝐶in

𝑑𝑇
�𝑉 = 𝑆 + (𝐶amb − 𝐶in)(𝐴𝐸𝑅s)𝑉    𝑜𝑟  �

𝑑𝐶in
𝑑𝑇

� = 𝑆/𝑉 + (𝐶amb − 𝐶in)(𝐴𝐸𝑅s) 

where, S/V is the vehicle-volume-specific source strength in ppm per hour, Camb and 
Cin the outdoor and in-vehicle CO2 concentrations (ppm), respectively, and AERs is 
the speed- and vehicle-specific air exchange rate (hr-1). 

If we assume a small air exchange rate when the car is stationary, and we keep the 
interior air well mixed, the vehicle-specific source term can be determined by the 
initial build-up rate of CO2 when inside and outside CO2 concentrations are similar, 
i.e., the ((Camb - Cin) * AER) term in Equation 2.1 is much smaller than the S/V term. 
For example, for  <10 ppm difference in inside versus outside CO2, and an AER of 2 
hr-1, the  ((Camb - Cin) * AER) term is 20 ppm per hour per unit volume,  compared to a 
typical build-up rate of 1500 ppm per hour per unit volume for two occupants, or less 
than one per cent.   

Under these conditions, Equation 2.1 becomes Equation 2.2: 

Equation 2.2 

�
𝑑𝐶in

𝑑𝑇
� ≅  𝑆/𝑉 

When the vehicle is in motion at a steady speed, eventually the inside concentration 
will reach an equilibrium value, Ceq,  when the interior source of CO2 is balanced by 
the air exchange of lower-concentration CO2 outside the vehicle with higher-
concentration CO2 inside the vehicle, and Equation 2.2 becomes 

Equation 2.3 

�
𝑑𝐶in

𝑑𝑇
� = 0 = 𝑆/𝑉 + (𝐶amb − 𝐶eq)(𝐴𝐸𝑅s) 

which can be re-written as   

 

Equation 2.4  

𝐴𝐸𝑅s = (𝑆/𝑉)/(𝐶amb − 𝐶eq) 
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2.1.5  Determination of Source Strength  
The source rate of CO2 was measured by the rate of initial CO2 increase for a given 
set of occupants in a given car when the car was not moving and windows were up. 
(For a fixed source rate of CO2, the build-up rate S/V also varies by interior volume). 
This initial rate of CO2 build up approximates the condition of zero CO2 infiltration 
since AER is generally low when a car is stationary (i.e., less than 3 hr-1) and the 
initial difference in CO2 concentration between inside and outside is zero. For leakier 
cars, a stationary AER was calculated where possible using the CO2 concentration 
when it reached equilibrium, but for most cars, this level exceeded the range of the 
QTrak (0-5000 ppm), and in those cases only the data from the LI-COR 820 CO2 
monitor were used. Repeated measures of CO2 build-up were made for 10 vehicles.  
 
2.1.6 Determination of Equilibrium Concentration  
AER was determined for steady speeds of 32, 56, and 89 km hr-1 with windows 
closed, ventilation set to air recirculation, and the fan setting set to either 50% or the 
closest possible to a midway setting. Early in the testing, it was verified that when the 
ventilation is set to outside air or the windows are open, the AER is extremely high 
and there are no measurable differences between inside and outside CO2. 
Equilibrium CO2 concentrations were determined when the criterion was met of a 
maximum fluctuation of 50 ppm for at least the last 10 minutes at each speed. For 
conditions of closed windows and recirculating air, the fan setting can affect AER, 
although the contribution to total AER was found to be minor compared to that of 
speed. The effect of fan setting was tested for a subset of vehicles at several 
speeds.  

2.1.7 Speed   
Routes were chosen to allow nearly constant speeds. For speeds of 89 km hr-1, 
freeways were used during conditions of free-flowing traffic. For speeds of 32 and 
48- 56 km hr-1, runs were either made in a large cemetery or a continuous loop 
around the Rose Bowl in Pasadena, depending on the source location of the car 
being tested. Both of these routes allowed fairly short laps to prevent long duration in 
one direction, thus canceling any effect of wind direction and velocity on AER. 
Furthermore, there was minimal vehicular traffic on the roads at both locations during 
the times the tests were conducted. This minimized changes in outside CO2 due to 
the presence of exhaust plumes from other vehicles.  
   
2.1.8 Data Analysis 
Time series plots of speed, CO2, particle number, and fine particulate mass (PM2.5, 
Dp < 2.5 µm) were aligned and adjusted to take into account any differences in 
instrument clock time or response time. Alignments were made based on events that 
caused a rapid concentration change, such as an open window rapidly reducing in-
vehicle CO2.  
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Where the in-vehicle CO2 concentration met the <50 ppm change criterion for a 
given speed, the exact equilibrium concentration was determined at the time where 
CO2 concentrations showed a less than 2% standard deviation for at least 20 data 
points (i.e., > 3 minutes of data).  Concurrent outside CO2 concentration was then 
subtracted. For the 32 and 56 km hr-1 speeds, the outside CO2 concentrations at 
both the Rose Bowl and the cemetery were very stable, but the outside CO2 
concentrations on freeways for the 89 km hr-1 condition were not. Therefore, freeway 
CO2 concentrations were averaged over the previous two minutes for each 
equilibrium value chosen.  
 
The AER is strongly related to speed. However, even after adjusting for speed, 
repeated measurements of AER on the same vehicle may be correlated (leaky car 
would have consistently higher AERs and a tight one lower AERs), violating the 
assumption of independent observations in multiple linear regression (MLR). 
Generalized estimating equation (GEE) models (23) with an exchangeable 
correlation structure and robust standard errors were used to account for the 
correlation and to estimate the average effect of predictors across the population of 
vehicles. MLR models were also fit to compare results across modeling techniques.  
 
The complete test results for the 59 vehicles tested, generally three AERs per 
vehicle (i.e., at three different speeds), were modeled to test the predictive power of 
vehicle characteristics such as vehicle mileage, age, and manufacturer. Squared and 
cubed terms for mileage, age, and speed were included to account for any non-linear 
effects. Vehicle characteristics such as interior vehicle volume and frontal area, and 
fan setting were also included. Manufacturer variables included specific vehicle 
manufacturer categories such as Ford, GM, Toyota, Nissan, Honda, and ‘other’ as 
well as broader categories such as U.S. and non-U.S. or U.S., Japan, and ‘other.’  
Vehicles were also grouped by the source of the vehicle (i.e., CARB, rental agency, 
or student volunteers) and tested for differences. Speed was included, both as a 
predictive variable as well as a stratifying variable, i.e., data were analyzed 
separately for a given speed. Since AER results had a strong rightward skew, a 
natural log transformation was used.  
 
Parsimonious GEE and MLR models were obtained by backwards step-wise 
selection in which variables were retained if they improved R2 (MLR) or were 
statistically significant (GEE) at p=0.05 value. Residuals from both models were 
inspected to check model assumptions. R2  was calculated for the GEE model by 
taking the square of the Pearson correlation coefficient between observed and 
model-predicted values of natural log transformed AER.  
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2.2. RESULTS AND DISCUSSION 

2.2.1 Vehicles Tested  
Achieving a representative sample of vehicles for testing was a primary objective of 
this task since representativeness enhances the utility of any predictive models of 
AER. We selected 59 vehicles to represent the California fleet in terms of vehicle 
age and size type based on EPA classes. Vehicles less than 5 years are slightly 
under represented in the project fleet.  

 
2.2.2 Equilibrium Values and AERs Calculated  
A typical time-series plot of in-vehicle and outside CO2 concentration and speed is 
shown in Figure 2.1. As shown in this plot, the CO2 build-up rate at the beginning of 
the test is quite linear and the various in-vehicle CO2 concentrations at different 
speeds show an exponential change that eventually reaches a steady equilibrium 
concentration despite the small differences in speed. In Figure 2.1, the % standard 
deviations of the in-vehicle CO2 concentration were 1.0, 1.5 and 1.1% at 32, 56, and 
89  km hr-1, respectively, while the outside CO2 concentration standard deviations 
were 4, 7 and 1.4%, respectively. The resulting AER at 89 km hr-1 was 13.6 hr-1. If 
the in-vehicle CO2 concentration deviated by the 1.1% (13 ppm) standard deviation 
observed, for example, the AER values ranged from 13.4 and 13.8, or +/- 1.5%. The 
change in AER values for 48-56 and 32 km hr-1 changed +/- 2% and 1%, 
respectively, if in-vehicle concentrations deviated by the observed standard 
deviations.  
 

 
Figure 2.1: Typical Time-series plot for runs conducted at Cemetery along with the 
initial build up and freeway run. Average speed during Freeway run was 89 ± 10 km hr-

1 for stable portion highlighted in black). The second black highlight corresponds to 
stable values during 51.1 ± 9.4 km hr-1 and 31.3 ± 5.5 km hr-1 speed runs.  
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Figure 2.2 shows the results for all cars tested at each speed. The large vehicle-to-
vehicle differences are readily apparent, as is the strong dependence of AER on 
speed for a given vehicle.   

 
Figure 2.2: AER results for all 59 vehicles tested. 
 
 
2.2.3 GEE Model Results.  

The Generalized Estimating Equation (GEE) model gives the following predictive 
equation for AER as a function of easily-obtainable parameters related to each 
vehicle: 

Equation 1 

𝐿𝑛 (𝐴𝐸𝑅) =  0.63 −  (𝑎𝑔𝑒 ∗ 0.066) + ( 𝑎𝑔𝑒2  ∗  0.0058)  +  (𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠 ∗  0.016)  
−  (𝑘𝑖𝑙𝑜𝑚𝑒𝑡𝑒𝑟𝑠2  ∗  7.8 ∗ 10−5)  +  (𝑠𝑝𝑒𝑒𝑑 ∗  0.029)  
+  𝑀𝑎𝑛𝑢𝑓 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 

Where ‘age’ is in years, ‘kilometers’ is vehicle lifetime mileage in thousands of 
kilometers, and ‘speed’ is in kilometers per hour. The manufacturer’s adjustment 
(‘Manuf Adjustment’, calculated as the regression coefficient using manufacturers as 
variables) is given in the last four rows of Table 1, with Japanese manufacturers 
being the base case (i.e., no adjustment needed). Fan setting, although observed to 
slightly increase AER, was not significant, nor were vehicle size characteristics such 
as frontal area. The GEE model R2 was 0.70. AER is a non-linear function of speed 
and mileage/age and Figure 2.3, shows how the model-predicted AER strongly 
increases with speed for the median age and mileage in the study test fleet. Figure 
2.3 shows how the model-predicted AER strongly increases with speed for the 
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median age and mileage in the study test fleet, (8 years old and with 138,000 
kilometers (about 86,000 miles), respectively). Figure 2.3 also shows how the model 
predicts AER to increase with each additional year of age assuming 23,000 
kilometers per year (about 14,000 miles), the study average mileage change per 
year.  
 
Table 2.1: AER model coefficients, 95% confidence intervals, and P values. 
 

Source Value Standard 
Error z Pr > |t| 95% Confidence 

Interval 
Intercept 0.63 0.124 5.1 0.000 0.390 0.876 

Age (years) -0.066 0.043 -1.6 0.12 -0.15 0.018 
Age2 0.0058 0.0020 3.0 0.003 0.0020 0.0096 

Kilometers 
(thousands) 0.016 0.0076 2.2 0.025 0.0021 0.032 

Kilometers2 -
0.000078 0.000044 -1.7 0.082 -

0.000167 
-

0.000010 
Speed (km hr-1) 0.029 0.00152 19 0.000 0.026 0.032 
Manuf-Japan 0.000 0.000     Manuf-GM 0.55 0.15 3.7 0.000 0.26 0.85 
Manuf-Ford 0.25 0.12 2.0 0.042 0.0085 0.48 
Manuf-other -0.051 0.20 -0.25 0.80 -0.45 0.34 

 
 

 

Figure 2.3: Model-predicted AER increase with age and speed for median age study 
vehicle. 
 
Figure 2.4 below shows the model predictions versus actual measurements, and the 
normality of the residuals. In addition, the test results, when grouped by source of 
vehicle (ARB, rental or volunteer), did not show any difference in the pattern of 
residuals. 
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Figure 2.4: Model predictions versus actual measurements, and the normality of the 
residuals. Each data point represents a measured AER used to populate the 
predictive model. 
 
As a test of our experimentally-derived and modeled results against other studies, 
our Equation 5 was used to predict the AER of the vehicles tested in the study by 
Knibbs et al. (1), the largest AER study conducted before the present study. Our 
study model slightly under-predicted the AERs measure by Knibbs et al. (1), at low 
AERs and slightly over-predicted the measured AERs at high AERs, but overall 
agreement was good, considering that Knibbs et al. (1) conducted their study in 
Australia with a sample of vehicles selected to span a range of ages rather than be 
representative of the Australian fleet. The results are shown in Figure 2.5. The R2 
value of 0.83 indicates that our model performed consistently across the vehicles 
tested by Knibbs et al. (1).  

 

Figure 2.5: Comparison of model predictions and results from Knibbs et al., 2009. 
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2.3 SUMMARY AND CONCLUSIONS 

For a typical car measured in this study under closed-window and recirculation air 
conditions, the model-predicted AER is in the range where significant particle 
number losses would be expected to occur, although this depends somewhat on the 
size distribution of the aerosol, with fresher aerosols expected to show higher 
deposition rates. For example, Figure 2.3 shows that for the median age study 
vehicle, the speed range from 32 to 97 km hr-1 would cause AERs to range from 
about 4 to 9 hr-1, respectively. Measurements of particle number attenuation in these 
vehicles (see Chapter 3) show that this air exchange rate typically produces 75 to 
85% particle number reductions at steady state. Furthermore, this study measured 
AERs ranging from only 2 or 3 hr-1 at zero or low speeds for newer, tight cars to 
above 50 hr-1 for older cars at higher speeds. This range of AER would produce 
particle number reductions that vary from nearly 0 to nearly 100%. Therefore, AER is 
a key factor in determining particle number exposure inside vehicles and should be 
factored into any exposure assessment that predicts in-vehicle particulate matter 
(PM) exposure.  
 
In summary, the in-vehicle microenvironment is an important route of exposure to 
traffic-related pollutants, particularly ultrafine particles (UFP, Dp < 0.1µm). However, 
significant particle losses can occur in vehicles under conditions of low air exchange 
rate (AER) when windows are closed and air is recirculating, such as during air 
conditioning. Despite the importance of AER in affecting in-vehicle exposures, few 
studies have characterized AER, and of those, all have tested a small number of 
cars. One reason for this is the difficulty in measuring AER with tracer gases such as 
SF6, the most common method. We demonstrated that using vehicle occupants as a 
source of CO2 allows an accurate yet simple measure of AER. AER was calculated 
for three speeds each for 59 vehicles representative of California’s fleet, the first time 
a large and representative sample of vehicles have been tested for AER. This 
sample was sufficient to allow the development of robust predictive models that 
explained 70% of the variation in the observed AERs, from <2 hr-1 to >50 hr-1. AER 
appeared to be primarily driven by speed, along with vehicle age and mileage, and to 
a lesser extent by manufacturer. These results will therefore be useful in future 
exposure or epidemiological studies that include commuting and other in-vehicle 
exposures to ultrafine PM and other air pollutants, since the predictive variables are 
readily obtainable through questionnaires.  
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CHAPTER THREE: FACTORS THAT DETERMINE ULTRAFINE PARTICLE 
EXPOSURE IN VEHICLES 

 
(based on Task 2. Examine the impact of important influential factors that 
contribute to in-cabin pollutant concentrations.) 
 
Note: Chapter Two discussed how air exchange rate (AER) varies from vehicle to 
vehicle and by speed, and how AER is the dominant factor in affecting how a given 
on-road pollutant concentration translates to different in-vehicle concentrations. 
Chapter Three goes on to explore other factors that can also affect the relationship 
between on-road concentrations and in-vehicle concentrations, using ultrafine 
particle (UFP) number concentrations as the primary example. UFP concentrations 
have the widest range of in-vehicle losses during typical driving conditions. Other 
particulate pollutants are of larger size and have higher loss rates, but these rates 
are also a strong function of AER. 
 

3.0 INTRODUCTION 

The proximity of vehicles to relatively undiluted emissions from other vehicles on 
freeways and busy roadways leads to elevated pollutant concentrations in vehicle 
cabins compared to other indoor environments. Thus, a significant and 
disproportionate share of total personal exposure can occur while driving, especially 
for pollutants emitted mostly by vehicles, like ultrafine particles (particles smaller 
than 100 nm, or “UFP”). Fruin et al., 2008 (1) calculated that in Los Angeles, 33-45% 
of UFP exposure occurs while driving , taking other micro-environmental 
concentrations and time-activity patterns into account, but ignoring in-vehicle particle 
losses. In suburban locations of less traffic, Wallace and Ott, 2011 (2) estimated a 
17% contribution of in-vehicle microenvironment to total UFP exposure.  

Despite its importance as a route of exposure, the contribution of the in-transit 
vehicular microenvironment remains largely uncharacterized, in part due to the 
difficulty of characterizing the large differences in air exchange rate (AER), which 
drives particle influx rates and varies not only from vehicle to vehicle but also across 
different driving conditions. To better characterize AERs, Fruin et al., 2011 (3) tested 
59 vehicles and reported that AER under recirculation ventilation conditions can be 
reliably predicted based on vehicle’s age, mileage, driving speed and manufacturer 
(r2=0.7).  For the eight vehicles tested under outside air conditions, they found AERs 
to be an order of magnitude higher than at recirculation settings and reported strong 
positive correlation between AER and ventilation fan speed. In a similar study, 
Knibbs et al., 2009 (4) reported AER values at higher fan settings under outside air 
conditions to be 73% higher than at the lowest fan setting for six vehicles. Knibbs et 
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al., 2009 (4) also observed that, AER is influenced by driving speed for older 
vehicles.  

In-vehicle concentrations result from an interaction between particle influx and 
removal rates, which in turn depend upon multiple factors. Besides being strongly 
influenced by AER, physical characteristics of the vehicle, particle size and in-cabin 
filter efficiency have been found to affect removal rates (5,7). Any accurate 
determination of the relative influence of each factor requires experiments where 
factors are systemically varied under real driving (aerodynamic) conditions, else 
AERs are not realistic. Several recent studies (5-6) addressing in-vehicle particle 
losses have used artificial air movement or have relied on measurements in a 
controlled laboratory environment not representative of real-world driving.  
Furthermore, these studies have suffered from small sample sizes, ranging from only 
one to three vehicles (5-6).   

Of the few studies that have used real driving conditions, Pui et al., 2008 (8) and Qi 
et al., 2008 (9) demonstrated a dramatic particle number concentration reduction in-
cabin during recirculation ventilation settings in two vehicles, although AERs were 
not reported. Zhu et al., 2007 (10) observed particle losses of about 85% at 
recirculation settings in three vehicles but  AER was not measured and variable 
speeds during the tests would have resulted in variable AERs.  Zhu et al., 2007 (10) 
was the only study identified that made size-resolved particle concentration 
measurements, up to 217 nm. They reported the in-vehicle to roadway concentration 
ratios to be primarily dependent on particle size and vehicle characteristics. 

The most useful study from an exposure assessment perspective has been by 
Knibbs et al., 2010 (11) who measured the inside-to-outside UFP concentration 
ratios in five vehicles and reported a high correlation between these ratios and AER 
(r2 = 0.81). They reported an average particle reduction of 0.69 during recirculation 
settings at low fan setting and 0.08 at outside air intake, but did not characterize the 
losses by particle size or test specific removal mechanisms like cabin filtration.  

The goals of this task include quantifying particle reduction ratios due to changes in; 
1) ventilation settings (i.e., recirculation or outside air); 2) measured AER; 3) fan 
settings during outside air ventilation conditions; 4) driving speed; 5) filter condition; 
and 6) easily-obtainable vehicle characteristics such as age and mileage (which 
strongly affect AER under recirculation settings); and to determine the relative 
importance of each of these variables under real driving conditions.  It is the first 
study to combine measurements of AER and particle losses as a function of particle 
size.   
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3.1 METHODS 

3.1.1 Vehicle Selection and Conditions Tested 

Six vehicles were selected such that AERs at recirculation ventilation settings 
spanned the inter-quartile range of AERs (4.5 - 13 h-1, median 7.4 h-1) measured in 
our previous study (3). The previous study used a 59-vehicle selection chosen to be 
representative of the California fleet in terms of age, mileage and manufacturer (3). 
Two older vehicles (a 1999 Ford Contour and 2001 Ford Escort) covered the high 
range of AER (8-19 h-1 when mobile) and were more than 10 years old when tested. 
The four newer vehicles (a 2010 Toyota Prius, 2010 Scion Xb, 2009 Toyota Matrix 
and 2009 Honda Civic) were 3-16 months old and covered the low and medium 
range of AER (3-9 h-1 when mobile). All six vehicles were evaluated at both (RC and 
OA) ventilation conditions. At each ventilation condition, particle concentration 
measurements were conducted in both stationary and mobile mode at both medium 
and high fan speed settings. At RC setting, particle losses and AER were measured 
under 42 conditions, i.e., six vehicles at seven AERs each (different AERs resulting 
from different combinations of ventilation fan setting and driving speed). 34 
conditions were evaluated under OA conditions. Air conditioning (AC) was kept on 
during all experiments, except for those at which the fan was off (six out of total 76 
conditions evaluated).                                                                                                                                                                                                                                                                           

3.1.2 Particle Concentration Measurements  

Particle number concentration measurements were made using a condensation 
particle counter (CPC, TSI Inc. Model 3007, size range 10 nm to 1000 nm) and 
number concentration measurements by size were made using a Scanning Mobility 
Particle Sizer with 300 second scanning rate (240 second up-scan and 60 second 
down-scan) (SMPS, TSI Inc. Differential Mobility Analyzer Model 3080 and Model 
3022a CPC). The measured mobility diameter (Dp) range was 14-750 nm. However, 
data are presented only for the 14-400 nm range because above 400 nm relatively 
few particles were counted and the resulting concentrations had large uncertainties. 
Furthermore, since roadway particles between 14-25 nm are volatile, concentrations 
in this size range are exceptionally variable in on-road environments. Reported 
results for this size range should be interpreted with caution.  

Experiments were conducted at 0, 20 and 35 miles h-1 (0, 32 and 56 km h-1), with 
speed recorded each second by a Garmin GPSMAP unit 76CSC.  Experiments at 20 
and 35 miles h-1 were conducted while driving at constant speed around the Rose 
Bowl Stadium in Pasadena CA, a 5.5 km long loop with little vehicular traffic. 
Freeway speeds were not evaluated in this study due to the rapidly changing traffic 
and particle number and size distributions typically present on Los Angeles freeways 
(1,12,13).  
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All in-vehicle measurements were made with windows fully closed. Before and after 
the in-vehicle measurement period, outside vehicle concentrations were measured 
for 10-20 minutes with windows fully open to allow the outside air to pass freely 
through the vehicle. The concentrations with fully open windows were assumed to 
equal the roadway concentrations. Earlier in the study, it was verified that open 
window conditions allow accurate measurement of roadway particle size distributions 
and number concentrations by comparing simultaneous measurements with two 
CPCs, one measuring concentrations with a 1 m long inlet sampling air right outside 
the vehicle, and the other CPC sampling in the middle of the backseat of the vehicle. 
Ambient particle number concentrations and size distributions were also measured 
using a stationary monitor at a position central to the run loop.  All ambient 
concentrations were stable to within10%, before, during, and after a run.   

The Attenuation Factor (AF), defined as one minus the inside-to-outside (I/O) particle 
concentration ratio, was calculated for all measurements, as a measure of particle 
removal rather than particle persistence in-cabin. (I/O can be readily calculated from 
AF by subtracting AF from 1.0.) AF was calculated after concentrations were stable 
in the vehicle over 15 minutes or more of sampling, during which there were no 
sources of ultrafine particle production. AFs reported for specific size ranges are 
equivalent to the average of mobility-diameter-specific AFs within the range.  

3.1.3 Air Exchange Rate Measurements 

During both mobile and stationary conditions, air exchange occurs between the 
vehicle cabin and the outside environment through leaks in the body of the vehicle 
(door seals, window cracks, etc.) and through the ventilation system, when it is set to 
draw outside air into the cabin. This air exchange continually replenishes the vehicle 
cabin with pollutants/particles from the outside environment, hence is an essential 
measurement in any study of in-vehicle exposure.  

AERs were determined at RC conditions as part of a previous study (3) using CO2 as 
a tracer gas and two occupants as a stable source of CO2 generation. Build-up rates 
of CO2 concentration were used to determine the CO2 emission rates, and 
equilibrium CO2 concentrations at fixed speeds then allowed calculating the AER at 
that speed. Under OA conditions, AERs are much higher, requiring higher starting 
CO2 concentrations that cannot be readily reached by occupants.  As it was 
observed that speed up to 35 mph plays an insignificant role in affecting AER 
compared to fan setting at OA conditions (3), only stationary tests were necessary to 
characterize AER, and CO2 from a pressurized cylinder was used to produce the 
necessary high starting concentrations.  The AER determination procedure is 
described in detail in Chapter Two.  
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3.2 RESULTS AND DISCUSSION 

3.2.1 Effect of AER on AF  

Under RC ventilation conditions, 42 AERs across the six vehicles tested varied from 
less than 1.0 to 19 h-1. At the OA setting, measured AERs varied from 20 to 145 h-1. 
Any significant increase in AER resulted in an increase in particle influx rate and 
lowered AFs, demonstrated most distinctively in the difference between the AFs at 
RC and OA ventilation settings in Figure 3.1. Figure 3.1 presents AF results under 
both ventilation conditions and illustrates the strong dependence of AF on AER. On 
average for the 6 vehicles tested, a switch in ventilation condition from RC to OA 
increased AERs by an order of magnitude and decreased AF by factor of 2.6 ± 0.14. 
The decrease in AF with a further increase in AER was less dramatic under OA 
conditions compared to RC conditions. Across the size range (25-400 nm), an 
increase in AER lowered AF, but the effect was strongest for particles above 200 
nm.  

 

 

 
Figure 3.1: AF dependence on AER for particles of size 25-400 nm at recirculation and 
outside air setting.  

Under RC conditions, the r2 between AF and AER was 0.80, indicating that AER is 
the most significant determinant of AF at RC settings. The average AF at RC was 
0.83 ± 0.13. In contrast, at OA setting, the AF averaged only 0.33 ± 0.10. The 
average r2 between AF and AER at OA setting was 0.75 (r2 values for all but one 
vehicle were 0.9 or above). The only other study to measure AF and AER, Knibbs et 
al., 2010 (11) also used a CPC 3007, and reported an r2 of 0.81 between AF and 
AER, irrespective of the ventilation setting. Additionally, measured AERs in Knibbs et 
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al. 2009 (4) and the corresponding predictions of the AER model developed in Fruin 
et al., 2011 (3) for the same vehicles agreed well, with an r2 of 0.83.  

3.2.2 Effect of Vehicle Speed and Age on AER and AF  

Under RC conditions, an increase in speed increased AER and decreased AF. On 
average, a 10 miles h-1 increase in speed resulted in 1.65 h-1 increase in AER and a 
0.035 decrease in AF. Speed affected AER more for older vehicles (+2.4 h-1 / 10 
miles h-1) compared to the newer vehicles (+1.2 h-1/10 miles h-1), similar to the 
results reported by Knibbs et al., 2009 (4). As a result, AF, which depends strongly 
on AER, decreased with speed at twice the rate for older vehicles (-0.05 /10 miles h-

1, Pearson r2 = 0.78) than for newer vehicles (-0.025 /10 miles h-1, Pearson r2 = 
0.20).  

Despite these differences by vehicle age, an overall strong correlation was observed 
between AER and speed as well as AF and AER. In Fruin et al., 2011 (3) an r2 
equivalent of 0.92 was calculated between AER and speed for a much larger fleet of 
vehicles and for speeds up to 70 miles h-1 using a Generalized Estimating Equations 
(GEE) (16).  (GEE techniques account for correlated measurements within a vehicle 
(e.g, a tight vehicle with lower AER will consistently have a higher AF across each 
speed compared to a leakier vehicle with higher AER).  In this study, also using GEE 
techniques, 82% of the variation in AER could be accounted for by speed (p value = 
2.5 x 10-9). Furthermore, nearly all variation (r2 = 0.98, p-value = 6.9 X 10-7) in AF at 
RC setting was explained by changes in AER. Given the consistent and strong 
correlations between AER and speed (3,  this study) and between AF and AER  at 
RC setting (this study), these results can be expected to extrapolate well to the 
higher AERs of vehicles travelling at higher freeway speeds (65-70 miles h-1) than 
the speeds tested in this study, i.e., 35 mph and less. 

In contrast, under OA conditions, no definitive association between speed and AF 
could be discerned for the six vehicles tested. Since AER at OA is driven by 
mechanical ventilation rather than speed-driven pressure differences outside the 
vehicle shell, this lack of association is not surprising. Knibbs et al., 2009 (4) have 
previously shown that at OA conditions, for the newer four of total six vehicles tested, 
the association between AER and speed was weak (linear regression on all 4 
vehicles: AER = 0.15 * Speed [miles h-1] + 51, r2 = 0.06). For the oldest two (10 and 
19 year old) of the total six vehicles tested, the relationship was stronger (AER = 
0.59 * Speed [miles h-1]+ 52, r2 = 0.52).This suggests that for older vehicles, the AER 
at OA may increase at speeds higher  than those tested in this study, which should 
lead to a reduction in AF. However, for the two oldest vehicles in this study (10 years 
of age), any increase in AER with speeds between 1  to 35 miles h-1 did not cause a 
noticeable change in AF.  

Most real-world driving involves constantly changing speeds due to traffic conditions 
and widely varying roadway particle number concentrations. To illustrate how well 
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the steady speed/AER and relatively stable roadway concentration condition results 
apply to such changing speed and concentration conditions, measurements were 
made during two 15-minute duration trips on a freeway (I-110) and an arterial road 
(Figueroa Street, downtown Los Angeles) in a Toyota Matrix 2009. No attempt was 
made to maintain steady speeds during these runs, and average speed was 55 miles 
h-1 and 27 miles h-1 on the freeway and arterial road, respectively. The ventilation 
setting was set to OA, leading to moderately high AER (35 h-1) that would allow rapid 
influx of roadway concentration into the vehicle cabin and reflect the unsteady 
roadway environment, as shown in Figure 3.2. It should be noted that under low AER 
conditions, in cabin concentrations are fairly steady due to limited influx of particles. 
The average AF calculated from average in-cabin and roadway particle number 
concentrations agreed almost perfectly with the AF predicted from the AF versus 
speed regression equation calculated from measurements made at steady speed.  

 

 

Figure 3.2: Agreement between Attenuation Factors (AF) measured at Rose 
Bowl and short trips on other roadways. 

 

3.2.3 Effect of Particle Size on AF  

Other than AER, particle size itself can be expected to play a role in attenuation, 
since particle infiltration, surface deposition and filtration efficiency are functions of 
particle size (14,15,17). AFs for the 5 size ranges plotted in Figure 3.3 show the 
lowest attenuation for particles in the size range 200-400 nm. Similar values for the 
least attenuated particle size have been reported in other indoor environments (14). 
The highest AFs were consistently associated with the UFP size range. This is 
consistent with the high losses expected due to higher diffusion rates for smaller 
particles (17). 
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Figure 3.3: Size range specific Attenuation Factors (AF) at three speeds and two 
ventilation conditions tested. The dashed lines represent AF at highest possible 
ventilation fan setting in the vehicle and solid lines represent AF at medium 
ventilation fan setting in the vehicle.  

For a given ventilation and speed combination, particle size-specific AFs were found 
to be similar across size for newer vehicles and only moderately different across size 
for older vehicles. At RC, the AFs for 100-200 and 200-400 nm were respectively 
0.04 (5%) and 0.07 (8%) lower than the average AF (0.84 ± 0.09) for ultrafine range. 
At OA, the differences in size specific AF were more accentuated than at RC. The 
AF for both 100-200 and 200-400 nm were 0.06 (30%) lower than the average AF 
(0.25 ± 0.12) for ultrafine range. As can be observed in Figure 3.3, the difference in 
AF across size was much less than the difference if AF across ventilation conditions. 

3.2.4 Effect of Ventilation Fan Setting on AF 

Figure 3.4 shows that increasing the ventilation fan setting from medium to full 
lowers the AF at both RC and OA, but this reduction was far more pronounced at OA 
than at RC. At RC, the attenuation reduction is somewhat counter-intuitive, since 
increasing fan setting might be thought to increase particle removal through greater 
rates of airflow through the in-cabin filter, when present. Also, the deposition of 
particles on cabin surfaces increases with increase in in-cabin air velocity (5). 
However, fan setting has been previously demonstrated to increase AER for older 
vehicles (3-4), likely due to leaks into the ventilation system, and filtration efficiency 
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decreases at greater air flow velocities associated with higher fan settings as well 
(9). Apparently, these mostly offset the particle reductions expected due to greater 
volumes of air being filtered at high fan settings under RC conditions. However, 
higher fan settings resulted in increased losses for particles smaller than 50 nm, 
perhaps due to the increased turbulence in the ventilation system at higher fan 
settings.   

 

 
Figure 3.4: Comparison of AF at RC and OA ventilation setting at key determinants of 
AF at each setting (driving speed at RC and ventilation fan strength at OA).  

At OA, an increase in fan speed, settings strongly increased AER. The median 
difference in AF at full and medium fan strength at OA was 42% (inter quartile range 
14-97%) and AERs at full fan strength were about 65% higher than at medium fan. 
Thus, ventilation fan setting is a key predictor of AF at OA setting.  

Ventilation fan speed also affects the time needed to reach stable, in-vehicle particle 
concentrations. The rate of removal of particles increased moderately with an 
increase in fan speed but resulted in lower attenuation factors. This observation was 
consistent across all 6 vehicles tested.  This aspect of AF may be important during 
short vehicle trips. 



53 

3.2.5 Effect of Cabin Air Filter and Loading on AF 

In order to determine the effect of cabin filters on particle attenuation, AF 
measurements were conducted under several filter conditions: no filter, used 
(loaded), and new, at both OA and RC setting in 3 stationary vehicles. The Ford 
Contour’s in-use filter had been operational for 36 months at the time of testing and 
was heavily loaded. The Honda Civic’s filter had been in operation for ~14 months at 
the time of testing and was moderately loaded, and the Prius’s filter had been in use 
for ~3 months, and was lightly loaded. All new filters were standard replacement 
cabin air filters bought from an auto parts store (all either brands STP or Purolator). 

The presence or absence of the filter, or its loading, was observed to have only a 
small effect on AF. Used, loaded filters provided only moderately higher or 
comparable AFs to a new filter (16). The results in Figure 3.5 for a Toyota Prius are 
typical and show that overall particle loss is not significantly affected by the presence 
of a new filter or even a loaded filter (Section S5 in Appendix A) at OA settings.  
Without any filter, AF was only moderately lower (maximum AF difference observed 
was 0.1). This implies that the particle attenuation due to filtration is a small fraction 
of the total attenuation, and that most of the attenuation is probably due to turbulent 
surface deposition in the ventilation system or vehicle surface itself. Pui et al, 2008 
(8) reported 19% particle loss in a Toyota Camry in the absence of filter and 
suggested intrinsic losses in the ventilation system as an attenuation mechanism. In 
our tests 23, 40 and 40% particle losses were observed for the Honda Civic, Toyota 
Prius and Ford Contour with no filter, respectively.  
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Figure 3.5: Attenuation of particles in the absence and presence of filters under 
outside air (OA) ventilation mode, tested in a Toyota Prius 2010.  

At RC settings, the AF in the absence of a filter was on average only 5% lower than 
with a filter in place.  Although the presence and condition of the filter were 
insignificant to AF, it somewhat affected the time that the system requires to achieve 
the maximum attainable attenuation (Section S6 in Appendix A). Similar increases in 
the time required to reach maximum attenuation have been reported by Pui et al., 
(8). At OA condition, the AF in filter’s absence was on average about 20% lower than 
in filter’s presence (less than 0.1 AF units). Furthermore, the effect of several 
different filter loadings as characterized by in-vehicle pressure drop for the same 
vehicle was also investigated at OA. Increased loading and resulting reduced pore 
size and flow rates, were found to increase AF for UFP, but no significant changes 
were observed for particles exceeding 100 nm in size. Results are discussed in 
Section S7 of Appendix A.  
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3.3 IMPLICATIONS FOR IN-VEHICLE PARTICLE MODELS 

Some recent studies (6-7) attribute all particle losses in the ventilation system to 
filtration and incorporate them into models by using filter efficiency as the removal 
mechanism. If the presence of cabin filters actually plays a minor role in the 
attenuation of particles inside the vehicles, as observed in our measurements, a 
much larger component of attenuation occurs due to losses onto cabin and 
ventilation system surfaces. These different loss mechanisms should therefore be 
differentiated in models since they likely differ under different ventilation and driving 
conditions. Suggested modified equations are presented in Section S8 in Appendix 
A.  

Furthermore, any quantitative modeling should account for the intrusion flow of 
outside air into the ventilation system at RC. Knibbs et al., 2009 and 2010 (4, 11) 
and Fruin et al., 2011 (3) report that at RC, increases in fan setting increase the 
AER. They also reported that this increase seems to increase with age of the vehicle 
and could vary considerably by vehicle. Less than 15% increase on average was 
reported by Fruin et al., 2011 (3) when fan setting was changed from medium to full, 
but this became as large as 40% for the older vehicles. An equation modified to 
include this leak as a variable is also presented in Section S8.  

3.4 IMPLICATIONS FOR EXPOSURE ASSESSMENT 

Predicting particle exposure inside vehicles requires determining ventilation setting 
first and foremost (i.e., OA or RC), due to its large impact on AER.  Under OA 
conditions, fan setting is the most dominant variable, and AF was approximately 0.4 
and fairly independent of speed. Under RC conditions, AF has a large range and 
varies from 0.5 to 1.0, depending on AER, which can be predicted by speed and 
vehicle age and mileage (3).  Under open window conditions, AF approaches zero.   

Difficult to obtain information, such as state of in-cabin filter loading, does not appear 
to be a crucial factor in assessing AF and the resulting in-vehicle particle exposures.  
It also does not appear that changes in on-road size distribution have a large impact 
on AF.  Figure 3.6 exhibits the AF differences for four widely different hypothetical 
size distributions having number concentration mode less than 25 nm (fresh vehicle 
exhaust plume), 25-50 nm (on-road diluted plumes), 50-100 nm (aged vehicle 
emissions) and 100-200 nm (aged aerosol observed as urban background). The 
largest difference in AF occurs between aged and fresh aerosol, changing the overall 
AF by no more than 0.1 at OA and less than 0.05 at RC. Considering that on-road 
particle size number concentration distributions are dominated by ultrafine particles 
(13), AF measurements based only on total number concentration (e.g., a total 
particle count from CPC) would be expected to (and were observed to) produce AF 
measurements nearly identical to an average AF resulting from a number-weighted 
average AF across multiple size ranges. Therefore, all of the variables needed to 



56 

estimate AF within 10% or less can be obtained through questionnaires given to 
vehicle owners. 

 

 

 

 

Figure 3.6: Impact of change in particle size distribution on number 
concentration weighed Attenuation Factors (AF). 

 Lastly, for the case of short duration trips, the equilibration conditions reported in 
this study for AF may not be reached. The particle attenuation reported here was 
attained typically within 5 to 10 minutes at OA conditions and 15 to 20 minutes at RC 
conditions (Section S10 in Appendix A). The benefit derived from higher reduction in 
particle exposure with the use of RC setting may be reduced if short trips are taken 
repeatedly. The dynamic nature of particle attenuation should be considered in 
assessing short trip exposures. 

3.5 SUMMARY AND CONCLUSIONS  

In-vehicle concentrations result from the interaction of on-road concentrations with 
vehicle characteristics that can reduce or remove the pollutants, depending on the 
pollutant and the vehicle AER. The actual removal rates are due to a complicated 
interplay between a vehicle’s physical characteristics, ventilation condition, particle 
size, and changes in air exchange rate (AER) (which increases with speed and 
vehicle age and increases the particle influx rate). Therefore, accurate determination 
of losses requires on-road testing under realistic aerodynamic conditions.   
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For task two, we focused on ultrafine particle (UFP) number concentrations, the 
particle pollutant with the highest and most widely-varying loss rates.  Six vehicles 
were tested at different driving speeds, fan settings, cabin filter loadings, and 
ventilation conditions (outside air or recirculation). During outside air conditions, the 
fraction of particles removed averaged 0.33 ± 0.10 (SD). Fraction removed did not 
vary with vehicle speed but decreased at the higher ventilation flow rates of higher 
fan settings. During recirculation conditions, AER was much lower and removal 
fraction higher.  Removal fraction averaged 0.83 ± 0.13 and was highly correlated 
with and a strong function of AER. Under both ventilation condition types, particle 
removal was primarily due to losses unrelated to filtration.  Filter condition, or even 
the presence of a filter, played a minor role in particle fraction removed.   
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CHAPTER FOUR: FREEWAY EMISSION RATES AND VEHICLE EMISSION 
FACTORS OF AIR POLLUTANTS IN LOS ANGELES  

(based on Task 3. Estimate emission factors of PM pollutant concentrations 
based on roadway and urban background site measurements and CO2-based 
dilution adjustments.) 
 

4.0 INTRODUCTION 

Mobile emissions are the single largest source of nitrogen oxides (NOx) and carbon 
monoxide (CO) emissions, and a significant source of fine particulate matter (PM2.5, 
Dp < 2.5 µm) emissions in Southern California (1) and the United States (2). 
According to the latest national emission inventory for 2011 (2), on-road emissions 
from mobile sources are responsible for 76% of CO and 30% of NOx emissions. In 
California, passenger cars and light/medium/heavy duty trucks account for 80% of 
vehicle miles travelled (VMT) and 70%, 39% and 43%, respectively, of the total 
emissions inventory for CO, NOx and PM2.5 (3).  
 
Vehicle emissions cause not only air quality problems but also adverse health 
effects. In urban ambient air NO2, and more typically NOx, serve as markers of a 
plethora of toxic air pollutants from fossil fuel combustion sources. Even at low 
levels, NO2 has been associated with both cardiovascular and respiratory morbidity 
and mortality (4-5).  Exposure to PM2.5 has been linked to pulmonary and 
cardiovascular disease (6), and PM2.5 from diesel combustion has been shown to 
increase lung cancer risk (7).  Furthermore, PM2.5 emissions from diesel truck 
engines are dominated by black carbon (BC) (8-9), which appears to be a better 
measure of traffic-related morbidity and mortality than PM2.5 (10). Further, vehicular 
emissions emit most of the particles in ultrafine size range (UFP, dp < 100 nm) that 
not only have high oxidative potential (owing to their high content of redox active 
organics and metals, but are also capable of penetrating deep into the lungs and 
crossing epithelial layers, thereby potentially causing systemic effects (11-13).  Near-
roadway exposures to vehicular emissions have been associated with adverse 
health effects by numerous studies (4-5,14).  

 Monitoring of emissions from mobile sources is not only important from a standpoint 
of assessing the public health risk that they pose, but also for evaluating the efficacy 
of regulatory measures and attainment of emission standards. Vehicle tailpipe and 
evaporative emissions have been the target of multiple regulations including fuel 
reformulation, state-controlled inspection and maintenance programs, and control-
technology requirements. Benefits of improved control technologies have often been 
apparent; for example, NOx emissions from light-duty vehicles (LDV) have been 
substantially reduced through the use of three-way catalytic convertors (15). 
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In recent years, and as a consequence of improvements in LDV emissions control, 
heavy-duty diesel trucks (HDDT) have been reported as disproportionate 
contributors to on-road emissions, taking their low engine population and activity 
rates into consideration (15).  In Los Angeles County, on-road emissions from 
passenger cars, which are responsible for 53% of VMT, contribute only 15% to NOx 
and 30% to PM2.5 emissions from mobile sources. Light- to heavy-duty trucks, though 
responsible for only 28% of VMT, emit 25 % of NOx and 18% of PM2.5 (3). 
Furthermore, previous studies (16-17) in Los Angeles have demonstrated a strong 
link between on road and near-roadway levels of pollutants, like BC and UFP, and 
truck density. However, effects of recent initiatives and regulations for HD trucks in 
California will erode the dominance of HD contributions to NOx and BC as the fleet 
turns over. For example, lower diesel PM mass regulations are requiring diesel 
particulate filter (DPF) controls, that dramatically reduce PM mass and BC 
emissions, but not always with commensurate reductions in particle number that 
dominate UFP (18). Selective catalytic reduction measures to meet NOx standards 
are also proving effective (19-20).    

In addition to greatly exceeding per-mile emissions from gasoline vehicles, 
emissions from HDVs are often concentrated on certain truck routes. For example, 
goods movement to and from the Port of Los Angeles and Port of Long Beach 
results in high localized air pollution impacts (17).  As a result, port-related diesel-
engine activity has been the focus of recent regulations in Los Angeles, such as the 
San Pedro Bay Ports Clean Air Action Plan (21) (expected to eliminate more than 
47% of diesel particulate matter and more than 45% NOx from port-related sources 
by 2014. Additionally, the California Air Resources Board (CARB) implemented 
Drayage truck regulations and a ban on pre-1993 engines, with the expected benefit 
of accelerated fleet turn-over and 85% reduction in PM2.5 by 2014 (22). 

Recent studies (23-25) have demonstrated the benefits of using a mobile monitoring 
platform (MMP), a vehicle equipped with real time instrumentation to determine on-
road pollutant concentrations and emission factors during actual driving conditions. 
This study builds on those developments and uses an MMP to investigate real-world 
emissions factors on Los Angeles freeways. Measurements for gas and particulate 
phase pollutants were made during summer 2011 on several freeways. Fuel based 
emission factors and fractional contribution of diesel powered engines to total 
emissions was calculated. The goal of this study was to estimate freeways based 
emission rates based on vehicle emission factors and engine activity (quantified 
using vehicle miles traveled) per mile per hour of the freeway to investigate freeway-
to-freeway variability, owing to differences in HDV fractions and total vehicular 
activity on freeways. Despite a factor of two difference in HDV fractions between 
freeways, and up to a magnitude difference in HDV and LDV emission factors, total 
freeways emissions were found to be comparable underscoring the importance of 
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considering total vehicle activity (in terms of miles travelled) over just vehicle or HDV 
counts.  

4.1 METHODS 

4.1.1 Mobile Measurement Platform (MMP) and continuous measurement 
instruments  

A hybrid vehicle (2010 Honda Insight) was used as a mobile measurement platform. 
All the continuous instruments listed in Table 4.1 below drew air samples from a 
common sampling duct installed across the rear windows. The response time of the 
fastest instrument (Condensation Particle Counter Model 3007, (CPC), TSI Inc., MN, 
USA) to an on-road plume, including the residence time for the air in the sampling 
duct, was less than two seconds. The concentration time-series recoded by all other 
instruments were aligned with respect to the fastest instrument to adjust for the 
delayed response. Time-lag remained constant (to within a second) over the 
campaign due to fixed instrument response behavior and flow rates. Instruments 
were periodically calibrated and time was synced to be within 1 second with the 
Global Positioning System (GPS) device (Garmin GPSMAP 76CSC). Further, data 
quality assurance comprised regular flow and zero reading checks. MMP was driven 
in the central freeway lane, when possible, through this study.  

A limitation of the Dust Trak DRX (Model 8533, TSI, USA) was its potential lack of 
sensitivity to smaller particles, such as those found in diesel exhaust, which could 
decrease the accuracy of the measurements of emissions. Since the instruments 
were not calibrated to accurately reflect fresh emissions, its data may be used for 
quantitative inter-comparisons within this study. In this campaign, black carbon (BC) 
mass concentrations were determined by using an Aethelometer (Magee Scientific, 
Model AE51), which measures the optical attenuation (ATN) of a light beam 
transmitted through a sample collected on a filter.  At low filter loadings, there is a 
linear relationship between BC and ATN; however, as particles accumulate on the 
filter this linearity breaks down, and a correction (described in Wang et al. (24)) was 
applied to obtain an accurate BC concentration. UFP concentration reported by CPC 
3007 was corrected using the method described in Westerdahl et al. (23) when 
levels exceed 105 particles cm-3.  
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Table 4.1. Instruments used in this study 

Instrument Parameter 
measured 

Instrument Flow 
Rate (lpm) 

Response 
Time (s) 

Resolution Detection Limit 

TSI portable CPC 
(butanol-based) 
model 3007 

UFP count, 
10 nm - 1 um 

0.8 1 1 
particle/cm^3 

10 nm, <0.01 
particles/cm^3 

TSI DustTrak 
DRX, model 8533 

PM2.5 mass 1.7 5 +/- 0.001 
mg/m^3 

0.001 - 100 
mg/m^3, 0.1 - 2.5 

um size range 

Magee Scientific 
Aethalometer AE 
51 

Black carbon 150 mL/min 60 0.001 µg 
BC/m3 

±0.1 µg BC/m3 

, 1 min avg., 150 
mL/min flow rat 

LI-COR model LI-
820 

CO2 1 <1 >4% of the 
reported  

value 

3.0 ppm 

2-B Technology 
Nodel 408 

NO 1 8 Greater of 3 
ppb or 3% of 
reading 

 

2-B Technology 
Nodel 401-410 

NOX 1 8 Higher of 1.5 
ppb or 2% of 
reading 

 

EcoChem PAH 
analyzer, model 
PAS 2000 

Particulate 
matter-phase 
PAH 

2 < 10 ~ 0.3 -1 g 
/m3 

 PAH per 
picoamp 

3 ng/m^3 

TSI Q-Trak Plus 
monitor, model 
7565 

CO, 
Temperature, 
humidity 

 20  1 ppm 

Garmin GPSMAP 
76CSx 

GPS location, 
speed 

N/A 1 3m  

 

4.1.2 Sampling Routes  

Emissions from motor vehicles were measured on five Los Angeles freeways – I-
110, I-405, I-710, CA-60 & CA-91. While freeway 110’s northern segment (110N) is 
closed to HDV, they are allowed on the southern segment (110S). These two 
segments of 110 have been discussed separately throughout this study. Based on 
California Department of Transportation (Caltrans) 2009 Annual Average Daily 
Traffic (AADT) and truck data (counts trucks 2-axle or higher), trucks constitute less 
than 1% of the total vehicle flow on 110 N and 5.0 ± 1.5 % on 110S segment (26). 
Freeway I-405 has a mixed-fleet but is mostly dominated by LDV (the Caltrans data 
based truck fraction was 3.8 ± 0.58 %). The other three freeways, I-710, CA-60, CA-
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91, have a relatively higher fraction of HDVs, i.e., 12 ± 5.7 %, 6.9 ± 1.6 % and 7.6 ± 
1.1, respectively.  

4.1.3 Mathematical calculations and equations 

4.1.3.1 Emission Factor (EF)  

Fuel-based EFs were calculated for each freeway segment each day using carbon 
balance approach, shown in Equation 4.1. Pollutant emission was normalized by 
total carbon emissions on the freeway to compute emission factors in units of mass 
of pollutant emitted per unit mass of fuel burned. Carbon combustion products that 
were accounted were carbon dioxide (CO2), carbon monoxide (CO) and black 
carbon or soot (BC).  
 

Equation 4.1: Pollutant emission factor 

𝐸𝐹𝑃 = 103 � ∆[𝑃]
∆[𝐶𝑂2]+∆[𝐶𝑂]+∆[𝐵𝐶]

� × 𝑤𝑐  

where EFp is the emission factor (g emitted per kg fuel burnt) for pollutant P, Δ[P] is 
the increase in the concentration of pollutant P (g m-3, or #/m3 for ultrafine particle 
number concentration (PNC)) above the background concentration, Δ [CO2], Δ [CO] 
and Δ [BC] are the increases in the concentrations of carbon combustion products (g 
m-3). wc, the mass fraction of carbon in fuel was used as 0.85 for gasoline fuel and 
0.87 for diesel fuel (27). Background values for use in Equation 4.1, were estimated 
as the 5th percentile of pollutant concentration observed on the freeway segment, 
while the median value was used as an estimate of elevated pollutant concentration 
due to vehicular emissions. Since the goal of this study was to estimate fleet average 
EFs, the use of median value allowed for excluding any bias (which would otherwise 
be present in averages) due to capture of specific high-emitting vehicle plumes.  

Pollutant concentrations were partitioned to estimate LDV and HDV emission factors. 
The approach used was similar to that used by Ban-Weiss (2008) (9). Pollutants 
measured on other freeways were apportioned using pollutant-to-CO2 emission 
ratios measured on 110N, where emissions were assumed to be solely from 
gasoline-fueled engines. The following equation summarizes the technique.  

 
Equation 4.2: Elevation in pollutant concentration due to diesel fuel combustion 

Δ [𝑃]𝑓,𝑑 =   Δ [𝑃]𝑓 −  Δ [𝐶𝑂2]𝑓,𝑔 �
Δ [𝑃]110𝑁
Δ [𝐶𝑂2]110𝑁

�   
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where Δ [𝐶𝑂2]𝑓,𝑔  is the fraction of CO2 attributed to gasoline, and is apportioned 
using Equation 4.3 (below), which takes into account the difference in gasoline and 
diesel vehicle fuel economies.  

 
Equation 4.3: CO2 Apportionment 

Δ [𝐶𝑂2]𝑓,𝑔 =  Δ [𝐶𝑂2]𝑓 � 
 (1 − 𝑓𝑑)  ×  ( 1

𝐹𝐸𝑔)  × 𝜌𝑔  ×  𝑤𝑔 

(𝑓𝑑)  × ( 1
𝐹𝐸𝑑)  × 𝜌𝑑 × 𝑤𝑑 +  (1 − 𝑓𝑑)  × ( 1

𝐹𝐸𝑔)  × 𝜌𝑔 × 𝑤𝑔
� 

 

where 𝑓𝑑 represents the fraction of vehicles using diesel fuel, FE is the  fuel economy 
(mile L-1),  𝜌 Is the density of fuel (kg L-1), and wg and wd are the mass fraction of 
carbon in gasoline and diesel. Former studies (9, 27-28) have used an expression 
similar to Equation 4.3. An underlying assumption in use of this equation is that 
distances travelled by both gasoline and diesel vehicles are equal. While in former 
studies conducted in tunnel environments this assumption is valid, it should be used 
with caution in studies that employing mobile platforms. If gasoline-fueled (mostly 
LDV) and diesel-fueled (mostly HDV) engines vehicles are segregated in different 
lanes with significant differences in lane speeds, this will lead to significantly different 
distances travelled (and fuel burnt) by gasoline and diesel vehicles on that freeway. 
The MMP’s lane location and the direction of wind are also a consideration if lanes 
are segregated.  Using a fraction based solely on vehicle counts might therefore lead 
to erroneous results. A more accurate estimate of 𝑓𝑑 can be obtained by breaking 
down total vehicle miles travelled (if available) into those by gasoline and diesel 
vehicles over the measured span of the freeway, which inherently accounts for 
differences due to speed and thereby distance travelled and fuel burnt. This 
approach was used in the current study and CO2 was apportioned based on 
𝑓𝑑  calculated using Equation 4.4, where VMTd and VMTg are vehicle-miles traveled 
by diesel and gasoline vehicles with the duration under consideration. Using this 
modified approach, Equation 4.3 can be re-written as Equation 4.5.  

 
Equation 4.4: Fraction of fuel consumed that was diesel 

𝑓𝑑 =  
𝑉𝑀𝑇𝑑

𝑉𝑀𝑇𝑑 +  𝑉𝑀𝑇𝑔
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Equation 4.5: Revised CO2 Apportionment for mobile monitoring 

Δ [𝐶𝑂2]𝑓,𝑔 =  Δ [𝐶𝑂2]𝑓 � 
 𝑉𝑀𝑇𝑔  ×  (1/𝐹𝐸𝑔)  × 𝜌𝑔  ×  𝑊𝑔 

𝑉𝑀𝑇𝑑  × ( 1
𝐹𝐸𝑑

)  × 𝜌𝑑 ×  𝑊𝑑 +  𝑉𝑀𝑇𝑔  ×  ( 1
𝐹𝐸𝑔)  × 𝜌𝑔 ×  𝑊𝑔

� 

 

 

The values for fuel economy used in this study were 5.8 miles L-1 and 1.6 miles L-1 
for gasoline and diesel fuel engines, respectively. Similar to other studies (9) fuel 
density values were 0.74 kg L-1 and 0.84 kg L-1 for gasoline and diesel fuel, 
respectively.  

4.1.3.2 Traffic Characterization  

The total and break-down of vehicle miles travelled (VMT)  by HDV and LDV were 
obtained from aggregate data over all lanes of the freeway reported by the California 
Department of Transport (CALTRANS) Performance Measuring System (PeMS) 
(29), which is publicly available. Further, PeMS classifies VMT into those traveled by 
light-duty vehicles (LDV) and truck or heavy-duty vehicles (HDV). The PeMS dataset 
cannot account for VMT travelled by medium duty vehicles (MDV), and they are by 
default attributed to LDV. The 1.45% fraction of LDV VMT in Los Angeles County 
resulting from diesel powered engines were neglected. We assumed that all LDV 
VMT are travelled using gasoline fuel. Based on EMFAC 2011 (3) estimates for Los 
Angeles County, only 10% of VMT associated with MDV are travelled using diesel 
engines. Attributing all these to gasoline LDV VMT in addition to 1.45 % of diesel 
LDV VMT assumed to be gasoline, would lead to 2.2 % overestimation of LDV VMT. 
All VMT traveled by HDV were attributed to diesel fuel.  PeMS estimates truck traffic 
volume to within 5.7% of the values reported by weight-in-motion sensors (30). 

However, use of PeMS estimates does offer the advantage of obtaining HDV 
estimates at a much finer spatial resolution (than limited weight-in-motion truck 
sensors), which was required in this study for relating real-time pollutant 
measurements to real-time traffic estimates.  

4.1.3.3 Freeway emission rate calculations  

Partitioned EFs were used to calculate freeway emission rates (ER), i.e., pollutant 
mass/number emitted per mile of freeway per unit time (kg or g or # mile-1 h-1) using 
Equation 4.6 for six freeways. The subscripts p and f are for pollutant and freeway, 
respectively.  
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Equation 2: Freeway emission rate estimation 

𝐸𝑅 =   𝑉𝑀𝑇𝐻𝐷𝑉  ×  𝐸𝐹𝐻𝐷𝑉 × �
1

𝐹𝐸𝐻𝐷𝑉
� × 𝜌𝑑  + 𝑉𝑀𝑇𝐿𝐷𝑉  ×  𝐸𝐹𝐿𝐷𝑉 × �

1
𝐹𝐸𝐿𝐷𝑉

� × 𝜌𝑔  

 

4.2  RESULTS AND DISCUSSION 

4.2.1 Pollutant Concentrations 

Comparison across the freeways suggests that pollutant concentrations on gasoline 
or LDV dominated freeways were lower than those with higher fraction of HDVs. 
Concentrations appear to have dropped in the last decade as well. Median 
concentrations on I-710 BC, UFP NO were dramatically lower, i.e., 37.5 %, 32.1% 
and 37.2%, respectively, of their median values reported for measurements 
conducted in spring of 2003 by Fruin et al. (16). Comparison to summer 2005 
concentrations reported by Fujita et al. (33) for the morning (AM) period on similar 
segments of freeways, i.e., when the proportion of trucks was high/highest also 
suggest a reduction. Comparison to values for afternoon (PM) hours, during which 
traffic is dominated by gasoline vehicles, as reported by Fujita et al. (33), did not 
suggest any clear trend.  

4.2.2 LDV and HDV emission factors 

Emission factors for light -and heavy-duty vehicles, calculated using Equations 4.2, 
4.3 and 4.6 are shown in Table 4.2. It should be noted that standard deviations for 
HDV are much higher compared to LDV due to propagation of uncertainties related 
to apportioning HDV fractions, but also reflect the relatively larger variation in HDV 
fleet freeway-to-freeway. However, freeway-to-freeway differences in vehicle 
emission factors were not significant enough to merit separate discussion, except for 
I-710, where slightly lower EFs were observed. Consistent with the trend reported by 
Ban-Weiss et al. (9) and Bishop and Stedman (20) lower NOx and NO emission 
factors were found for HDV, though the spread was relatively high. Specifically for I-
710, NOx and NO emission factors were 21 ± 5 g/kg-fuel and 12 ± 4 g/kg-fuel 
(n=14). LDV NOx and NO emission factors were found to be comparable to the most 
recent studies – Ban Weiss et al. (9) and Bishop and Steadman (19). This decrease 
could be interpreted with some caution as a consequence of the Clean Air Action 
Plan (21) and CARB regulations (22).  
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Table 4.2: Comparison of Emission factors from current study to previous studies 

Reference Year of 
measur
ement 

Vehicle 
Type 

NO NOx† BC PM2.5 PNC 

      g kg-

1 
g kg-1 g kg-1 g kg-1 # kg-1 

This work 2011 LDV 1.8 ± 
0.01 

3.0 ± 0.01 0.02 ± 
0.009 

0.16 ± 
0.04 

(2.9 ± 0.53) x 
10e14 

   HDV 13.1 ± 
6.6 

24.4 ± 
10.7 

0.53 ± 0.39 0.60 ± 
0.54 

(5.7 ± 2.5) x 10e15 

Bishop et al., 
2008,2009 

2008 LDV 3.2     

  HDV 17.7 30.5 

 

   

Park et al., 
2011* 

2007 LDV   9.4 

(2.5-5.7) 

0.06 

(0.01-0.03) 

0.15 

(0.04-0.07) 

6.0 × 10e14 

(1.5-5.2) × 10e14 

   HDV   34 

(6.8-17.6) 

0.5 

(0.07-0.17) 

0.73 

(0.08-0.33) 

4.5 × 10e15 

(0.71-1.4) × 10e15 

Ban-Weiss et 
al., 

2008, 2010 

2006 LDV   3.0 ± 0.2 0.026 ± 
0.004 

0.07 ± 
0.02 

(3.9 ± 1.4) x 10e14 

   HDV   40 ± 3.0 0.92 ± 0.07 1.4 ± 0.3 (3.3 ± 1.3) x 10e15 

Kirchestetter et 
al., 1999a 

1997 LDV   9.0 ± 0.4 0.035 ± 
0.004 

0.11 ± 
0.01 

  

    HDV   57 ± 7 1.4 ± 0.6 2.7 ± 0.3   

Geller et al., 
2005 

2004 LDV     0.07 ± 
0.03 

(2.5 ± 1.4) x 10e15 

    HDV     1.02 ± 
0.06 

(8.2 ± 6.3) x 
10e15  

†expressed as NO2 equivalents, * mean (median values across various driving 

modes) 

4.2.3 Fraction contribution of HDV to total emissions 

LDV and HDV emission factors can differ by up to a magnitude or more. Coupled 
with the much lower HDV fuel economy (miles travelled per kg of fuel burnt), it 
results in highly disproportionate contributions from HDV to total emissions. 
Fractional contribution of HDV (EfHDV or emission fraction) to total NOX, BC and PNC 
emissions was calculated using Equation 4.7. 
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Equation 4.7: Fractional contribution of HDV to total emissions 

𝐸𝑓𝐻𝐷𝑉 =  
 𝐸𝐹𝐻𝐷𝑉 × � 1

𝐹𝐸𝐻𝐷𝑉
� × 𝜌𝑑

𝐸𝐹𝐿𝐷𝑉 × � 1
𝐹𝐸𝐿𝐷𝑉

� × 𝜌𝑔 + 𝐸𝐹𝐻𝐷𝑉 × � 1
𝐹𝐸𝐻𝐷𝑉

�× 𝜌𝑑
 

Results suggest that HDV contributing a mere 1 % to VMT would be responsible for 
25% of NOx, 44% of PNC and 36% of total BC emissions. Concordantly, for a mile of 
travel, HDV emissions were 33, 55 and 79 times that of LDV emissions for NOX, BC 
and PNC, respectively. The latest studies conducted in Caldecott tunnel 4 years ago 
(9, 18), which has a 4% up-grade that  puts engines under higher load,  showed 
much higher HDV emissions for NOX and BC, but lower for PNC. Specifically, based 
on vehicle emission factors and fuel efficiency values reported by Ban-Weiss et al. 
(9), HDV emissions were 73, 193 and 46 times of LDV emissions for NOx, BC and 
PNC, respectively. These differences (in part due to both emission technology 
improvements and real-freeway driving) convey the need for estimation of real-
driving based emission factors in Los Angeles to trace the effects of regulation and 
emission improvements.  

Figure 4.1 shows the fraction of total emissions attributable to HDV based on this 
study’s EF, and also compares them to previous studies. Accounting for the standard 
deviation, the fractional contribution of HDV to NOx emissions was lower in 2011 
compared to measurements conducted in 2006, by Ban-Weiss et al. (9), but higher 
than the mean value reported by Park et al. (25) for measurements conducted in 
2007. It should be noted that this difference is due to a much higher LDV NOx 
emission value reported by Park et al., (25) (about three times than other recent 
studies). Contribution of HDV to BC and UFP emissions in the present study was 
comparable to previous studies (Calculated using EFs reported in Table 4.1).     
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Figure 4.1: Contribution of HDV to total emissions 

 
4.2.4 Freeway Pollutant Emission Rates 

4.2.4.1 Annual average emission rates 

Pollutant emission rates for four freeways were computed using Equation 4.6. Daily 
VMT (and fraction due to HDV) on the entire segment of freeway in Los Angeles 
County during the 215 working days from Dec 1, 2010 – Nov 30, 2011 were used to 
generate daily emissions from freeway during normal working days. Further 
normalized by 24 hours, annual average hourly value for emission rates are plotted 
in Figure 4.2 and daily time series for VMT and HDV VMT is shown in Section S5 in 
Appendix B. Except for summer to fall increase in port related goods activity on I-
710, there were no significant seasonality aspects to consider. (Standard deviation in 
VMT was < 2% and trucks was < 5%.) Despite lower VMT attributable to HDV on I-
110S and CA-91, ER on I-110S were comparable to I-710 and ER for CA-91 was 
significantly higher than I-710. Conventionally, I-710 has often been studied as a 
high end of freeway emissions. The present results suggest that ‘truck counts’ may 
not be a sufficient or the best indicator of line emission sources like freeways. 
Emissions are better correlated with vehicle activity, including speed, than vehicle 
counts. Using an indicator like ‘vehicle miles travelled,’ which accounts both count 
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and speed, may be better suited for modeling techniques predicting concentrations 
near roadways.  

 
Figure 4.2: Annual average hourly freeway emission rates  

 
4.2.4.2 Diurnal variation in freeway emission rates 

Mean hourly VMT (and fraction due to HDV) on the freeway segments for an 
archetypal month, May 2011, were used to generate diurnal profiles. Pollutant 
emission rates have been plotted in Figure 4.3 (a) – (d). Several important 
observations can be made from these figures. Firstly, as expected, diurnal profiles of 
emission rates are shaped similarly to the vehicle activity profiles on each freeway 
(See Section S.4 in Appendix B). Secondly, unlike concentration profiles, which tend 
to be bi-modal (32-34) with peaks during the morning and evening commute hours, 
the emission rate profile has a single mode in the middle of the day. During midday 
(10:00 – 13:00 hours) a drop in vehicle activity is often observed, more strongly in 
vehicle flow (number of vehicles per hour) than in vehicle miles travelled. However, 
HDV activity increases and peaks during midday hours. The emissions from 
increased HDV activity seem to compensate for- and in fact outweigh any reductions 
in emission due to fewer vehicles, thereby producing distinctly uni-modal profiles for 
emission rates. As noted above, this contrasts the pollutant concentration profiles 
that have often been reported to be bi-modal for multiple pollutants near roadway 
locations and urban areas impacted by traffic sources (32-34). The reduction in 
pollutant concentrations reported during mid-day hours (often half or lower) is likely 
due to the increase in atmospheric dispersion (increase in mixing height) and in wind 
speed (34) during this time period, despite the apparent increase in emission rates, 
and underscores the role of meteorology, in addition to traffic sources, on the 
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observed concentrations of air pollutants even in urban areas impacted by vehicular 
emissions.  

 
Figure 4.3: Diurnal profiles for freeway emission rates 

 
4.2.4.3 Freeway-to-freeway variability in emission rates 

Since freeway emissions are often dominated by HDV fraction, a variation in freeway 
emissions can be expected due to considerable variation in HDV fractions on Los 
Angeles freeways and differences VMT (and HDV fraction) at different times of the 
day. To test the freeway-to-freeway variability in hourly emission rates, Kruskal-
Wallis test (nonparametric version of the classical one-way analysis of variance, not 
requiring normal population distributions or equal variance (35), was conducted for 
the hypothesis that the mean of hourly emission rates on all freeways was the same. 
The distributions were considered statistically different if p < 0.05. The results are 
presented in Table 4.3. Generally, emission rates for UFP and BC were not 
significantly different across most freeways, though greater variation was found in 
NOx,NO and PM2.5 hourly emission rates. Hourly emission rates on freeway I-110N 
were significantly different (and lower) from all other freeways for all pollutants, 
except for NOx on CA-91 and PM2.5 on CA-60. Emission rates for I-110S, I-405 and 
I-710 had similar distribution. CA-60 had a different distribution than both 110N and 
110S, but was most similar to the I-710. 
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Table 4.3: P-values for non-parametric ANOVA analysis of freeway-to-freeway differences in 
hourly emission rates (p-value < 0.05 for freeways having different distribution of hourly 
emission rates)   

Pollutant NOx UFP 

Freeway I-110N 
I-
110S 

I-
405 

CA-
60 I-710 

CA-
91 I-110N 

I-
110S 

I-
405 

CA-
60 I-710 

CA-
91 

I-110N 1      1      

I-110S 0.00 1     0.00 1     

I-405 0.00 0.59 1    0.00 0.45 1    

CA-60 0.02 0.01 0.03 1   0.02 0.04 0.09 1   

I-710 0.01 0.30 0.65 0.18 1  0.00 0.80 0.54 0.14 1  

CA-91 0.18 0.00 0.01 0.36 0.04 1 0.00 0.32 0.17 0.02 0.41 1 

             

Scale <0.10 <0.2 <0.4 <0.6 <0.80 1.00 <0.10 <0.2 <0.4 <0.6 <0.80 1.00 

Pollutant BC PM2.5 

Freeway I-110N 
I-
110S 

I-
405 

CA-
60 I-710 

CA-
91 I-110N 

I-
110S 

I-
405 

CA-
60 I-710 

CA-
91 

I-110N 1      1      

I-110S 0.00 1     0.00 1     

I-405 0.00 0.43 1    0.00 0.87 1    

CA-60 0.03 0.02 0.06 1   0.07 0.00 0.01 1   

I-710 0.01 0.98 0.71 0.14 1  0.01 0.03 0.04 0.11 1  

CA-91 0.00 0.48 0.30 0.01 0.33 1 0.00 0.32 0.29 0.01 0.09 1 

 

4.3 SUMMARY AND CONCLUSIONS 

Hourly-aggregate vehicular activity on several freeways was related to vehicle 
emission factors to estimate pollutant emission rates from these freeways 
(mass/number mile-1 h-1) and their hourly distribution. Three parameters drive these 
distributions – total VMT per mile on the freeway, fraction of VMT due to HDV, and 
the ratio of LDV to HDV emission factors. It was found that the hourly distributions of 
emission rates may vary significantly among different freeways. This implies that 
vehicle fleet mix on the freeway in addition to total vehicle activity should be taken 
into consideration as a significant variable that characterizes the emissions of air 
pollutants from that freeway. Further, VMT as well as truck (or HDV) fraction of VMT 
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is a better surrogate for characterizing emission source strength than total vehicle 
and or truck counts. This is corroborated by the lack of mid-day reduction in emission 
rates in contrast to a drop in mid-day traffic counts. The use of traffic counts as a 
surrogate of emission source strength of a given roadway is therefore not a reliable 
predictor of the pollutant concentrations in the vicinity of this freeway, and the role of 
meteorological parameters, such as atmospheric dilution and wind speed, is equally 
crucial in influencing the values of these concentrations downwind a freeway.       
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CHAPTER FIVE, PART I. LINKING IN-VEHICLE ULTRAFINE PARTICLE 
EXPOSURES TO ON-ROAD CONCENTRATIONS 

(based on Task 4: Develop and validate in-vehicle exposure models for BC, 
UFP number, PM2.5, particle-bounded PAH, and NOx.) 
 
Note: this task and chapter has two parts. Part I describes the development of an in-
vehicle air exchange and particle loss model using particle number concentrations. 
Part II describes the on-road concentration models for all pollutants.  These two 
components are both necessary to determine in-vehicle concentrations.  
 
The overarching goal of Task 4 was to predict exposures of human subjects while in 
vehicles. Therefore, although some important characterization data were used in 
Tasks 1-3 such as AER, we are not aiming to perform a detailed characterization of 
the complex dynamics of exposure for all vehicle-related pollutants. However, we 
laid a strong foundation from which to do this by: 1) establishing the importance of 
AER in affecting the differences between on-road and in-vehicle concentrations; 2) 
developing predictive AER models that use easy-to-obtain information that can be 
made available to epidemiologists; and 3) showing that other particle-related 
pollutants are also highly dependent on AER.  The modeling effort here will include 
statistical analyses of many serially correlated predictors and will use an approach 
that incorporates predictors anticipated to be available in exposure models in 
epidemiologic studies.  
 

5.0 INTRODUCTION 

The particular components of traffic emission responsible for causing adverse health 
effects are not known (1,2), but ultrafine particles (UFP), defined as particles having 
aerodynamic diameter less than 100 nm, are of particular interest due to their high 
surface area and the ability to trans-locate through epithelium as well as their high 
proportion of organic and metals content and resulting high oxidative potential  
(1,3,4). 
 
Numerous studies (e.g., 5,6) have shown that UFP concentrations on or in the 
vicinity of roadways are frequently almost one order of magnitude higher than 
ambient levels. This has important implications for exposure assessment. For 
example, less than 10% of daily time spent in vehicular transit microenvironments  
(7) has been estimated to contribute 35-50% of total UFP exposure by Fruin et al. (8) 
for Los Angeles residents under open window conditions and 17% by Wallace and 
Ott (9) for more suburban locations. However, large variations in exposure incurred 
inside vehicles are expected to occur not only due to differences in roadway 
environments but also because inside-to-outside ratios (i.e., in-vehicle to roadway 
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concentration ratios) (I/O) vary from vehicle to vehicle due to differences in 
ventilation conditions and other vehicle characteristics that affect air exchange rate 
(AER), which is defined as the number of times per hour vehicle cabin air is replaced 
by roadway/outside air. In general, UFP I/O ratios in vehicles can range from nearly 
zero to nearly one.  
 
Recent studies have shown that I/O is strongly dependent on AER.  Knibbs et al. 
(10) reported an r2 of 0.81 (Pearson correlation coefficient) between AER and I/O.  
This study, as the present, performed measurements under real driving conditions 
(multiple speed and ventilation conditions) and found that ventilation preference 
(windows open, outside air intake or in-cabin air recirculation) and ventilation fan 
setting strongly influences AER and the resulting I/O ratio.  
 
As it is impractical to measure either the I/O ratio or AER for large numbers of 
subjects’ vehicles required in an epidemiological study addressing drive-time 
exposure, predictive models are needed for estimating AER and I/O ratios. If these 
models could be based on information that can be collected via questionnaire, they 
can be useful tools for accurately estimating personal UFP exposures and their 
associated health effects. The purpose of this study was to measure UFP I/O ratios 
and AER in a sufficiently large number of vehicles to develop accurate predictive 
models for assessing drive-time UFP exposure based on easy-to-obtain information.  
 
5.1 METHODS 

5.1.1 Vehicle selection and ventilation conditions tested 
Vehicles were selected to provide a wide distribution of age and mileage, which are 
both important factors affecting AER, albeit highly correlated.  Measurements were 
performed in 73 vehicles that were selected from different size categories (sub-
compact, compact, mid-size, etc.) in proportions similar to their presence in U.S. 
fleet. To expand our data and include outside air ventilations test conditions at non-
zero speeds, in addition to other settings, we also added data from Knibbs et al. 
(10,11) measurements in Sydney (Australia) to Los Angeles measurements, where 
the bulk of the measurements were performed.  

Measurements were made with the air conditioning system operating at both 
ventilation setting options: recirculation (RC), where the in-cabin air is re-circulated, 
and outside air intake (OA), where outside air is drawn into the vehicle cabin and 
passed through a filter (if present). Overall, AER was measured in 73 vehicles for 
453 unique combinations of vehicle, speed, and ventilation fan setting (308 at RC 
and 145 at OA setting) and I/O ratio was measured in 43 vehicles for 241 
combinations (110 at RC and 131 at OA setting).   
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5.1.2 Speed and routes driven 

In the Los Angeles measurements, in order to maintain a steady AER, 
measurements were made while driving at near constant speeds that ranged from 
20- 65 miles h-1. Experiments at speeds up to 35 miles h-1 were conducted around 
the Rose Bowl, Pasadena, a 3.3 mile loop where vehicular traffic was light. 
Measurements at speeds ranging from 55-70 miles h-1 were made on Freeways I-10, 
CA-60 and I-605 during free flowing traffic conditions. An on-board Global 
Positioning System (GPS) device (Garmin GPSMAP 76CSC) recorded the location 
and speed of the car at 1-s intervals.  

In Sydney, measurements were performed during trips through a 2.5 mile long road 
tunnel and on above-ground roads in its vicinity.  AER measurements were 
performed with test vehicles stationary and when driving on open roads at 37 and 68 
miles h-1. The measurements are described in detail by Knibbs et al. (11). Each I/O 
sampling session in a given vehicle involved multiple trips through the tunnel 
(reported in Knibbs et al. (10) interspersed with above-ground travel. Average 
vehicle speeds on each segment of the sampling route were calculated based on 
known distance and time taken, because poor satellite reception impeded GPS 
based measurements of speed.  

5.1.3 Particle concentration measurement, I/O and AER determination 

Air exchange rates were determined using Carbon Dioxide (CO2) as a tracer gas and 
measurements were made using either TSI Q-Trak model 7565 (TSI Inc., MN, USA) 
or LI-COR Li-820 units (LI-COR Biosciences, NE, USA) for the vehicles that were 
tested in Los Angeles. The AER determination procedure is detailed in publications 
from the present study: Fruin et al. (12) and Hudda et al. (13). Sulfur Hexafluoride 
(SF6) was used as a tracer gas for the vehicles tested in Sydney using an Innova 
type 1412 (Lumasense Technologies, Ballerup, Denmark) photo-acoustic field gas 
monitor and Innova type 1303 multipoint sampler and doser. Further details for these 
measurements can be found in Knibbs et al. (11).  We (12) have demonstrated very 
good agreement with predictions reported by Knibbs et al. (11) (Pearson r2 = 0.83), 
despite the use of different tracer gases.  

Particle measurements at both locations were performed with a TSI Model 3007 
Condensation Particle Counter (CPC) with a 50% lower size detection limit of 10 nm. 
In Los Angeles, in-vehicle to roadway concentration ratios (I/O) were determined as 
the average value observed for at least 10 minutes of measurement after a stable 
value had been attained (i.e., a standard deviation less than 5%). To harmonize the 
I/O measurements across the two study locations, those performed in Sydney (10) 
were weighted by their respective durations. Data quality assurance comprised 
regular flow and zero reading checks. In Los Angeles, all instruments used were run 
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simultaneously before and after test runs to check for consistency of response and 
ambient concentrations. All instruments were synced to within 1 s of the time 
recorded by GPS. Further details on measurements are available in our publication 
(13).  

5.1.4 Predictive models 

Models were developed to predict AER and I/O for UFPs under both RC and OA 
conditions, using the following as candidate independent variables: ventilation fan 
(fraction of maximum setting), vehicle age (years), mileage (thousands of miles), 
speed (miles h-1), manufacturer (United States, Japan or Germany/Other), interior 
volume (ft3), and the product of coefficient of drag (Cd) and frontal area (A, m2) along 
with pair-wise interactions between vehicle speed, age, and fan setting, and between 
Cd and frontal area of the vehicle. Ventilation fan fraction was defined as the ratio of 
the selected fan setting to the total number of options for fan setting. For example, if 
a vehicle had seven fan setting options and was operated at the third strongest 
option, the fan setting was set to 3/7(or, = 0.43) in the models. Since AER was 
positively skewed, natural log transformed AER (lnAER) was used as the outcome in 
AER prediction models. For I/O ratios, which varied between 0 and 1, a logit 
transformation (the natural log of [I/O]/[1-(I/O)])  was used, often more appropriate for 
fractions. Predicted values on the original scales can be recovered using the 
equations AER = exp(LnAER) and I/O = exp(logitIO)/(1+exp(logitIO)).  

Multiple measurements of I/O and AER were performed in each vehicle at different 
speeds and/or ventilation settings and these repeated measurements were 
sometimes correlated. This correlation violates the assumption of completely 
independent observations in multiple linear regression (MLR) models, and MLR 
models fit to correlated data have unbiased regression coefficients but incorrect 
standard errors (14). To account for correlated observations, we present results from 
Generalized Estimating Equations (GEE) models (15) for continuous outcomes, with 
an exchangeable correlation structure and robust sandwich estimates of regression 
coefficient standard errors. MLR estimated regression coefficients were similar to 
those from GEE and are provided for comparison. Model fit was assessed by 
adjusted R2 and by leave-one-vehicle-out cross-validated adjusted R2, which 
provides a more reliable estimate of the predictive ability of the same model fit to a 
new dataset containing information on different cars.  

All-subset MLR was used to identify the most important set of predictor variables. 
From this set, a parsimonious GEE model was developed that included all lower-
ordered terms of any interactions or squared variables, had high cross-validated 
adjusted R2, statistically significant predictor effects (α = 0.10), and satisfied linear 
model assumptions. For each model, significance of an indicator variable for Sydney 
data was also evaluated.  
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5.2 RESULTS AND DISCUSSION 

5.2.1 In-vehicle-to-roadway concentration ratios 

The I/O ratios measured under RC conditions were far lower than those under OA 
conditions due to lower AERs under RC (13). The median I/O value at RC was 0.11 
(inter-quartile range: 0.07-0.22) compared to 0.66 at OA (inter-quartile range: 0.53-
0.80). The median AER value at RC was 6.0 h-1 (inter quartile range: 3.6-10 h-1) 
compared to 63 h-1 for OA (inter quartile range: 47-83 h-1). The maximum uncertainty 
associated with AERs was 7.5% and I/O ratio was 7 % (using root mean square 
error propagation accounting for both instrument accuracy and stability of continuous 
measurements for AER measurements and only the stability of continuous 
measurements for I/O.) Figure 5.1 shows the distributions of AER and I/O results 
and their transformed values, under both RC and OA ventilation mode. The 
measurements in Los Angeles and Sydney (10) have been differentiated in the sub-
figures.    

 
Figure 5.1: Distribution of Dependent Variables.  

 

5.2.2 Predictive model for ln(AER) at RC and OA setting 

The GEE model gave the following Equations 5.1 and 5.2 for predicting lnAER under 
RC and OA condition, respectively. 

 

Equation 5.1:  ln(AER) under RC conditions 

ln(𝐴𝐸𝑅) =  2.79 +  (0.019 × 𝑠𝑝𝑒𝑒𝑑) + [0.015 × age –  3.3 ×  10−3 age2]

+ [−0.023 × vol –  6.6 ×  10−5 vol2] +  Manuf Adjustment  
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where the manufacturer adjustment is -0.71 for German vehicles and -0.39 for 
Japanese vehicles. If the speed is zero, a -0.51 factor should be added. 

Equation 5.2:  ln(AER) under OA conditions 

ln(𝐴𝐸𝑅) =  4.20 +  [(1.88 × fan strength) + (−0.92 × fan strength2)] + (0.0048 ×  speed)

+  (−0.0073 × vol) 

where the coefficients for fan strength and fan strength2 should be 0.40 and 0.13, 
respectively, at zero speed, and the speed term should be -0.32 at zero speed. 

GEE and MLR models for predicting AER were able to account for 68 % of the 
variability in observed AER under RC conditions and 79% under OA conditions. 
Cross validated R2 was 0.60 for RC conditions and 0.73 for OA conditions. The GEE 
confidence intervals can be seen to be roughly a third larger than MLR intervals 
(Tables 5.1 and 5.2). In all AER model runs, an indicator variable for Sydney data 
was not significant. 
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Table 5.1: AER under RC Model Coefficients, Confidence Intervals, and P Values 
  

GEE Estimate Std.err Wald Pr(>|W|) Confidence 
      2.5% 97.5% 

Intercept 2.79 0.36 62 4.1E-15 2.1 1.1 

speed > 0 (miles h-1) 0.019 0.0013 223 < 2e-16 0.017 0.0038 

speed = 0 -0.51 0.12 19 1.6E-05 -0.75 0.36 

Age (yr) 0.015 0.031 0.24 0.62 -0.046 0.092 

age2 (yr) 0.0033 0.0017 4.0 0.045 -3.2E-05 0.005 

vol  (ft3) -0.023 0.0049 21 4.0E-06 -0.033 0.015 

vol2 (ft3) 0.000066 0.000015 18 1.9E-05 0.000037 0.000044 

Manuf: Japan -0.39 0.12 11 0.00091 -0.63 0.36 

Manuf: Germany -0.71 0.25 8.1 0.0045 -1.2 0.7 

 

MLR Estimate Std. Error t value Pr(>|t|) Confidence 
      2.5% 97.5% 

Intercept 2.97 0.28 11 < 2e-16 2.4 3.5 

speed > 0 (miles h-1) 0.018 0.0020 8.9 < 2e-16 0.014 0.022 

speed = 0 -0.49 0.11 -4.3 2.0E-05 -0.71 -0.27 

Age (yr) 0.010 0.019 0.53 0.59 -0.027 0.047 

age2 (yr) 0.0039 0.0011 3.7 0.00029 0.0018 0.0060 

Vol (ft3) -0.025 0.0037 -6.8 6.8E-11 -0.032 -0.018 

vol2 (ft3) 0.000074 0.000013 5.7 3.0E-08 0.000048 0.000099 

Manuf: Japan -0.34 0.070 -4.9 1.9E-06 -0.48 -0.20 

Manuf: Germany -0.88 0.12 -7.3 3.3E-12 -1.1 -0.64 
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Table 5.2: AER under OA Model Coefficients, Confidence Intervals, and P Values 
  

GEE Estimat
 

Std.err Wald Pr(>|W|
 

Confidence 
      2.5% 97.5% 

Intercept 4.20 0.245 294 < 2e-16 3.7 0.7 

fan strength 1.9 0.14 170 < 2e-16 1.6 0.43 

fan strength2 -0.92 0.11 70 < 2e-16 -1.1 0.33 

speed = 0 -0.32 0.094 11 0.0007 -0.5 0.28 

speed > 0 (miles h-1) 0.0048 0.0013 14 0.0002 0.0023 0.0038 

Vol (ft3) -0.0073 0.0019 15 0.0001 -0.011 0.0056 

fan strength @ speed = 0 0.40 0.26 2.5 0.12 -0.1 0.76 

fan strength2 @ speed = 
 

0.13 0.20 0.45 0.50 -0.26 0.59 

      

MLR Estimat
 

Std. 
 

t 
 

Pr(>|t|) Confidence 
      2.5% 97.5% 

Intercept 4.23 0.14 29 < 2e-16 3.9 4.5 

fan strength 2.3 0.40 5.7 0.0000 1.5 3.1 

fan strength2 -1.3 0.36 -3.7 0.0004 -2.1 -0.61 

speed = 0 -0.34 0.15 -2.3 0.023 -0.63 -0.047 

speed > 0 (miles h-1) 0.0043 0.0014 3.0 0.0028 0.0015 0.0071 

Vol (ft3) -0.0074 0.0008 -8.8 0.0000 -0.0090 -0.0057 

fan strength @ speed = 0 0.077 0.56 0.14 0.89 -1.0 1.19 

fan strength2 @ speed = 
 

0.45 0.49 0.91 0.36 -0.52 1.4 

 

The predicted AER under RC conditions is plotted against the two most significant 
determinants of AER, speed and age, in Figure 5.2 (a). Model results suggest that 
an 11 year old vehicle (~ 75th age percentile) has an AER that is about 1.5 times 
higher than that of a 4 year old vehicle (~25th age percentile). Furthermore, AER 
during typical freeway driving speed (65 miles h-1) is expected to be 1.8 times higher 
than under typical arterial driving conditions (35 miles h-1).  
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Figure 5.2: Predicted values for lnAER plotted against the two most significant 
variables under RC and OA ventilation modes 

The two surfaces plotted in 5.2 (a) represent the extremes of other model inputs 
under RC conditions: a U.S. manufactured sub-compact vehicle (85 ft3 cabin) and a 
German manufactured large vehicle (120 ft3 cabin),  the range of AER variation that 
can be expected due to manufacturer and volume. A U.S. manufacturer’s vehicle is 
expected to have an AER nearly 50% higher than a Japanese vehicle and about 
twice as high as a German manufactured vehicle, for given cabin volume, age and 
speed. It is interesting that cabin volume was found to be negatively correlated with 
AER when expressed in units of air changes per hour under RC conditions (Similar 
relationship was found with I/O, discussed in following section). For example, an 85 
ft3 vehicle is expected to have an AER, which is 2.2 times that in a 120 ft3 vehicle (or 
1.6 times higher if AER units are ft3 h-1). To provide a typical AER value under RC 
conditions for reference, a seven-year-old vehicle (50th age percentile, U.S. 
manufactured, and 110 ft3 , the average U.S. fleet cabin volume) would have an AER 
of 3.7 h-1 at 35 miles h-1 and 6.7 h-1  at 65 miles h-1.  

Under OA conditions, fan strength explained the most variability in lnAER, followed 
by speed. For example, increasing the fan setting from low (0.25) to medium (0.5) to 
highest (1.0) increased the AER by a factor of 1.3 and 1.7, respectively. In 
comparison, increasing the driving speed, the second most significant variable, from 
arterial to freeway speeds only increased the AER by 1.2. Vehicle cabin volume was 
also found to be significant, with higher volume vehicles having lower predicted AER 
(h-1). An 85 ft3 sub-compact vehicle had 1.3 times higher AER than a 120 ft3 large 
sedan. Fan strength and zero speed interaction terms, while not significant 
individually, were significant as a pair, so included in the OA model.     

Figure 5.2 (b) above shows the model predictions plotted against the two most 
significant determinants of AER under OA conditions; ventilation fan strength and 
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vehicle speed, for a sub-compact (85 ft3 ) and large sedan vehicle (120 ft3), thus 
capturing the full range of AERs that can be expected under OA condition. For the 
previously mentioned reference vehicle travelling at 35 and 65 miles h-1, AER would 
be 72 h-1 and 83 h-1, respectively, at the middle fan setting, roughly an order of 
magnitude higher than under RC conditions. 

5.2.3 Predictive model for logit(I/O) under RC and OA setting 

I/O UFP number concentration ratios under both ventilation conditions were modeled 
together, using a binary indicator variable for RC setting, (i.e., variable RC = 1 under 
RC setting and zero otherwise). The resultant Equations 5.3 and 5.4 from the GEE 
model for predicting I/O under RC and OA conditions are as follows: 

 
Equation 5.3: Logit(I/O) under RC conditions 

logit(𝐼/𝑂) =  −3.23 + 0.54 × 𝑓𝑎𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ +  0.023 × 𝑠𝑝𝑒𝑒𝑑 + 0.10 × 𝑎𝑔𝑒 

 
Equation 5.4: Logit(I/O) under OA conditions  

logit(𝐼/𝑂) =  −0.29 + 0.54 × 𝑓𝑎𝑛 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ +  0.023 × 𝑠𝑝𝑒𝑒𝑑 + 0.02 × 𝑎𝑔𝑒 

The GEE coefficients, confidence intervals and p values are listed in Table 5.3. GEE 
models required only vehicle age, speed and ventilation fan strength to account 79 
% of the variability in I/O across RC and OA conditions. Cross validated R2 was 0.76. 
The indicator variable for Sydney was significant for the I/O modeling, but did not 
appreciably change the results. Therefore, this variable was omitted in the final 
model since that factor would not be useful to other users of the model.  
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Table 5.3: I/O GEE Model Coefficients, confidence intervals and p-values.

 

 

Figure 5.3 (a) shows the full range of I/O that can be expected in vehicles up to 20 
years old and travelling at speeds up to 75 miles h-1, age and speed being the most 
important predictors. Under RC ventilation conditions, I/O can be expected to vary 
from less than 0.1 to nearly 0.8 in the leakiest cars (old and travelling at high 
speeds). The two surfaces mark the upper (full fan) and lower limits (low fan setting, 
equal to 0.33) of variation that can be expected due to the third most significant 
variable, fan strength. Under RC conditions, fan setting was relatively unimportant. 
For the entire range of age/speed plotted in Figure 5.3 (a), fan strength made an 
average difference of only 0.07 ± 0.02 in I/O ratio. 
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Figure 5.3: Predicted values for I/O under RC and OA ventilation mode versus two 
most important model variables for each mode. Bottom subsets show actual 
measurements versus surface of median model predictions. 

In contrast, under OA conditions, I/O ratios were most strongly dependent on vehicle 
speed and fan speed. I/O ratios were higher but had a smaller range compared to 
RC conditions, varying from 0.5 – 0.9 (Figure 5.3 (b)). The plotted surfaces in Figure 
5.3 (b) mark the lower (25th age percentile) and upper bounds (75th age percentile) of 
predicted I/O due to variation in the third variable, vehicle age, though the distinction 
is barely discernable. Age (by itself) under OA was not significant and made a 
maximum difference of 0.03 in I/O ratios predicted using Equation 4.  The lower 
subset figures show measured I/O ratios plotted along with median predicted surface 
to show modeled data fit.  

5.2.4. Fleet-wide distributions of AER and I/O 

To calculate individual in-vehicle UFP exposures, the models presented in previous 
sections for prediction of AER and I/O require six inputs: (a) ventilation setting; (b) 
fan setting; (c) manufacturer; (d) vehicle age; (e) speed; and (f) vehicle volume. For 
conducting a large epidemiological study, these variables can be gathered directly 
through a questionnaire or generated from vehicle-related information like age, 
vehicle identification number (which holds information on model, make and 



88 

manufacturer), and driving/trip related information like ventilation setting choice, fan 
setting, and trip time and destination.  

To calculate population-size distributions of in-vehicle UFP exposure, the distribution 
of predicted AER and I/O ratios in a fleet of vehicles can be computed if required 
input variable distributions for the fleet are known. As an example, probability 
distributions for AER and I/O (predicted using Equations 5.1, 5.2, 5.3 and 5.4) were 
computed for a fleet of sedan type vehicles using input distributions based on the 
U.S. fleet.  

Vehicles were divided into three categories based on average cabin volume for three 
size categories:  compact (99 ft3), mid-size (112 ft3) or full-size (135 ft3). The 
frequency of each size was determined from the fraction of passenger cars in each 
volume category for the years 1990-2010 (16).  For fan setting, it was arbitrarily 
assumed that an equal fraction of vehicles were being driven at three fan settings, 
low (fan setting = 0.33), medium (0.67) and highest (1.0).  The current fractions of 
manufacturer share were used: (44.5% U.S., 42% Japanese and 13.5% 
German/other).  For age and speed, EPA Motor Vehicle Emission Simulator 
(MOVES) default age and speed inputs for gasoline passenger cars were used (17). 
Different speed distributions were used for arterial and collector roads and freeway 
and its ramps, which also varied with respect to time of day (i.e., rush hour or non-
rush hour). The weighted average speeds were 33 and 37 miles h-1, respectively, for 
arterial roads during rush hours and non-rush hours, and 45 and 55 miles h-1, 
respectively, for freeways during rush and non-rush hours. Further details on all 
these input distributions have been presented in the Appendix C.  

The fractions of vehicles having a specific AER or I/O are plotted in Figure 5.4 for 
both ventilation choices (RC and OA). Several important observations can be made 
from Figure 5.4. First and foremost, though roadway type and associated speed 
differences affect AER and I/O, the most significant difference occurs due to 
ventilation setting choice. Under RC conditions, 80% of the fleet is expected to have 
I/O ratio between 0.15 and 0.5—significant protection—under all road types and 
speeds, but for OA conditions, 80% all vehicles are expected to have I/O ratios from 
0.65 to 0.85, only moderately reduced concentrations. Looked at another way, under 
RC conditions, the fraction of vehicle fleet that will experience cabin concentrations 
lower than half of on-road concentrations exceeds 80%, but virtually none of the fleet 
is expected to have I/O ratios less than 0.5 under OA conditions. Furthermore, the 
difference between rush hour and non-rush hour speed distributions leads to a far 
more significant difference in AER and I/O distribution for freeway driving than 
arterial driving. 
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Figure 5.4: Distribution for AER and I/O for a fleet similar to U.S. passenger car fleet in terms 
of manufacturer’s market share, vehicle volume and age. 

 

5.2.5 Expected in-cabin concentrations for given roadway concentrations 

The ultimate goal of generating predictive models for I/O is to be able to predict in-
cabin concentrations from roadway concentrations (calculated as Concentrationin-cabin 
= I/O x Concentrationroadway). To illustrate, representative probability distributions of 
UFP concentrations were generated from 10 hours of sampling on arterial and 12 
hours of sampling on Los Angeles freeways and are shown in Figure 5.5.  In turn, 
these distributions were joined in a Monte Carlo-type sampling method with the I/O 
distributions in Figure 5.4 to generate distributions of UFP concentrations inside the 
U.S. vehicle fleet if driven on Los Angeles roads.   
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Figure 5.5: Expected in-cabin concentration for U.S. vehicle fleet travelling on 
Los Angeles arterial roads and freeway  

 

Comparison of the measured roadway concentrations and the predicted in-cabin 
concentrations under RC and OA conditions shown in Figure 5.5 suggests that for 
the range of fleet vehicle characteristics such as age and mileage (e.g., 25th to 75th 
percentile differences for a ventilation setting and road type), we would expect a two 
to three-fold range in in-vehicle UFP exposures, while the differences due to 
ventilation mode selection alone for a given vehicle on either road type was larger, 
with factors ranging from two to four. The increase in speed going from arterial to 
freeway speeds, however, along with increase in on-road concentrations on 
freeways, only increased in-vehicle UFP exposure for a given vehicle at either 
ventilation mode by a factor of 1.5. Overall, while ventilation choice is still the 
dominant factor, it is interesting that once the variability of on-road UFP 
concentrations are taken into account, the spread of in-vehicle UFP concentrations 
between RC and OA conditions overlaps, unlike the spread of I/O distributions. 

 

5.3. SUMMARY AND CONCLUSIONS 

Models have been presented for predicting UFP in-vehicle to roadway concentration 
ratios (I/O) based on simple driving preferences and vehicle characteristics. 
Scalability of these models was demonstrated at a fleet-wide level and in dynamic 
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roadway environments. In general, factors that increase air exchange rates (AER) 
increase UFP I/O. Age was significant and positively correlated with both AER and 
I/O under recirculation ventilation setting (RC), but age was not significant under 
fresh air intake setting (OA). Under OA conditions, fan strength was also a strong 
determinant and positively correlated with I/O ratio. Under both ventilation settings, 
an increase in vehicle volume decreased I/O. Overall, combining these results with 
on road UFP concentration distributions measured on Los Angeles roadways, in-
cabin UFP exposure concentrations during freeway driving were up to 1.5 times that 
of arterial driving, but the switch from OA ventilation condition to RC dropped the in-
vehicle concentration on either road type two to four fold.  
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CHAPTER FIVE, PART II.  DEVELOP AND VALIDATE THE ON-ROAD 
EXPOSURE MODELS FOR PARTICLE-BOUNDED PAH, PNC, PM2.5, NOX, AND 
BC  (based on Task 4: Develop and validate in-vehicle exposure models for BC, UFP 
number, PM2.5, particle-bounded PAH, and NOx.) 

5.4. INTRODUCTION  

In the following work we used measurements of on-road air pollutants acquired by 
USC during work to accomplish the above Tasks 1-3.  Models to predict in-vehicle 
UFP particle number concentration (PNC) (also part of Task 4) were presented 
above (Part I of Chapter Five).  Those results and the present results were used to 
help develop the predictive model for Task 5 in the next section for in-vehicle 
personal PAH collected by study subjects.  No other in-vehicle data were collected 
for BC, NOx or PM2.5 and therefore, in-vehicle models cannot be developed for these 
pollutants.  Due to these limits in the data collected, we focus herein on the 
development of predictive models for on-road BC, PAH, PNC, PM2.5 and NOx.  The 
purpose is to provide on-road models to predict air pollutants that could be combined 
with the models developed in Tasks 1-2 for AER to then predict in-vehicle exposures 
in human subjects.  No models were developed for CO and CO2 since they are 
generally not of primary interest in epidemiologic research. Although CO can be a 
marker of fossil fuel combustion, the measurements selected are believed to be 
more directly representative of pollutant components involved in oxidative stress, 
inflammation and damage to macromolecules and other cell constituents.   

The primary goal of Tasks 4-5 is to predict exposures of human subjects while in 
vehicles.  We start this effort here with the prediction of on-road concentrations.  
Characterization data useful in predicting in-vehicle exposure to PN was presented 
in Tasks 1-3, such as AER for a given OA and RC setting (OA refers to the time 
when the car's ventilation system injects fresh Outside Air into the vehicle; RC refers 
to the time when the car's ventilation system ReCirculates the air with the vehicle 
cabin). In Tasks 4-5 we are not aiming to perform a detailed characterization of the 
complex dynamics of exposure.  This is because some variables used in the above 
characterization (e.g., real-time OA and RC) would typically not be available in an 
epidemiologic study.   

Human exposure prediction data would be averaged over long periods as compared 
with the real-time nature of the characterization data.  Nevertheless, given the 
amount of data available and on model fit, we chose one-minute average air 
pollutant concentration and also tested its temporal autocorrelation.  The modeling 
effort included statistical analyses of many serially-correlated predictors and used an 
approach that incorporates predictors of on-road pollutant concentrations anticipated 
to be available for exposure models in epidemiologic studies.  For in-vehicle human 
exposures, this on-road data would be combined with the detailed characterization 
data already discussed (vehicle type and age, AER based on OA and RC condition, 
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etc.).  An initial limited effort in Task 5 makes this union of on-road exposure 
predictors with subject-reported in-vehicle conditions based in part on findings using 
Task 1-3 characterization data.  

For the development and validation of the predictive models for on-road pollutants, 
we first conducted an exploratory data analysis to obtain a normal transform function 
for the air pollutant data, and then performed initial screening of the predictor 
variables and the linear or non-linear relationship between them and the on-road air 
pollutant concentrations.  Finally, we built linear regression models and non-linear 
generalized additive models to explore the influence of predictor variables and 
modeling methods. We also constructed the models with incorporation of temporal 
autocorrelation.  Using cross validations and independent holdout tests, we tested 
the effects of predictor variables, modeling methods and temporal autocorrelation for 
the prediction of on-road air pollutant concentrations.   

5.5. MATERIALS  

The study domain mainly covered most of several major freeways, partial arterials 
and local roads (Figure 5.6).   

 

Figure 5.6: Routes of on-road pollutant measurements involved in Task 4 
 

5.5.1 Mobile Measurement Platform and Concentrations Measured  

Vehicle information such as vehicle type, age, model, production and speed are 
important for in-vehicle concentrations.  However, our concentrations were 
measured on-road using one 2010 Honda Insight hybrid vehicle.  This was selected 
as a mobile measurement platform due to its limited level of self-pollution, which is 
more relevant for in-vehicle air pollutant concentrations.  



95 

On-road pollutant measurements were obtained from the USC field work for five air 
pollutants (PAH, PNC, PM2.5, NOx and BC).  We averaged the original data at 10-
second intervals to one-minute averages for model development. Figure 5.6 
represents the routes for USC’s measurements of pollutant concentrations.  Most 
measurements were performed on freeways (over 60% of the data).  

5.5.2  Road and Traffic Classification  

We compiled a comprehensive traffic database for freeways in the study region 
based on both 5 minute total traffic measurements and estimated truck counts. Five-
minute total traffic counts and estimated hourly truck counts were based on 
aggregated count and occupancy data for freeways and highways during the study 
period and were obtained from the California Department of Transportation 
(Caltrans) Performance Measurement System (PeMS) (http://pems.dot.ca.gov/).  
The PeMS data provided a high temporal resolution; however, they were limited by 
spatial coverage (mostly freeways and highways), limited sampling sites, and 
sometimes missing data probably due to malfunction of detectors.  

Methods were developed in Geographical Information System (GIS) using ArcGIS 
v10.0 (ESRI, Redland, CA) and PostGIS v1.5 (Refractions Research, British 
Columbia, Canada) software to assign traffic volume data to roadway segments, 
map GPS-based on-road measurement data, and classify GPS data into different 
categories based on roadway type and traffic volumes. Five-minute total traffic and 
hourly estimated truck counts at Caltrans sampling locations were linked and 
assigned to adjacent roadway segments (within 5 km along the roadway) with 
matching names.  Although we extended the PeMS point measurements to 1 km 
along the roadway, corresponding to the measurement time of on-road 
concentrations, the PeMS data only covered 66.5% (in length) of the freeways and 
highways of the routes in this task.   

To overcome the limitations in the PeMS data, we also obtained the annual average 
daily traffic (AADT) count data from the Caltrans, which had continuous coverage for 
all freeway/highway and major arterial segments. The AADT dataset was produced 
by Caltrans staff based on a combination of measurements (e.g. continuous 
measurements on freeways and highways and tri-annual measurements on surface 
streets) and modeled values.     

5.5.3 Meteorological Parameters 

We obtained meteorological data from both on-road measurements and from the 
nearest weather monitoring stations operated by National Weather Service and 
South Coast Air Management District.  The on-road measurements of temperature 
(dew point and wet bulb) and humidity were collected simultaneously with pollutant 
measures and at the same temporal resolution (every ten seconds).  Hourly 
temperature, relative humidity, and wind (wind speed and direction) were obtained 
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from meteorological monitoring stations.  The shortest distance was used to assign 
the monitoring station data to each GPS point.  In addition to the surface 
meteorological data, we obtained Pasquill atmospheric stability class data every 
three hours at approximately 40 km by 40 km spatial resolution during each sampling 
period from the National Oceanic and Atmospheric Administration (NOAA) AIR 
Resources Laboratory archive of the Eta 4-D Data Assimilation System (EDAS) 
(http://www.arl.noaa.gov/ready.html).  For each GPS point, we assigned the 
atmospheric stability from the nearest modeling grid and time. We classified stability 
classes E, F and G as stable, whereas classes A, B, C, and D were classified as 
unstable and neutral.  Stable atmospheric condition is usually associated with lower 
mixing height and higher pollutant concentrations in the atmosphere than unstable 
conditions.   

5.5.4 Independent and Dependent Variables 

The following variables were used to construct on-road exposure models. 

Dependent variables: on-road pollutant concentrations of particle-bound PAH 
(ng/m3), UFP particle number concentration (PNC, number of particles/cm3), 
PM2.5 (g/m3), NOx (ppbv) and black carbon (BC, ng/m3, measured at 30 
second averaging time).  We used raw, natural log, or square root 
transformed pollutant concentrations averaged over one minute.  

Independent variables: 

(1). Roadway type: categorical variable (merging to freeways, freeways, major 
arterials, and minor surface streets or local roads).  Both the USC roadway 
classification and ESRI street data were used to classify roadway type.  In 
the ESRI data, A2x refers to primary roads without limited access, non-
interstate roads (A2); A3x refers to smaller, secondary or connecting roads, 
usually with more than two lanes, and A4 refers to local, neighborhood and 
rural roads, usually with a single lane of traffic in each direction.  We 
classified A1x-A2x as freeways/highways, A3x as major arterials and A4x as 
local roads.  

(2). Vehicle speed of the mobile measurement platform: continuous independent 
variable (miles/hour).   

(3). PeMS total traffic counts: continuous variable averaged by selected roadway 
segments. The data were limited both spatially and temporally by the 
available PeMS sampling sites as we described above. 

(4). Diesel truck counts: continuous variable averaged by selected roadway 
segments. Limited only to certain freeways and highways.  

(5). On-road temperature: including dew point and wet bulb (Celsius, ℃).  
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(6). Ambient temperature: continuous variable averaged over selected periods 
from the nearest meteorological site (Celsius, ℃).  

(7). Ambient wind speed and direction: wind speed (WS, meters/second, 
abbreviated as m/s) and direction (WD) from the nearest meteorological site.  
They were also used as categorical variables. Wind speed was classified 
into five types: calm condition referred to wind speed lower than 1 m/s; light 
wind’s speed was between 1 m/s and 3 m/s; moderate wind’s speed was 
between 3 m/s and 5 m/s; strong wind’s speed was between 5 m/s and 8 
m/s; high wind speed was greater than 8 m/s.  Wind directions were 
classified into four types: north-east (0-90o), north-west (90o-180o), south-
west (180o-270o) and south-east (270o-360o).  We also combined wind 
speed and wind direction according to their classifications (20 combinations 
of five levels of wind speeds by four types of wind directions).    

(8). On-road relative humidity: continuous variable averaged over selected periods 
(%).  

(9). Ambient relative humidity: continuous variable averaged by selected periods 
from the nearest meteorological site (%).  

(10). Atmospheric stability from the nearest EDAS modeling grid.  There are 7 
levels from unstable to stable situation: A-Extremely unstable conditions; B: 
Moderately unstable conditions; C: Slightly unstable conditions; D: Neutral 
conditions; E: Slightly stable conditions; F: Moderately stable conditions; G: 
Extremely Stable. We combined A-D as unstable to neutral and E-G as 
stable as described above. 

(11). AADT and VMT_AADT: AADT is annual average daily traffic counts 
estimated by CalTrans.  Vehicle miles travelled AADT (VMT_AADT) was 
derived by multiplying AADT by road length within 500 m of a measurement 
point.  

(12). Day period: categorical variable. The classification was done as: early 
morning: 12:0am - 06:00am; morning rush hour: 06:00am - 09:00am; mid 
morning: 09:00am -12:00pm; noon: 12:00pm - 02:00pm; afternoon: 02:00pm 
- 05:00pm; evening rush hour: 04:00pm - 07:00pm; night: 07:01pm -12:00pm.  

(13). Lanes: This is the number of lanes at a measurement site from the Caltrans 
data.  

(14). Lagged variable of vehicle speed and GPS_leg_length from one minute to 
ten minutes corresponding to the time of pollutant concentration 
measurement. GPS_leg_length was defined as the distance traveled in 1 
sec or distance traveled in X seconds if GPS was recording at every X 
second.       
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5.6. METHODS   

There were five steps in the construction of predictive models of on-road 
concentrations of air pollutants.  First, exploratory data analysis was used to produce 
summary statistics and correlation analyses.  Box and scatter plots were used to 
detect outliers and initial relationships between dependent and independent 
variables and to decide upon grouping statistics.  Second, significant predictors were 
selected according to initial screening with correlation analyses and scatter plots and 
then further selected according to the variance inflation factor (VIF) and statistical 
significance.  Third, we selected variables and constructed the models using linear 
regression with categorical variables (factors) and generalized additive model (GAM) 
regression with linear variables and categorical factors.  Fourth, serial residuals from 
the linear models were examined to check whether there was statistically significant 
temporal autocorrelation among residual errors.  If statistically significant, 
autocorrelation factors were used to adjust the bias in prediction.  Fifth, we used 
independent holdout validation using 2/3 of the data as training data and 1/3 of the 
data as test data and 3-time x 3-fold cross validation to test the general linear and 
generalized additive models.  For linear and GAM models, 2/3 of measurement data 
were used to train the models, but for models adjusted for autocorrelation, 3/4 of 
measurement  data were used to train the models.  The remaining part of the data 
were used to test the model for validation purposes (holdout data). 

We constructed the spatial database with concentrations, relevant independent 
variables and corresponding GPS coordinates using POSTGIS 1.5 (Refractions 
Research, British Columbia, Canada) and used R 2.11.1(Bell Laboratories, New 
Jersey, USA) to conduct exploratory data analysis, construct the statistical models, 
and validate the models.    

5.6.1 Exploratory Data Analysis     

Exploratory data analysis is an initial analysis to evaluate the summary statistics 
across different groups as well as correlations, to find a suitable transform for a 
normally distribution dependent variable, to identify possible outliers, etc.  We have 
conducted the following nine operations below:     

(1).Summary statistics: to give an initial evaluation of the measured concentrations 
of PAH, PNC, PM2.5 and NOx.  

(2).Box plots and identification of outliers.  
(3).Histogram of the original data and transformed variables.     
(4).Correlation analysis and scatter plots.  Pearson and Spearman’s correlations 

were used to evaluate the correlations between variables.  
(5).Lagged correlation analysis.  Some covariates such as vehicle speed may 

have a lagged relation to pollutant average concentrations (1).  Therefore, 
lagged correlation analysis was necessary to detect the potential relationship 
between the pollutant concentration and the lagged variable.   
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(6).Grouping statistics by roadway type.  There are four types of roads, namely, 
local roads, arterial roads, single freeway, and merging freeways. Roadway 
type is expected to be important for concentrations of traffic-related air 
pollutants.  We present summary statistics across four roadway types and 
explored the changes in their distributions across roadway types.  

(7).Grouping statistics by time of day.  Time of day is a categorical variable that 
includes seven categories, i.e. early morning, morning rush hour, mid morning, 
noon, afternoon, evening rush hour and night.  We examined the changes of 
concentrations by time of day.  

(8).Grouping statistics by stability.  More stable atmospheric conditions are usually 
associated with higher pollutant concentrations than unstable conditions.  We 
examined the influence of atmospheric stability on pollutant concentrations 
using grouping statistics of concentrations based on the two combined levels 
of atmospheric stability (A-D as one group for unstable and neutral conditions 
and E-G as another group for stable conditions).  

(9).Student t and Wilcox statistics were used to compare the differences in 
concentrations across two different groups of samples: freeways vs. non-
freeways, morning vs. non-morning, and stable atmospheric stability vs. 
unstable atmospheric stability.  

Due to the limited amount of measurement data, some variables such as summer vs. 
winter seasons, weekdays vs. weekends could not be examined in the models.   

5.6.2 Selection of Predictor variables 

Correlation analysis was used as the first step for variable screening. A variable was 
dropped from further analysis if the absolute value of its Pearson and Spearman’s 
correlation with measured air pollutant concentrations were less than 0.1 with their 
scatter plots showing no obvious or regular patterns.  

Then, we checked the multi-collinearity of independent variables and their statistical 
significance.  First, to avoid multi-collinearity, we used variance inflation factors (VIFs) 
to help divide the covariates into several groups as follows:  

1) one group of weakly correlated covariates (VIF<10);   

and the following 3 groups of remaining highly correlated covariates (VIF≥10)  

2) a traffic group, including traffic count, truck count, lanes, freeways and AADT; 
vehicle characteristic group including vehicle speed, gps_leg_length;  

3) a meteorological group, including on-road dew point, wet bulb, humility, ambient 
temperature, ambient humility and atmospheric stability; and  

4) a temporal group, including hour, day time, weekday/weekend and season etc.).  
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We selected one variable from each group of the highly correlated covariates at a 
time and combined them with all the weakly correlated covariates to construct a 
combination of covariates for the prediction model.  All of the variables were tested in 
the model.  Then, Akaike’s information criterion (AIC) or R2 was used to further 
backward-select the variables in each combination: the covariates with p values ≥0.1 
were removed until R2 remained the same, improved, or decreased least when all 
possible combinations of the remaining covariates were considered. Finally, the 
covariate combination with the maximum R2 or minimum AIC was selected as 
optimal input in the model.  If the VIFs of all the independent variables were smaller 
than 10, we would select those with statistical significance (p < 0.1).   

5.6.3 General Linear and Non-Linear Models with Inclusion of Factor Variables 

5.6.3.1  Basic model: linear regression with factor variables  

Our independent variables include both continuous variables such as vehicle speed, 
ambient temperature, and on-road dew point, as well as categorical variables such 
as roadway type, time of day, and atmospheric stability etc.  Linear regression with 
factor variables is the most basic prediction regression model that was often used to 
predict the concentrations (2-8). Given a data set 
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of n statistical units with p continuous 

variables (such as vehicle speed, wind speed, on-road dew point, ambient 
temperature) and m categorical variables as factors (such as roadway type, time of 
day, and atmospheric stability), we assumed for the linear regression model that the 
relationship between the dependent variable yi (air pollutant concentration) and the p 
predictor variables xi (i=1,…,p) is linear.  In our model, each categorical variable as a 
factor, was transformed into multiple continuous dummy variables with a value of 0 
or 1 indicating their status.  In the linear model, these transformed multiple dummy 
variables were also assumed to be linearly related to the target variable, yi 
(concentration).  This relationship is modeled through a so-called “disturbance term”.  
εi  is an unobserved random variable that describes the random error to the linear 
relationship between the dependent variable and predictor variables.  

       Equation 5.5  
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In practice, we used the least squares approach to fit the linear regression models.     

5.6.3.2 Non-linear model: generalized additive model with factor variables    

Generalized additive model (GAM) can incorporate both linear and factor variables. 
The model specifies a distribution (such as a normal distribution, or a binomial 
distribution) of the dependent variable and a link function, g relating the expected 
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value of the distribution to the m predictor variables, and attempts to fit functions fi(xi) 
to satisfy:  

       Equation 5.6  
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where uµ̂ is the estimate of the expected value of concentration at the location, u 

( )(ˆ uyEu =µ ), â0 is the model’s intercept, i
ux , j

ux  or k
ux  are independent variables 

among which , i
ux  is q continuous variables with non-linear relationships, j

ux  is p 

continuous variables with linear relationship and k
ux  is k categorical variables as 

factors.  fi(…) is the non-parameter smooth function used to construct the non-linear 

relationship between i
ux  and g( uµ̂ ), df is degrees of freedom that controls the smooth 

degree of the curve fit, âi are the linear parameters used to construct the linear 

relationship between j
ux  and g( uµ̂ ), and g(…) is the link function of expected value 

and the independent variables.  For normally distributed air pollutants, the link 

function is uug µµ ˆ)ˆ( = .  Similarly, in GAM, each categorical variable (e.g. roadway 

type, time of day and atmospheric stability), as a factor, would be transformed into 
multiple continuous dummy variables with a value of 0 or 1 indicating their status and 
each of these transformed multiple dummy variables is also assumed to be linearly 

relative with concentration. ε  is the random error term ),0( 2σε N∈    

The functions fi(xi) may be fit using parametric or non-parametric means, thus 
providing the potential for a better model fits to the data than other methods. The 
method hence is general – a typical GAM might use a scatterplot smoothing function 
such as a locally weighted mean for f1(x1) to model the non-linear relationship such 
as between ambient temperature and concentration of PM2.5, and use a factor model 
for f2(x2) such as roadway type and atmospheric stability.  By allowing nonparametric 
fits, well designed GAMs allow good fits to the training data with relaxed 
assumptions on the actual relationship. 

Overfitting can be a problem with GAMs.  The number of smoothing parameters can 
be specified, and this number should be reasonably small (well under the degrees of 
freedom of the modeled data).  Cross-validation can be used to detect and/or reduce 
overfitting problems with GAMs. Other models such as GLMs may be preferable to 



102 

GAMs in prediction of on-road concentrations unless GAMs improve predictive ability 
substantially for the application in question.    

In practice, we used correlation analysis and scatter plots to determine the linear or 
non-linear relationships between continuous variables and pollutant concentrations. 
For variables that showed simple linear relationship in their scatter plot with good 
correlation they were used as linear regressors in GAM (no need for smoothing 
parameters).  For those with complicated regular non-linear relationship and a better 
non-linear R2 in their scatter plots, we set the smoothing parameter to a higher 
degree of freedom df.  Thus, we could decrease the overfitting problem while 
improving the accuracy.   

5.6.4 Time series model with temporal autocorrelation and factor variables 

In the general linear regression and GAM regression, it was assumed that the 
contiguous measurements between two continuous time slices are independent. But 
there may be significant temporal autocorrelation between every two or more 
subsequent minutes due to continuous measurements during such a short period 
(every one minute).  Without consideration of temporal autocorrelation, predictions 
from the linear or GAM models may be biased.  Thus, we developed a time series 
model that incorporated temporal autocorrelation and factor variables:  

       Equation 5.7  

                                          εβ ++= )( )()( mp XFXy                                 

Equation 5.7 is similar to 5.5 or 5.6 but here ε includes serially correlated errors and 
is not random error (white noise).  Here we assume that the errors from a regression 
model are unlikely to be independent in the time series data, where the observations 
represent different moments or intervals of time (i.e. measurements between every 
one minute), usually equally spaced.  The process generating the regression errors 
is assumed to be stationary.  That is, all of the errors have the same expectation and 
the same variance (σ2), and the covariance of two errors depends only upon their 
separation s in time:  

        Equation 5.8  

                                       ssttstt CC ρσεεεε 2),(),( == −+         

under this model, ρ1 = φ, ρs = φs, and )1/( 222 φσσ −= v .Temporal autocorrelation 

is calculated as:  

        Equation 5.9  
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where s is the number of lags, t is time slice, et  is the error or residual at t, n is the 
total number of time slices.  If the residuals were independently distributed, the 

standard error of each rs would be approximately n/1 , a quantity that can be used 

as a rough guide to the statistical significance of the residual autocorrelations.  

In practice, we used GLS with inclusion of categorical variables to get preliminary 
estimates of residuals and then calculated their Dubin-Watson statistics to check 
which lag’s temporal autocorrelation is statistically significant.  That residual 
autocorrelation were used to adjust the final predictions from the model.  

We used the most common term for temporally auto-correlated regression errors, the 
first-order auto-regression process, AR(1):  

        Equation 5.10   

                                         ttt v+= −1φεε                             

where the ‘random shocks’ νt are assumed to be Gaussian white noise, 

),0( 2
vt Nv σ∈ .   

In tests, we compiled the data from all the dates to model temporal autocorrelation 
and refined the model.  Although there were some missing values between minutes 
and between days, the number of such missing values was limited and we assumed 
that such few missing values had limited influence upon temporal autocorrelation 
and the prediction model.  We evenly and randomly divided the data into two parts 
according to the date: 75% of the data were used to train the data and the remaining 
25% were used to independently test the model.  We selected the explanatory 
variables in final linear regression models for each air pollutant.  

5.6.5  Model validation  

We used holdout or 3-fold cross validation to validate the fitted models.   

5.6.5.1 Holdout validation as an independent test and validation  

For linear and GAM models, 2/3 of measurement data were used to train the models, 
but for model adjusted for autocorrelation, 3/4 of measurement data were used to 
train the models.  The remaining part (1/3 or 1/4) of the data was used to test the 
model for validation purposes (holdout data).  The training data were selected by 
stratified random sampling.  Strata were defined by roadway types (merging 
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freeways, freeways, arterials and local roads) and time of day (early morning, 
morning rush hour, noon, afternoon non-rush hour, afternoon rush hour, and night 
time non-rush hour).  Strata were chosen to avoid bias due to an uneven distribution 
across roadway types and time of commute so that every roadway and commute 
time during each day period was represented by at least 2/3 or 3/4 of the values in 
the training group and 1/3 or 1/4 in the holdout group.   

5.6.5.2 3x3 cross-validation   

The original samples were randomly partitioned equally into 3 groups of subsamples; 
one of the groups was treated as the validation data for testing the model while the 
remaining two groups were used as training data.  The process was repeated 3 
times so that each of 3 subsamples has been used once for validation. The final 
validation results were the averages of the three model runs.   

5.6.5.3 Measurement criteria  

After model selection using the training sample was completed, predicted values for 
the testing subsamples were generated from the prediction equations.  We then 
calculated squared multiple correlations equal to the squared univariate correlation 
between the sample's observed and predicted values as follows:  

        Equation 5.11   
                            R2(1) = R2(Y|X1, X2, ..., Xp) = r2(Y1, Ŷ1)            

where Ŷ1 is the set of predicted particulate concentrations from the p variables, and 
Y1 is the set of observed concentrations for the training group.  

The prediction equation built from the training group were then used to predict 
concentrations Ŷ2 for the 1/3 holdout group and 3x3 cross validation. These 
predicted concentrations Ŷ2 were then correlated to the observed concentrations in 
the holdout group Y2 to give the "cross-validation correlation": 

        Equation 5.12   
                       R2(2) = r2(Y2, Ŷ2)                            

A residual analysis was then performed to check for additional outliers in the holdout 
group and to describe those observations that did not fit the prediction equations.  
The cross-validation correlation was then used to derive the "shrinkage on cross-
validation:"    

        Equation 5.13   
                                R2(1) - R2(2)                            

Since R2(2) is less positively biased than R2(1), the shrinkage is usually positive.  A 
reliable model is clearly suggested when the shrinkage is < 0.10 (9).  In practice, if 
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the model was considered reliable, all of the observations could be pooled to 
estimate regression coefficients for the final prediction equation.   

In this task, we validated models for the exposures of five concentrations, i.e. PAH, 
PNC, PM2.5, NOx, and BC collected in Tasks 1-2.    

 

5.7. RESULTS AND DISCUSSION  

5.7.1 Dependent variable concentrations  

On-road pollutant measurements were obtained from the USC field work for five air 
pollutants (PAH, PNC, PM2.5, NOx, BC).  We averaged the original data at 10-second 
intervals to one-minute averages for model development.  Figure 5.6 represents the 
routes taken for the measurements of pollutant concentrations.  Most measurements 
were performed on freeways (over 60% of the data).  Table 5.4 gives the summary 
statistics for concentrations, and correspondingly, Figure 5.7 presents box plots of 
the concentrations.  There were some missing data (9.2% for PAH, 61% for PNC, 46% 
for PM2.5, and 0.8% for NOx and 40.5% for BC) during the process of measurements 
due to device failure.  BC was measured with considerable noise by the MicroAeth 
AE51 and was very weakly predictive, possibly due to lack instrument precision.  We 
removed outliers from BC to clean the data before modeling and validation.  The 
missing data may impact the accuracy of the models for different air pollutants, 
especially PNC, PM2.5 and BC.   
  
Table 5.4.  Summary Statistics for the One-Minute Average On-Road Air Pollutants  

Figure 5.8 shows histograms after removing several outliers. After exploratory 
analysis, we used a log transformation of PAH and PM2.5 and used a square root 
transformation of PNC, NOX and BC to reduce the skewness (Figure 5.9) and 
normalize the distribution.      

Air Pollutant Samples Min Max Mean Median 

PAH (ng/m3) 4638 0.5659 927.8 56.44 31.95 

PNC (number of 
particles /cm3) 2161 16360.0 319500.0 37510.0 28690.0 

PM2.5 (g/m3) 3992 6.0 135.2 23.01 19.83 

NOX (ppbv) 5337 0.62 499.8 119.3 99.09 

BC (ng/m3) 4130 2.674 14580 3798 5369 
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Figure 5.7:  Box plots for four concentrations, PAH, PNC, PM2.5, NOX and BC  
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5.7.2 Transformation and correlation analysis    

 
a. PAH (skewness=3.53)                         b. PNC (skewness=2.16)  

  
 c. PM2.5 (skewness=2.68)                    d. NOx (skewness=1.05) 

 
   f. BC (skewness=1.24) 

Figure 5.8: Histograms for raw air pollutant concentrations without transformation 

The Pearson and Spearman’s correlation of independent covariates and the 
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transformed (log or square root) dependent variable of concentrations (PAH, PNC, 
PM2.5, NOx, BC) are shown in Table 5.5 and 5.6.  Typical scatter plots of covariates 
significantly correlated with the dependent variables are shown in Figure 5.10- 5.14.  
We paired typical linear or non-linear relationship scatter plots with their linear and 
non-linear regression lines as shown in these scatter plots.  To be selected for 
regression modeling these variables had to have linear or non-linear relationships 
with concentrations.   

   
a. log(PAH) (skewness=-0.28)           b. square root(PNC) (skewness=0.2) 

  

c. log(PM2.5) (skewness=0.59)                d. square root(NOx) (skewness=0.12)  

 

          e. square root(BC) (skewness=0.47)  

Figure 5.9: Normal histograms for the transformed values of air pollutant concentrations.    
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Table 5.5. Correlation of predictor variables with dependent air pollutant variables PAH, PNC, PM2.5 and NOX.  

 * indicates statistical significance at α = 0.1; N: number of valid samples for the covariate and dependent variable; P. c: Pearson correlation; S. c: Spearman’s correlation; Amb temp: temperature of 

the nearest meteorological site to the measurement; #Traffic: traffic counts derived from the PeMS; #Truck: estimated truck counts derived from the PeMS; Wind_sd_com: combination of four levels 

of wind speed and four wind directions; DP: dew point; WB wet bulb; Amb RH: ambient relative humility; On-road RH: on-road relative humility.   

 
PAH PNC PM2.5 NOX 

N P.c S.c N P.c S.c N P.c S.c N P.c S.c 

Vehicle speed 4638 0.395* 0.381* 2161 0.37* 0.38* 3992 0.074 0.045 5337 0.401* 0.406 

Amb. temp 3899 0.037 0.063* 1807 0.075* 0.135* 3354 0.389* 0.299* 4481 0.024 0.049* 

#Traffic 2558 0.159* 0.173* 1229 0.139* 0.142* 2227 0.224* 0.25* 3117 0.17* 0.18* 

AADT 4616 0.482* 0.422* 2128 0.458* 0.442* 3956 0.164* 0.162* 5282 0.459* 0.404* 

VMT_AADT 4616 0.483* 0.508* 2128 0.481* 0.557* 3956 0.119* 0.128* 5282 0.463* 0.518* 

#Truck 4638 0.19* 0.264* 2161 0.138* 0.229* 3992 0.102* 0.147* 5337 0.21* 0.23* 

Lanes  4616 0.428* 0.396* 2142 0.364* 0.402* 3970 0.119* 0.113* 5301 0.413* 0.374* 

Freeways 4638 0.464* 0.446* 2161 0.487* 0.516* 3992 0.088* 0.093* 5337 0.478* 0.446* 

Wind speed 3630 -0.181* -0.196* 1756 -0.093* -0.101* 3119 -0.156* -0.183* 5337 -0.15* -0.19* 

Wind direction 3630 -0.123* -0.118* 1756 -0.155* -0.140* 3119 -0.019 -0.051* 4158 -0.07* -0.095* 

Wind_sd_com 3630 -0.123* -0.151* 1756 -0.155* -0.149* 3119 -0.02 -0.108 4158 -0.071* -0.123* 

On-road DP  2821 0.098* 0.078* 1636 0.146* 0.155* 2754 0.547* 0.553* 3040 0.067* 0.064* 

On-road WB 2821 0.096* 0.093* 1636 0.112* 0.189* 2754 0.635* 0.588* 3040 0.1* 0.092* 

On-road RH 2821 -0.007 0.052* 1636 0.041 0.095* 2754 0.045* 0.20* 3040 -0.044 0.048 

Amb RH 3899 0.098* 0.078* 1807 0.044 0.008 3354 0.02 0.095* 4481 0.063* 0.066* 

Gps_leg_length 723 0.416* 0.379* 310 0.087 0.084 316 -0.119 -0.135 1015 0.049 0.501* 

Hour 4664 -0.301* -0.320* 2161 -0.368* -0.364* 3992 -0.308* -0.339* 5337 -0.182* -0.278* 

Roadway type 4638  0.443* 2161  0.499* 3992  0.101* 5337   0.447 

Time of day 4638  -0.323* 2161  -0.359* 3992  -0.331* 5337  -0.257* 

Stability  43  0.155* 2005  0.203* 3706  0.093* 4941  0.116* 
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Table 5.6. Correlations of predictor variables with BC Concentration Measurements 

 N P.c S.c 
Vehicle speed 4130 0.30* 0.28* 

Temp 3433 0.142* 0.199* 
#Traffic 2632 0.085* 0.102* 
AADT 4094 0.352* 0.303* 

VMT_AADT 4075 0.355* 0.368* 
#Truck 4130 0.121* 0.200* 
Lanes  4094 0.321* 0.287* 

Freeways 4130 0.284* 0.261* 

Wind speed 3204 -0.092* -
0.121* 

Wind direction 3204 -0.084* -0.103 
Wind_sd_com 3204 -0.085* -0.121 

Dew point  2574 0.215* 0.209* 
Wet bulb 2574 0.248* 0.256* 
In hum. 2574 -0.002 0.074* 
Ambient 
humility . 3433 0.005 -

0.038* 
Gps_leg_length 675 0.112* 0.505* 

Hour 4130 -0.29* -
0.323* 

Road type 4130  0.259* 

Daytime 4130  -
0.304* 

Stability  4130  0.034* 

  

 

 
Figure 5.10:  Scatter plots of several covariates with the log dependent variable of PAH  
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Figure 5.11: Scatter plots of several covariates with the square root dependent variable of PNC  

 

 
Figure 5.12:  Scatter plots of several covariates with the log dependent variable of PM2.5  
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Figure 5.13: Scatter plots of several covariates with the log dependent variable of NOx  

 

  
Figure 5.14:  Scatter plots of several covariates with the log dependent variable of BC  
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5.7.3 Grouping Comparison    

From correlation analysis, we found that roadway type, time of day and stability may have 
significant influence on concentrations of some pollutants.  We made grouping statistics 
accordingly and checked how the measurement values varied across different categories.   

5.7.3.1 Roadway types  

Table 5.7 shows the grouping statistics by roadway type and statistical significance for the 
differences between freeways and non-freeways groups. Figure 5.15 presents the grouping 
box plots of concentrations. There was a significantly higher concentration on freeways than 
on non-freeways as expected.  

Table 5.7.  Grouping Statistics for Air Pollutants by Roadway Types 

Pollutant Roadway 
Type N Mean Median P. c of 

spd 
S. c of 

spd Student t Wilcox 

PAH 

Local  442 24.98 6.14 0.21* 0.41* 
t=-21.51*; 
p=2.2e-16;  

22.89 vs.  66.23 

W=644737*; 
p=2.2e-16 

Arterial  606 22.83 7.32 0.24* 0.20* 
Freeways  3338 64.33 43.96 0.17* 0.25* 

M. Freeways 252 91.29 43.99 0.18* 0.15* 

PNC 

Local  112 24115.23 19791.92 0.22* 0.18* 

t=-26.31*; 
p=2.2e-16;  

15477.6 vs.  45701.6 

W=129699.5*; 
p=2.2e-16 

Arterial  474 13436.66 10675.30 0.20* 0.032 

Freeways  1462 45744.65 36938.38 0.17* 0.19* 

M. Freeways 113 45143.89 37643.87 0.181 0.19 

PM2.5 

Local  419 19.75 18.0 0.07 0.09 

t=-6.68*; 
p=2.9e-11;  

20.74 vs.  23.72 

W=1267091*; 
p=9.85e-10 

Arterial  543 21.51 19.33 0.05 0.02 

Freeways  2805 23.67 20.0 0.06* 0.016 

M. Freeways 225 24.27 21.00 0.002 0.05 

NOX 

Local  503 43.16 19.60 0.29* 0.31* 
t=-38.8*; 

p=2.2e-16;  
49.41 vs.  137.95 

W=738666*; 
p=2.2e-16 

Arterial  620 54.49 35.62 0.30* 0.20* 

Freeways  3933 137.56 120.56 0.27* 0.27* 

M. Freeways 281 143.48 114.27 0.15* 0.16* 

BC 

Local  366 2118.1 1229.47 0.25* 0.31* 
t=-17.72*; 
p=2.2e-16;  

2076. vs.  4087 

W=535772*; 
p=2.2e-16 

Arterial  230 2011.16 978.62 0.36* 0.31* 
Freeways  3308 4078.41 3238.52 0.17* 0.20* 

M. Freeways 226 4223.8 2966.5 0.06 0.05 

Notes:  N: number of samples; * indicates statistical significance at p-value<0.1; P. c of spd: Pearson’s correlation of vehicle 

speed with concentration within a group; S. c of spd: Spearman’s correlation of vehicle speed with concentration within a 

group; student t statistics used to check whether the differences in concentration between groups of freeways vs. non 

freeways is statistical significant assuming the normal distribution; Wilcox statistics used to check whether the differences in 

concentration between groups of freeways vs. non freeways is statistical significant without normal assumption.   
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a. PAH by roadway type                                  b. PNC by roadway type    

 

c. PM2.5 by roadway type                  d. NOx by roadway type 

 

                  f. BC by roadway type     
Figure 5.15: Box plots of pollutant concentrations across roadway types  
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5.7.3.2 Time of day  

Table 5.8 shows the grouping statistics by time of day and statistical significance for the 
differences between morning and non-morning groups. Figure 5.16 presents such grouping 
box plots. There was a statistically higher concentration of PAH, PNC, PM2.5, NOX, BC in the 
morning than at noon, in the afternoon or at night.   

Table 5.8.  Grouping Statistics for Air Pollutants by Time of Day 
Type Time of day N Mean Median P. c of spd S. c of spd Student t Wilcox 

PAH 

Early morning 95 107.5 73.83 0.046 0.042 

t=-18.73*; 
p=2.2e-16;  

80.67 vs.  39.63 

W=3567512*; 
p=2.2e-16 

Morning rush 
hour 728 84.82 68.01 0.16* 0.21* 

Mid-morning 1076 75.50 52.9 0.29* 0.38* 
Noon 635 54.99 35.66 0.08* 0.32* 

Afternoon  901 31.42 13.92 0.21* 0.34* 
Evening rush 

hour 592 34.07 20.56 0.18* 0.31* 

Night  611 41.19 26.58 0.038 0.02 

PNC 

Early morning 0 NA NA NA NA 

t=16.74*; 
p=2.2e-16;  
53602.0 vs.  

28487.1 

W=776111*; 
p=2.2e-16 

Morning rush 219 57741.2 46630.1 0.28* 0.36* 
Mid-morning 557 51974.6 47142.9 0.42 0.50 

Noon 322 43963.9 36766.2 0.14* 0.15* 
Afternoon  456 18309.8 13685.3 0.23* 0.16* 

Evening rush 298 25989.6 22758.9 0.13* 0.16* 
Night  309 29786 24807.7 0.07* 0.04* 

PM2.5 

Early morning 95 25.30 21.33 -0.003 -0.15 

t=12.07*; 
p=2.2e-16;  

25.72 vs.  20.54 

W=2581573*; 
p=2.2e-16 

Morning rush 728 24.36 23.33 -0.022 -0.08 
Mid-morning 1076 26.67 21.0 0.05* 0.1* 

Noon 635 26.43 20.33 -0.09 -0.143 
Afternoon  630 20.11 18.25 0.17* 0.083* 

Evening rush 340 15.67 16.55 -0.34* -0.33* 
Night  488 16.82 16.69 -0.43* -0.43* 

NOX 

Early morning 95 174.76 165.3 0.13 0.21* 

t=21.65*; 
p=2.2e-16;  

152.77 vs.  96.74 

W=4506686*; 
p=2.2e-16 

Morning rush 755 162.7 166.7 0.31* 0.31* 
Mid-morning 1301 145.32 135.73 0.38* 0.30* 

Noon 721 116.85 109.69 0.37* 0.41* 
Afternoon  1074 86.15 67.94 0.43* 0.43* 

Evening rush 799 99.16 87.71 0.35* 0.38* 

Night  799 99.16 87.71 0.078 0.071 

BC 

Early morning 68 5163.8 4198.3 0.11 0.11 

t=19.69*; 
p=2.2e-16;  

5100.2 vs.  3030.1 

W=2685479*; 
p=2.2e-16 

Morning rush 424 5777.44 5148.9 0.17* 0.19* 

Mid-morning 1039 4819.7 3900.9 0.24* 0.21* 

Noon 624 4022.2 3405.5 0.13* 0.22* 

Afternoon  743 2596.0 1770.6 0.27* 0.38* 

Evening rush 516 2616.6 2116.8 0.20* 0.26* 

Night  716 2914.1 2296.9 0.04 0.02 



116 

 

Note: N: number of samples; * indicates statistical significance at p-value<0.1; P. c of spd: Pearson’s correlation of vehicle speed with 

concentration within a group; S. c of spd: Spearman’s correlation of vehicle speed with concentration within a group; student t statistics 

used to check whether the differences in concentration between groups of morning vs. non morning is statistical significant assuming the 

normal distribution; Wilcox statistics used to check whether the differences in concentration between groups of morning vs. non morning 

is statistical significant without normal assumption.   

 
a. PAH box plots by time of day 

 

b. PNC box plots by time of day  
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c. PM2.5 box plots by time of day  

 
d. NOx box plots by time of day   

 
e. BC box plots by time of day  

Figure 5.16:  Box plots of pollutant concentrations by time of day 
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5.7.3.3. Atmospheric Stability  

Table 5.9 shows the result of grouping statistics by atmospheric stability and statistical 
significance for the difference between stable and non stable groups. Figure 5.17 presents 
the grouping box plots. Under the stable atmospheric situation, there were a statistically 
significant higher concentrations of PAH, PNC, PM2.5 and NOX, but only borderline significant 
differences for BC.  

 

 

 
Table 5.9.  Grouping Statistics for Air Pollutants by Modeled Atmospheric Stability  

Type Stability class N Mean Median P. c of spd S. c of spd Student t Wilcox 

PAH 
A,B,C,D  2910 53.13 27.59 0.25* 0.37* t=-5.68*; 

p=1.44e-8;  
53.13 vs.  65.76 

W=1639320*; 
p=2.2e-16 E,F,G 1393 65.76 47.15 0.18* 0.25* 

PNC 
A,B,C,D  1584 34479.3  26909.40 0.27* 0.33* t=-8.44*; 

p=2.66e-16; 
 34479 vs.  50824 

W=247671*; 
p=2.2e-16 E,F,G 421 50824.2 42658.7 0.33* 0.31* 

PM2.5 
A,B,C,D  2517 22.73 19.5 0.1* 0.06* t=-1.98*; 

p=0.048;  
22.74 vs. 23.6 

W=1325143*; 
p=1.8e-8 E,F,G 1189 23.61 20.5 -0.05 -0.12* 

NOX 
A,B,C,D  3262 114.13 92.07 0.40* 0.43* t=--7.61*; 

p=3.5e-14;  
114 vs. 135 

W=2350250*; 
p=3.0e-16 E,F,G 1679 134.97 118.8 0.26* 0.25* 

BC 
A,B,C,D  2488 3725.06 2784.1 0.24* 0.28* t=-7.83; 

p=0.068;  
3725 vs. 3907 

W=1960054*; 
p=0.027 E,F,G 1642 3907.3 3029.6 0.23* 0.27* 

Note: N: number of samples; * indicates statistical significance; P. c of spd: Pearson’s correlation of vehicle speed with concentration 

within a group; S. c of spd: Spearman’s correlation of vehicle speed with concentration within a group; student t statistics used to check 

whether the differences in concentration between groups of un-stable atmospheric situation (ABCD) vs. stable atmospheric situation 

(EFG) is statistical significant assuming the normal distribution; Wilcox statistics used to check whether the differences in concentration 

between groups of un-stable atmospheric situation vs. stable atmospheric situation is statistical significant without normal assumption.   

 



119 

 

  
a. PAH grouping by stability                b. PNC grouping by stability 

 
c. PM2.5 grouping by stability                d. NOx grouping by stability   

 
e. BC grouping by stability             

Figure 5.17: Box plot of pollutant concentrations by stability groups 
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5.7.4 Regression models for prediction      

We used linear regression and non-linear generalized additive models to build the predictive 
equations.  The concentrations were log- or square root-transformed to produce normal 
distributions.  

5.7.4.1 PAH modeling  

In these models, PAH has been log transformed.  In the modeling of grouped variables, these 
variables were selected by their higher R2 and their statistical significance at p-value<0.1.  

 

Model 1: grouping regression by roadway type  

Independent variables for selection in linear regression or GAM include five continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, temperature) and two 
factor variables (stability, time of day). They were selected by the higher R2 and statistical 
significance at p-value<0.1.  There were small differences in the independent variables 
selected in the models of different roadway types and such differences had limited influence 
upon the prediction accuracy.  Table 5.10 lists the regression results by roadway type with 
their optimal models.   

 
Table 5.10.  Prediction Performance for Grouping PAH by Roadway Types  

Roadway type Samples R2 for linear 
regression R2 for GAM 

Local road 442 0.41 0.51 

Arterial road 606 0.30 0.41 

One freeway 3338 0.28 0.31 

Merging of 2 or more freeways 252 0.34 0.53 

 

Model 2: Grouping regressions by time of day  

Independent variables for selection in linear regression or GAM include five continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature) 
and two factor variables (stability, roadway type). They were selected by the higher R2 and 
statistical significance at p-value<0.1. There were small differences in the independent 
variables selected in the models of different times of day and such differences had limited 
influence upon the prediction accuracy. Table 5.11 lists the grouping regression results with 
their optimal models.  
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Table 5.11  Prediction Performance for Grouping PAH by Time of day   

Time of day N Samples  R2 for linear regression  R2 for GAM 

Early morning 89 0.35 0.52 

Morning rush hour 622 0.37 0.44 
Mid-morning 869 0.51 0.55 

Noon 495 0.47 0.46 
Afternoon  762 0.39 0.41 

Evening rush hour 498 0.31 0.31 

Night  544 0.27 0.33  

 

Model 3: grouping regression by estimated stability  

Independent variables for selection in linear regression or GAM include five continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature) 
and two factor variables (time of day, roadway type).  They were selected by the higher R2 
and statistical significance at p-value<0.1.  There were small differences in the independent 
variables selected in the models of different stability class and such differences had limited 
influence upon the prediction accuracy.  Table 5.12 listed the grouping regression results with 
their optimal models.  

 
 

Table 5.12.  Prediction Performance for Grouping PAH by Stability  

Stability  Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 2580 0.41 0.43 

E,F,G 1299 0.24 0.36 

 

Model 4: Final regression models and model validation  

Predictor variables in the linear regression model included four continuous variables (vehicle 
speed, VMT_AADT, number of lanes, ambient temperature) and two factor variables (time of 
day, roadway type);   

Predictor variables in GAM include five continuous variables (vehicle speed, VMT_AADT, 
number of lanes, truck count, temperature) and two factor variables (time of day, roadway 
type).  

Table 5.13 gives the coefficients in the linear model, degree of freedom in GAM and the 
variances explained.  Coefficients of the linear model indicate the influence of each variable 
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and degrees of freedom in GAM indicates the fit degree of smooth for each coefficient.  Table 
5.14 presents the results of independent holdout test (2/3 for training; 1/3 for test) and 3x3 
cross validation.   

 
Table 5.13.  Coefficients Regressed and Variance Explained for the Prediction of PAH. 

 Coefficients in 
linear model 

Degree of 
freedom in GAM 

Variance explained (%) 
Linear model GAM 

Intercept 2.58    
Vehicle speed 0.004 9.96* 15.41 2.17 

VMT_AADT 0.0000035 13.63* 8.72 2.56 

Lanes 0.041 6.5* 2.15 1.41 
Truck counts  6.2*  6.9 

Ambient temperature 0.02 24.21* 0.13 5.89 

Time of day   7.44 23.25 
Roadway type   9.2 9.60 

Total variance Explained   43.05 51.8 

Note: * indicates degree of freedom; gray color indicates categorical variables as factors.  

 

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was < 10 
(maximum VIF=2.12), so we can safely use the model: with vehicle speed: 1.58; 
VMT_AADT:1.89; Lanes: 2.04; hour: 1.24; roadway types: 2.12; truck count: 1.2; stability: 
1.33; temperature: 1.19. 

 
 

Table 5.14.  Independent 1/3 Holdout and 3x3 Cross Validation of Predictive Models for 
PAH. 

 Linear regression  Generalized additive model  
General  3 times CV 1/3 test  General  3 times CV 1/3 test  

Samples  3879  3879 2596 vs. 1283 3879 3879 2596 vs. 1283 

R2  0.43  0.42 0.42 0.52 0.43 0.46 
P. cor.  0.65*  0.65 0.65* 0.73* 0.65* 0.68* 
S. cor.  0.64*  0.64* 0.64* 0.71* 0.64* 0.66* 
 

Note: General: no cross validation; 3 times CV: 3-times 3-fold cross validation; 1/3 test: two thirds used for training and one 

third used for test; P. cor.: Pearson correlation between the observed values and the predicted values; S. cor.: Spearman’s 

correlation between the observed values and the predicted values; * indicates statistical significance.   
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5.7.4.2 PNC modeling  

In these models, PNC has been square root transformed to normalize its distribution. In the 
modeling of grouped variables, these variables were selected by their higher R2 with their 
statistical significance at p-value<0.1.  

Model 1: Grouping regression by roadway type  

Independent variables for selection in linear regression or GAM include five continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature) 
and two factor variables (time of day, stability). They were selected by the higher R2 and 
statistical significance at p-value<0.1. There were small differences for the independent 
variables selected in the models of different roadway types and such differences had limited 
influence upon the prediction accuracy.  Table 5.15 listed the grouping regression results with 
their optimal models.  

Table 5.15.  Prediction Performance for Grouping Particle Number Concentrations by Roadway Type 

Roadway type  N Samples  R2 for linear 
regression  

R2 for GAM 

Local road  86 0.33 0.46 
Arterial road 387 0.35 0.52 
One freeway  1151 0.29 0.34 
Merging of 2 or more freeways 39 0.48  0.40 

 

Model 2: grouping regression by time of day  

Independent variables for selection in linear regression or GAM include five continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature) 
and one factor variable (roadway type).  They were selected by the higher R2 and statistical 
significance at p-value<0.1.  There were small differences for the independent variables 
selected in the models of different times of day and such differences had limited influence 
upon the prediction accuracy.  Table 5.16 lists the grouping regression result with their 
optimal models.  

Table 5.16 Prediction Performance for Grouping Particle Number Concentrations by Time of Day 

Time of day N Samples  R2 for linear regression  R2 for GAM 

Early morning 0 NA NA 

Morning rush 151 0.46 0.43 
Mid-morning 457 0.41 0.44 

Noon 239 0.19 0.22 
Afternoon  374 0.54 0.55 

Evening rush 251 0.29 0.32 

Night  191  0.21 0.19 
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Model 3: grouping regression by stability  

Independent variables for selection in linear regression or GAM include five continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature) 
and two factor variables (roadway type, time of day). They were selected by the higher R2 
and statistical significance at p-value<0.1. There were small differences for the independent 
variables selected in the models of different stability classes and such differences had limited 
influence upon the prediction accuracy. Table 5.17 lists the grouping regression results with 
their optimal models. 

Table 5.17. Prediction Performance for Grouping Particle Number Concentration by Atmospheric 
Stability 

 
 

 

Model 4: Final regression models and model validation  

Predictor variables in the linear regression model include four continuous variables (vehicle 
speed, VMT_AADT, number of lanes, ambient temperature) and two factor variables 
(roadway type, time of day);   

Predictor variables in GAM include four continuous variables (vehicle speed, VMT_AADT, 
number of lanes, ambient temperature) and two factor variables (roadway type, time of day).  

Table 5.18 gives the coefficients in linear model, degree of freedom in GAM and the 
variances explained for PNC modeling. Table 5.19 presents the results of independent 
holdout test and cross validation.    

Table 5.18.   Coefficients Regressed and Variance Explained for the Prediction of Particle Number 

 Coefficients 
Linear model 

Degree of 
freedom GAM 

Variance explained (%) 

Linear model GAM 

Intercept 162.0    

Vehicle speed 0.29 5.8* 15.44 2.64 

VMT_AADT 0.000317 14.33* 10.28 4.21 

Lanes  1*  0.21 

Ambient temperature  28.7*  13.21 

Time of day    17.83 26.60 

Roadway type   3.9 15.80 

Total variance explained    47.45 62.67 

Note: * indicates degree of freedom; gray color indicates the categorical variables as factors.  

Stability Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 1311 0.38 0.43 

E,F,G 352 0.41 0.52 
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Table 5.19. Independent 1/3 Hold-out and 3x3 Cross Validation of Predictive Models for Particle Number. 

 
Linear regression Generalized additive model 

General 3 times CV 1/3 test General 3 times CV 1/3 test 

N 
Samples 1789 1789 1199 vs. 590 1789 1789 1199 vs. 590 

R2 0.47 0.46 0.47 0.63 0.54 0.52 

P. cor. 0.69* 0.67* 0.66* 0.78* 0.73* 0.77* 

S. cor. 0.70* 0.68* 0.67* 0.76* 0.73* 0.76* 

Note: general: no cross validation; 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training and one 

third used for test; P. cor.: Pearson correlation between the observed values and the predicted values; S. cor.: Spearman’s 

correlation between the observed values and the predicted values; * indicates statistical significance.   

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was < 10 
(maximum VIF=4.51), so we can safely use the model: with vehicle speed: 1.64; 
VMT_AADT:2.33; Lanes: 2.31; hour: 1.37; roadway types: 4.56; truck count: 1.2; stability: 1.3; 
temperature: 1.14  

 

5.7.4.3 PM2.5 modeling  

In these models, PM2.5 has been log transformed to normalize its distribution. In the modeling 
of grouped variables, these variables were selected by their higher R2 and their statistical 
significance at p-value<0.1.  

An optimal scheme was to just use wet bulb temperature rather than dew point temperature 
to decrease multi-collinearity.   

Model 1: grouping regression by roadway type  

Independent variables for selection in linear regression or GAM include four continuous 
variables (ambient temperature, AADT, wet bulb temperature, wind speed) and one factor 
variable (time of day).  They were selected by the higher R2 and statistical significance at p-
value<0.1.  There were small differences for the independent variables selected in the 
models of different roadway types and such differences had limited influence upon the 
prediction. Table 5.20 lists the grouping regression results with their optimal models.  

Table 5.20. Prediction Performance for Grouping PM2.5 by Roadway Type 

Roadway type  Samples  R2 for linear 
regression  

R2 for GAM 
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Local road  419 0.66 0.79 
Arterial road 543 0.69 0.84 
One freeway  2805 0.68 0.75 
Merging of 2 or more freeways 225 0.63 0.76 

 

Model 2: grouping regression according to time of day  

Independent variables for selection in linear regression or GAM include four continuous 
variables (ambient temperature, AADT, wet bulb temperature, wind speed) and one factor 
variable (roadway type). They were selected by the higher R2 and statistical significance at p-
value<0.1. There were small differences for the independent variables selected in the models 
of different time of day and such differences had limited influence upon the prediction 
accuracy. Table 5.21 lists the grouping regression results with their optimal models.  

 

Table 5.21.  Prediction Performance for Grouping PM2.5 by Time of Day 

Time of day Samples  R2 for linear regression  R2 for GAM 

Early morning 72 0.20 0.14 

Morning rush hour 406 0.47 0.55 
Mid-morning 64 0.73 0.76 

Noon 346 0.77 0.84 
Afternoon  153 0.78 0.79 

Evening rush hour 173 0.75 0.82 

Night  268 0.78 0.82 

 

Model 3: grouping regression according to stability  

Independent variables for selection in linear regression or GAM include four continuous 
variables (ambient temperature, AADT, wet bulb temperature, wind speed) and one factor 
variable (time of day). They were selected by the higher R2 and statistical significance at p-
value<0.1. There were small differences for the independent variables selected in the models 
of different stability classes and such differences had limited influence upon the prediction 
accuracy. Table 5.22 lists the grouping regression results with their optimal models.  

 
Table 5.22. Prediction Performance for Grouping PM2.5 by Stability Class 

Stability Samples R2 for linear regression R2 for GAM 

A,B,C,D 1212 0.66 0.73 

E,F,G 850 0.39 0.53 
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Model 4: Final regression models and model validation   

Predictor variables in the linear regression model include three continuous variables 
(temperature, wet bulb temperature, wind speed) and one factor variable (time of day);   

Predictor variables in GAM include four continuous variables (temperature, aadt, wet bulb 
temperature, wind speed) and one factor variables (time of day).   

Similarly, Table 5.23 gave the coefficients in linear model, degree of freedom in GAM and 
variance explained for PM2.5 modeling. Table 5.24 presents the results of independent 
holdout test and cross validation.    

 
Table 5.23   Coefficients Regressed and Variance Explained for the Prediction of PM2.5. 

 Coefficients in 
Linear model 

Degree of 
freedom in GAM 

Variance explained (%) 

Linear model GAM 

Intercept 0.0243    

Ambient temperature 0.0502 8.74 34.34 7.87 

AADT  5.428  1.01 

Wet bulb temperature 0.188 8.72 11.84 31.08 

Wind speed -0.088  0.93 2.56 

Time of day    20.59 30.31 

Total variance explained    67.7 72.83 

Note: * indicates degree of freedom; gray color indicates the categorical variables.  

 

Table 5.24.  Independent 1/3 Holdout and 3x3 Cross Validation of Predictive Models for PM2.5. 

 
Linear regression Generalized additive model 

General 3 times CV 1/3 test General 3 times CV 1/3 test 

Samples 2062 2062 1385 vs. 677 2062 2062 1385 vs. 677 

R2 0.68 0.67 0.67 0.73 0.72 0.72 
P. cor. 0.82* 0.82* 0.82* 0.86* 0.84 0.85* 
S. cor. 0.77* 0.77* 0.76* 0.79* 0.78* 0.77* 

Note: general: no cross validation; 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training and one 

third used for test; P. cor.: Pearson correlation between the observed values and the predicted values; S. cor.: Spearman’s 

correlation between the observed values and the predicted values; * indicates statistical significance.  

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was < 10 
(max VIF=9.73), so we can safely use the model: with temperature: 3.42; AADT:7.38; Lanes: 
7.26; hour:1.82; wet bulb: 9.72.  
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5.7.4.4 NOX modeling  

In these models, NOx has been square root transformed to normalize its distribution. In the 
modeling of grouped variables, these variables were selected by their higher R2 with their 
statistical significance at p-value<0.1.  

Model 1: grouping regression according to roadway type  

Independent variables for selection in linear regression or GAM include six continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature, 
wind speed) and one factor variable (time of day). They were selected by the higher R2 and 
statistical significance at p-value<0.1. There were small differences for the independent 
variables selected in the models of different roadway types and such differences had limited 
influence upon the prediction accuracy. Table 5.25 lists the grouping regression results with 
their optimal models.  

Table 5.25. Prediction Performance for Grouping NOx by Roadway Type 

Roadway type N 
Samples 

R2 for linear 
regression R2 for GAM 

Local road 503 0.31 0.62 
Arterial road 620 0.31 0.66 
One freeway 3933 0.25 0.34 

Merging of 2 or more freeways 281 0.23 0.54 

 

Model 2: grouping regression by time of day  

Independent variables for selection in linear regression or GAM include six continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature, 
wind speed) and one factor variable (roadway type). They were selected by the higher R2 and 
statistical significance at p-value<0.1. There were small differences for the independent 
variables selected in the models of different time of day and such differences had limited 
influence upon the prediction accuracy. Table 5.26 lists the grouping regression results with 
their optimal models.  

Table 5.26.  Prediction Performance for Grouping NOx by Time of Day 

Time of day N Samples  R2 for linear regression  R2 for GAM 

Early morning 72 0.38 0.65 

Morning rush hour 460 0.50 0.58 
Mid-morning 814 0.51 0.66 

Noon 392 0.30 0.32 
Afternoon  160 0.44 0.63 

Evening rush hour 204 0.41 0.48 

Night  396 0.35 0.43 
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Model 3: grouping regression by stability  

Independent variables for selection in linear regression or GAM include six continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature, 
wind speed) and two factor variables (roadway type, time of day). They were selected by the 
higher R2 and statistical significance at p-value<0.1. There were small differences for the 
independent variables selected in the models of different stability classes and such 
differences had limited influence upon the prediction accuracy. Table 5.27 lists the grouping 
regression results with their optimal models. 

Table 5.27.  Prediction Performance for Grouping NOx by Stability 

Stability Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 1508 0.47 0.49 

E,F,G 990 0.43 0.49 

 
Model 4: Final regression models and model validation  

Predictor variables in the linear regression model include five continuous variables (vehicle 
speed, VMT_AADT, number of lanes, ambient temperature, wind speed) and two factor 
variables (roadway type, time of day).  Predictor variables in GAM include six continuous 
variables (vehicle speed, VMT_AADT, number of lanes, truck count, ambient temperature) 
and two factor variables (roadway type, time of day).   Table 5.28 gives the coefficients in 
linear model, degree of freedom in GAM and variance explained for NOX modeling. Table 
5.29 presents the results of independent holdout test and cross validation.    
 

Table 5.28.  Coefficients Regressed and Variance Explained for the Prediction of NOx. 

 Coefficients in 
Linear model 

Degree of 
freedom in GAM 

Variance explained (%) 

Linear 
model GAM 

Intercept 7.218    

Vehicle speed 0.018 12.355 16.22 2.33 

VMT_AADT 0.0000154 17.4 8.29 3.77 

Lanes  7.2  0.50 

Ambient temperature 0.0358 27.8 0.0078 5.6 

Wind speed -0.3223  0.25 6.42 

Truck count     2.23 

Time of day    5.19 16.92 

Roadway type   10.25 11.93 

Total variance explained    40.21 49.7 

Note: * indicates degree of freedom; gray color indicates the categorical variables as factors.  
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Table 5.29.  Independent Holdout and 3x3 Cross Validation of Predictive Models for NOx. 

 Linear regression  Generalized additive model  
General  3 times CV 1/3 test  General  3 times CV 1/3 test  

N 
Samples  

4446  4446 2974 vs. 1472 4446 4446 2974 vs. 1472 

R2  0.40 0.40 0.36 0.50 0.47 0.44 
P. cor.  0.634* 0.63* 0.60* 0.66* 0.67* 0.66* 
S. cor.  0.635* 0.63* 0.59* 0.66* 0.68* 0.66* 

Note: 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training and one third used for test; P. cor.: 

Pearson correlation between the observed values and the predicted values; S. cor.: Spearman’s correlation between the 

observed values and the predicted values; * indicates statistical significance. 

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was < 10 
(max VIF=2.02), so we can safely use the model: with vehicle speed: 1.46; VMT_AADT:1.617; 
Lanes: 2.02; hour: 1.18; roadway types: 1.48; truck count: 1.153; wind speed 1.154; 
temperature: 1.088.   

5.7.4.5 BC modeling  

In these models, BC has been square root transformed to normalize its distribution. In the 
modeling of grouped variables, these variables were selected by their higher R2 and their 
statistical significance at p-value<0.1.  

Model 1: grouping regression according to roadway type  

Independent variables for selection in linear regression or GAM include six continuous 
variables (vehicle speed, VMT_AADT, number of lanes, ambient temperature, wet bulb, wind 
speed) and one factor variable (time of day).  They were selected by the higher R2 and 
statistical significance at p-value<0.1.  There were small differences for the independent 
variables selected in the models of different roadway types and such differences had limited 
influence upon the prediction accuracy.  Table 5.30 lists the grouping regression results with 
their optimal models.  

Table 5.30. Prediction Performance for Grouping BC by Roadway Type 

Roadway type N 
Samples 

R2 for linear 
regression R2 for GAM 

Local road 366 0.23 0.47 
Arterial road 230 0.48 0.72 
One freeway 3208 0.32 0.42 

Merging of 2 or more freeways 226 0.37 0.61 

Model 2: grouping regression by time of day  

Independent variables for selection in linear regression or GAM include six continuous 
variables (vehicle speed, VMT_AADT, number of lanes, ambient temperature, wind speed, 
wet bulb) and one factor variable (roadway type). They were selected by the higher R2 and 
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statistical significance at p-value<0.1. There were small differences for the independent 
variables selected in the models of different time of day and such differences had limited 
influence upon the prediction accuracy. Table 5.31 lists the grouping regression results with 
their optimal models.  

Table 5.31.  Prediction Performance for Grouping BC by Time of Day 

Time of day   N Samples  R2 for linear regression  R2 for GAM 

Early morning 65 0.52 0.85 

Morning rush hour 362 0.38 0.54 
Mid-morning 705 0.40 0.54 

Noon 326 0.12 0.34 
Afternoon  135 0.33 0.68 

Evening rush hour 183 0.15 0.26 

Night  327 0.23 0.43 

 

Model 3: grouping regression by stability  

Independent variables for selection in linear regression or GAM include six continuous 
variables (vehicle speed, VMT_AADT, number of lanes, ambient temperature, wind speed, 
wet bulb) and two factor variables (roadway type, time of day). They were selected by the 
higher R2 and statistical significance at p-value<0.1. There were small differences for the 
independent variables selected in the models of different stability classes and such 
differences had limited influence upon the prediction accuracy. Table 5.32 lists the grouping 
regression results with their optimal models.  

Table 5.32.  Prediction Performance for Grouping BC by Stability 

Stability  Samples  R2 for linear regression  R2 for GAM 

A,B,C,D 1249 0.39 0.45 

E,F,G 854 0.34 0.47 

 

Model 4: Final regression models and model validation  

Predictor variables in the linear regression model include five continuous variables (vehicle 
speed, VMT_AADT, ambient temperature, wind speed, wet bulb) and two factor variables 
(roadway type, time of day);   

Predictor variables in GAM include six continuous variables (vehicle speed, VMT_AADT, 
number of lanes, wet bulb, wind speed, ambient temperature) and two factor variables 
(roadway type, time of day) 
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Table 5.33 gives the coefficients in linear model, degree of freedom in GAM and variance 
explained for BC modeling.  Table 5.34 presents the results of independent holdout test and 
cross validation.    

Table 5.33.  Coefficients Regressed and Variance Explained for the Prediction of BC. 

 Coefficients in 
Linear model  

Degree of 
freedom in GAM 

Variance explained (%) 

Linear 
model 

GAM 

Intercept  -6.88    

Vehicle speed  0.022 2.65 4.41 1.23 

VMT_AADT 0.000051 4.74 4.06 2.72 

Ambient 
temperature  

1.81 6.6 1.87 5.31 

Wind speed  -3.365  1.76 3.37 

Wet bulb  2.89 6.7 7.35 3.52 

Time of day     12.99 19.81 

Roadway type   4.18 6.64 

Total variance 
explained 

  36.63 42.6 

Note: * indicates degree of freedom; gray color indicates the categorical variables as factors.  

 

Table 5.34.  Independent Holdout and 3x3 Cross Validation of Predictive Models for BC. 

 Linear regression  Generalized additive model  
General  3 times CV 1/3 test  General  3 times CV 1/3 test  

N 
Samples  

2103  2103 1410 vs. 693 2103  2103 1410 vs. 693 

R2  0.37 0.30 0.34 0.43 0.31 0.39 
P. cor.  0.61* 0.56* 0.58* 0.67* 0.56* 0.62* 
S. cor.  0.62* 0.57* 0.61* 0.67* 0.58* 0.63* 

Note: 3 times CV: 3 times 3-fold cross validation; 1/3 test: two thirds used for training and one third used for test; P. cor.: 

Pearson correlation between the observed values and the predicted values; S. cor.: Spearman’s correlation between the 

observed values and the predicted values; * indicates statistical significance. 

We also conducted a multi-collinearity diagnostic analysis: VIF of each predictor was < 10 
(max VIF=1.89), so we can safely use the model: Vehicle speed: 1.42; VMT_AADT: 1.60; 
Lanes: 1.88; hour: 1.27; roadway types: 1.50; wind speed 1.18; temperature: 1.83; wet bulb 
1.89.   

5.7.5 Time series analysis 

Table 5.35 lists temporal autocorrelations by temporal lag using the training data to train the 
model.  Lag refers to minutes, i.e. Lag n indicating n minutes lagged. Figure 5.19 presents 
temporal and partial temporal autocorrelations for PAH, PNC, PM2.5, NOX, and BC.    
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Given the temporal autocorrelation shown in Table 5.35 and Figure 5.18, we controlled for 
temporal autocorrelation at lag 1 in the models and made the final predictions of 
concentrations for PAH, PNC, PM2.5, NOX and BC.  The result (Table 5.36) shows that the 
prediction with incorporation of first order autocorrelation (AR1) resulted in a significant 
improvement in the model’s R2 (ranging from 20% to 48.9%), and Pearson or Spearman’s 
correlation for PAH, PNC, NOX and BC, but not for PM2.5. 

Table 5.35. Temporal Autocorrelation among Different Daily Lags 

Type # Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8 Lag 9 Lag 
10 

PAH 3879 0.59* 0.40* 0.30* 0.25* 0.22* 0.18* 0.15* 0.14* 0.12* 0.11* 
PNC 2161 0.69* 0.56* 0.48* 0.41* 0.33* 0.29* 0.24* 0.24* 0.21* 0.21 
PM2.5 2062 0.75* 0.62* 0.56* 0.45* 0.41* 0.38* 0.36* 0.35* 0.35* 0.33* 
NOX 5337 0.68* 0.47* 0.37* 0.31* 0.24* 0.22* 0.20* 0.18* 0.14* 0.13* 
BC  4130 0.73* 0.50* 0.40* 0.33* 0.27* 0.25* 0.23* 0.17* 0.16* 0.15* 

Note: # number of samples; * indicates statistical significance  

 
                   a. Autocorrelation for PAH                   b. Partial autocorrelation for PAH  

  
               c. Autocorrelation for PNC                d. Partial autocorrelation for PNC  
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               e. Autocorrelation for PM2.5                     f. Partial autocorrelation for PM2.5  

 
              g. Autocorrelation for NOX                     h. Partial autocorrelation for NOX  

 
               i. Autocorrelation for BC                               j. Partial autocorrelation for BC  

Figure 5.18: Autocorrelation and partial-autocorrelation autocorrelogram for the residuals from the 
ordinary least squares (OLS) regression of concentrations  
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Table 5.36. Evaluation of the Time Series Models Constructed.   

Type  Samples  Model’s output  Independent  test (25% of 
data) 

R2 P.Cor S.Cor R2 P.Cor S.Cor 
PAH 3879 0.62 0.8* 0.80* 0.59 0.78* 0.76* 
PNC 2161 0.68 0.85* 0.84* 0.67 0.84* 0.84* 
PM2.5 2062 0.78 0.89* 0.88* 0.73 0.88* 0.87* 
NOX 5337 0.66 0.83* 0.84* 0.60 0.82* 0.82* 
BC 4130 0.64 0.80* 0.81* 0.57 0.77* 0.79* 

 With all the results of linear regression and GAM, we also calculated the shrinkage on 3x3 
cross validation using equation 5.13 in Table 5.37.  

 
Table 5.37.  Shrinkage on 3x3 Cross Validation of Predictive Time Series Models for the Air Pollutants.  

Concentration  Model R2 CV R2 shrinkage on cross-validation 

PAH 
LM 0.43 0.42 0.01<0.1 

GAM 0.51 0.43 0.08<0.1  

PNC 
LM 0.48 0.46 0.02<0.1 

GAM 0.63 0.54 0.09<0.1 

PM2.5 
LM 0.68 0.67 0.01<0.1 
GAM 0.73 0.72 0.01<0.1 

NOx 
LM 0.40 0.40 0<0.1 
GAM 0.50 0.47 0.03<0.1  

BC 
LM 0.37 0.30 0.07<0.1 
GAM 0.43 0.39 0.04<0.1 

5.7.6 Discussion  

5.7.6.1 Correlation analysis and scatter plots  

Our results show that each independent variable had varying correlations with the dependent 
air pollutant variables (Table 5.5 and 5.6).  Overall, vehicle speed, roadway type, AADT were 
moderately or highly positively correlated with PAH, PNC and NOx and BC.  For PAH, PNC, 
and NOx, meteorological factors such dew point, wet bulb temperature, relative humility, wind 
speed and direction had little relation to them.  For PM2.5, traffic-related factors had less 
influence than meteorological parameters.  This is expected since local traffic emissions were 
a major source of PAH, PNC, NOx and BC while PM2.5 has been shown to be more of a 
regional pollutant with less local traffic contributions (10,11).  

Scatter plots with linear and non-linear regression lines (Figure 5.10-5.14) helped us examine 
the linear or non-linear relationships between the independent and dependent variables.  For 
example, although time of day (hour) represents a negative correlation with concentration, 
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the variation of concentrations is non-linear along a day’s timeline as illustrated in the scatter 
plots (Figure 5.10-5.14’s scatter plot of hour with transformed measured values of 
concentrations).  Thus, using non-linear smooth function to fit the term of day-time can 
improve the model’s prediction.   

5.7.6.2 Influence of roadway types   

As expected, we observed much higher concentrations for PAH, PNC, NOX and BC (not 
PM2.5) on freeways than arterials and local roads, mainly due to more vehicles and higher 
speed of vehicles on freeways. The grouping statistics (t student and Wilcoxon statistics) also 
showed that the difference between freeways and non-freeways was statistically significant 
for PAH, PNC, NOX and BC.  Furthermore, such a difference in concentrations between 
freeways and non-freeways were great as shown in Table 5.7.  In the final regression models, 
the R2 for roadway type was 9.2% (linear regression) or 9.6% (GAM) for PAH (Table 5.13), 
3.9% (linear regression) or 15.8% (GAM) for PNC (Table 5.18), 10.25% (linear regression) or 
11.93% (GAM) for NOX (Table 5.28) and 4.18% (linear regression) or 6.64% (GAM) for BC 
(Table 5.33).  However, we found that roadway type was not an effective predictor variable 
for PM2.5.        

5.7.6.3 Influence of time of day   

Time of day had a negative correlation with concentrations of PAH, PNC,  NOx, BC and PM2.5 
(Table 5.5 and 5.6, -0.182 to -0.368 for Pearson’s correlation and -0.287 to -0.364 for 
Spearman’s correlation).  Scatter plots also showed the regular pattern of concentration 
along a day’s timeline (Figure 5.10-5.14).  Furthermore, in the final regression models, the R2 
for time of day explained 7.44% (linear regression) or 23.25% (GAM) for PAH, 17.83% (linear 
regression) or 26.60% (GAM) for PNC, 20.59% (linear regression) or 30.31% (GAM) for PM2.5, 
5.2% (linear regression) or 16.92% (GAM) for NOX and 12.99% (linear regression) or 19.81% 
(GAM) for BC.  Time of day showed the greatest R2 among all predictor variables for any air 
pollutant.  

The grouping statistics (t student and Wilcoxon statistics) for the concentrations in the 
morning vs. non-morning showed statistically significant differences in concentrations (Table 
5.8 and Figure 5.16).  Our analysis showed the highest concentration of PAH, PNC, PM2.5, 
NOX or BC in the morning.  Time of day is a significant variable for the prediction of all five air 
pollutant concentrations in the present study.  This is expected because time of day reflects 
diurnal variations in both traffic activity patterns and meteorological parameters.   

5.7.6.4 Influence of traffic variables   

Traffic variables are expected to be a critical influential variable since it is a major emission 
source for PAH, PNC, NOX and BC. The PeMS five-minute traffic counts and estimated truck 
counts was not a sufficient predictor of traffic because it only covered a small part of the 
study routes and periods.  
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Annual average daily traffic (AADT) or VMT_AADT is the total volume of vehicle traffic of a 
highway or road for a year divided by 365 days.  Given its greater completeness, we found 
AADT or VMT_AADT, as an alternative to 5-minute PeMS traffic counts, was an effective 
predictive variable.  VMT_AADT was selected for final regression models given its somewhat 
stronger correlation and had an R2 of 8.72% (linear regression) or 2.56% (GAM) for PAH, 
10.28% (linear regression) or 4.21% (GAM) for PNC, 1.01% (GAM) for PM2.5, 8.29% (linear 
regression) or 3.77% (GAM) for NOX and 4.06% (linear regression) or 2.72% (GAM) for BC.  
This suggests that VMT_AADT is a moderately predictive variable.  

5.7.6.5 Influence of meteorological factors   

For PAH, PNC and NOX, meteorological factors such as wind speed, wind direction, 
temperature, dew point temperature, and relative humility had slight or moderate influence on 
their prediction.  Among these variables, temperature plays a more significant role, with an R2 
of 0.13% (linear regression) or 5.89% (GAM) for PAH, 13.21% (GAM) for PNC, 34.34% 
(linear regression) or 7.87% (GAM) for PM2.5, and 0.0078% (linear regression) or 5.60% 
(GAM) for NOx, and 1.87% (linear regression) or 5.31% (GAM) for BC.  

However, meteorological factors such as wet bulb or dew point temperatures were good 
predictor variables for PM2.5 since log-transformed PM2.5 was highly correlated with both (>0.5, 
Table 5.5).  Furthermore, meteorological factors improved the predictability of PM2.5 better 
than the other pollutants (overall model R2: 0.67 for linear regression and 0.72 for GAM, 
Table 5.24).  Our results also showed that meteorological factors such as wet bulb 
temperature had a moderate influence on BC, illustrating that both were simultaneously 
affected by traffic and meteorological factors.  

Wind speed and direction was weakly correlated with the air pollutant concentrations. Wind 
speed always showed a negative correlation with air pollutant concentrations and was an 
effective predictor. The combination of wind speed and wind direction as a categorical 
variable (20 categories) did not improve the prediction.  This is likely because we relied on 
hourly wind data from distant monitoring stations rather than real-time wind data nearby the 
sampling locations. 

Stable atmosphere is more favorable to higher concentrations of air pollutants than unstable 
atmosphere.  Our student t and Wilcoxon statistics tests also showed that the difference in 
concentrations of PAH, PNC, PM2.5 and NOX between stable atmospheres and unstable 
atmospheres is statistically significant (Table 5.9).  However, in our final models we did not 
include stability due to lack of statistical significance in the predictive model.  This may be 
due to the inaccuracy of the stability data (e.g. modeled data with large uncertainty, every 3 
hour and 40 km by 40 km resolution).  The other possible reason is that the stability data may 
correlate with time of day that did remain in the model, e.g. early morning more stable and 
mid afternoon less stable.  However, the variance inflation factor (VIF) for stability and time of 
day in the model was not high (1.19 for PAH, 1.4 for PNC, 2.02 for PM2.5, 1.24 for NOX, 1.37 
for BC).    
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5.7.6.6 Linear vs. non-linear models  

GAM can incorporate both linear and non-linear relationships as well as factor variables in 
the model.  If the scatter plot presented a clear non-linear relationship, we used the smooth 
function of GAM to fit such a non-linear relationship (illustrated in Figure 5.10-5.14 for 
temperature’s relationship with air pollutant concentrations).  Using GAM, we were able to 
model the complex non-linear relationships while keeping the linear predictive and categorical 
variables as factors in the model.  In our final prediction model, although linear regression 
and GAM did not use the same set of variables and thus could not be compared directly, 
GAM still provided a better prediction accuracy than linear regression (R2: GAM’s 0.52 vs. 
LM’s 0.43 for PAH in Table 5.14; GAM’s 0.63 vs. LM’s 0.48 for PNC in Table 5.19; GAM’s 
0.73 vs. LM’s 0.68 for PM2.5 in Table 5.24; GAM’s 0.50 vs. LM’s 0.40 for NOX in Table 5.29; 
GAM’s 0.43 vs. LM’s 0.37 for BC in Table 5.34).  Generally GAM could improve the prediction 
over linear regression by approximately 5% to 10%.  Even though linear regression in R also 
incorporates factor variables and the same variables without consideration of statistical 
significance, GAM achieved somewhat better predictive accuracy.  In order to avoid 
overfitting in GAM, we needed to first use scatter plots to detect possible non-linear 
relationships.  For a more complex non-linear relationship, we set a higher degree of freedom 
to simulate the practical relationship.  Thus, a more precise linear or non-linear relationship 
can be established in GAM and the overfitting can be minimized.   

5.7.6.7 Validation of predictive models     

We conducted 3x3-fold cross validation and holdout independent tests (Tables 5.14, 5.19, 
5.24, 5.29 and 5.34) for linear regression and GAM.  For linear regression with inclusion of 
temporal autocorrelation, the independent holdout test was done (¾ data used for training 
and ¼ data for test).  Table 5.37 shows the shrinkage on 3x3 cross validation.  This table 
shows that the difference in R2 is less than 0.1, demonstrating that the model was valid and 
all of the observations for PAH, PNC, PM2.5, NOX and BC can be used to estimate regression 
coefficients for the final prediction equations.     

5.7.6.8 Consideration of temporal autocorrelation      

We explored temporal autocorrelation using autoregression for the continuous time data of 
PAH, PNC, PM2.5, NOX and BC (Table 5.35 and Figure 5.18). The results show that, as 
expected, there was significant temporal autocorrelation of residuals.  The improvement of 
models with adjustment of temporal autocorrelation (AR1) was considerable for all air 
pollutants.  In our independent holdout tests (using ¾ data for training and ¼ data for test, 
Table 5.36), R2 improved by about 28.3% from 0.46 to 0.59 for PAH, by about 42.5% from 
0.47 to 0.67 for PNC, by about 9.0% from 0.72 to 0.73 for PM2.5, by about 36.4% from 0.34 to 
0.60 for NOX, and by about 46.2% from 0.39 to 0.57 for BC.     

With inclusion of an AR1 parameter, the improvement in the predictions from linear 
regression was great for PAH, PNC, NOX or BC, ranging from 28.3% to 46.2%. However, the 
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application of the time-series model may be limited in epidemiological studies since we need 
to know the concentration of the last one or few minutes to predict the current concentration 
and such information is usually difficult to acquire.   In practical applications, we may use the 
average of concentration over more minutes to construct the regression model to decrease 
the influence of temporal autocorrelation on the model.  For our study, the measured values 
were limited, and averaging over five minutes resulted in fewer samples and consequently 
models with lower R2.  This might also be due to more variance of roadways and 
meteorological factors within the interval of five minutes since the measurement was done 
mainly on freeways.  After a series of tests, we finally chose one minute as the averaging 
interval to generate the samples.  For our regression models, averaging over one minute 
generated more samples, decreased the variance of predictor variables within the one-minute 
interval and had a good predictive performance in comparison with averaging over five 
minutes.  With incorporation of one-minute temporal autocorrelation, the prediction was 
further improved.     

5.8 SUMMARY AND CONCLUSIONS 

In this section, we have examined the influence of a variety of explanatory variables, 
continuous or categorical, including traffic variables, meteorological factors and time of day, 
modeling methods and temporal autocorrelation upon the prediction of the on-road 
concentration of five pollutants, i.e. PAH, PNC, PM2.5, NOX, and BC.  Final prediction models 
showed the variance explained ranged from 37% to 73% depending on the pollutant and 
modeling method (linear or nonlinear).  The missing data did not clearly impact the accuracy 
of the models for different air pollutants, since the variance explained was not greater for NOx, 
with the least missing data, compared with pollutants with the most missing data (PNC, PM2.5 

and BC).  Nevertheless, considerably more data on a larger number of roadway types could 
be have improved the models. 

Our study found that on-road concentrations of any of the five pollutants usually peaked in 
the morning, gradually lowered in the noontime and afternoon hours, and returned to a 
moderate value at night.  The time of a day was one of the most important influential factors 
for the prediction of the five pollutants, explaining a considerable part (5.2%-30.3%) of the 
total variance.  Traffic-related factors such as roadway type, AADT or VMT_AADT, lanes and 
freeways had a moderate and significant influence on prediction of the traffic-derived 
pollutants (i.e. PAH, PNC, NOX and BC), but not for PM2.5, which was much more affected by 
meteorological factors such as wet bulb, dew point and ambient temperature.  

In terms of modeling methods, linear regression and non-linear regression (GAM) had 
different predictive performance.  Given the non-linear relationship between partial 
explanatory variables and the target variable of air pollutant concentration demonstrated in 
the scatter plots, GAM is preferred to linear model.  After being trained, GAM can also be 
used to make predictions of future data.  
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Using the time series of one-minute averages of measured concentrations over multiple 
dates, we examined temporal autocorrelation of residuals and incorporated it in the final 
prediction.  Statistically significant temporal autocorrelation was clearly observed (Table 5.35 
and Figure 5.18) and adjustment of such residual autocorrelation improve prediction 
considerably for PAH, PNC, NOX and BC (Table 5.36).  Although this improved the 
predictions, such methods may be impractical in epidemiological studies since it is difficult to 
obtain minute-by-minute measured values.  

For validation, we used 3x3 cross validation or/and independent holdout tests for the different 
models.  For linear regression and GAM without consideration of temporal autocorrelation, 
we used cross validation and holdout test. The results showed that the difference between 
cross validation and holdout test was small (<0.1) and our predictive model was valid for the 
prediction of other data.  For linear regression with incorporation of temporal autocorrelation, 
the independent holdout test (¾ data for training and ¼ data for the test) showed that the 
temporal autocorrelation contributed to the improvement in prediction.   
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CHAPTER 6. TASK 5: VALIDATE THE IN-VEHICLE EXPOSURE MODEL FOR PAH 
AGAINST MEASUREMENTS FROM REPRESENTATIVE SUBJECTS.  
 
6.1.  MATERIALS AND METHODS  

Overview:  Data from a group of human subjects who carried personal PAH samplers were 
used as a first test of the predictive ability of variables identified from the models developed in 
Task 4.  These data are from working subjects in real world driving conditions and the data 
are collected after one week of sampling that was unattended by research technicians.  It 
serves as pilot study to determine the approach needed to validate the models developed in 
Tasks 1-4 for use in human subjects.   
 
The vehicles that subjects usually used are listed in Table 6.1. 
 
Table 6.1. Subject Vehicles. 
Year          Make            Model 
1994          Nissan           Altima 
2007          Honda            Accord 
1999          Chevrolet       Camero 
2000          Nissan           Maxima 
2007          Ford               Edge 
2001          Honda            Accord EX 
2001          Mercedes       430E 
2002          Chevy            Tahoe 
2007          Toyota           Camry 
2003          Honda           CRV 
2009          Honda           Civic 
2005          Mazda           3 
2000          Dodge           Avenger 
1999          Mercury         Sable 
2001          Toyota           4Runner 
2004          Volkswagon   Jetta 
2003          Nissan           Altima 
2006          Lexus            IS 250 
2002          Daewoo        Leganza 
2004          Saturn           Ion 2 
2004          Chevy           Avalanche 
1999          Mitsubishi     Diamente 
1999          Mercury        Mystique 
1999          Mitsubishi     Galant 
2006          Toyota          Prius 
2008          Jeep             Cherokee 
unknown    VW               Jetta 
 unknown   Mitsubishi     Eclipse 
1998          Lexus            ES 300 
2009          Ford              Focus 
 

Subjects:  We acquired personal particle-bound PAH data (EcoChem PAS) for 25 women.  
Subjects were part of a pilot study of time-activity and air pollution exposure assessment 
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during pregnancy among 90 women using GPS (NIEHS R21 ES016379, Wu, and NICHD 
National Children’s Study LOI3-ENV-4-A #14, Delfino and Wu) (1,2).  The goal was to collect 
up to three weeks of personal GPS and PAH data at different periods (trimesters or the 
postnatal period).  Sixteen subjects had one week of data, 7 subjects had 2 weeks of data, 
and 2 subjects had 3 weeks of data (36 total weekly series).  Primarily due to equipment 
malfunction and noncompliance, not all subjects had a full 7 days of GPS and PAH data.   In 
total, there were 175 person-days of personal PAH data with concurrent GPS measurements.   
 
The average age of subjects was 28 (± 5 years) ranging from 18-36 years.  Nine subjects 
were Hispanic, 7 white non-Hispanic, 6 Asian, and 3 other race.  24% had family incomes < 
$30,000 per year, 56% were married, 32% had a college diploma and 16% had a graduate 
school diploma.   
 
Analysis 
 
Two types of regression models were used to assess the consistency of the methods, 
autoregressive models and generalized estimating equations (GEE).  Since analyses 
involved time series, autoregressive models were tested using the SAS Autoreg procedure to 
estimate the autoregressive parameter(s).   Autocorrelation in the residuals was investigated 
using autocorrelation functions and partial autocorrelation functions to lag 15 minutes and 
with the Durbin-Watson statistic (3).  We found that controlling for first order autocorrelation 
(AR1) was sufficient to adjust for autocorrelated error terms.  GEE models were tested in the 
SAS Genmod procedure, which additionally allows for an autoregressive within-subject 
correlation structure (4). 
 
Two model approaches were used to predict PAH data.  Approach 1 assessed the relation of 
one-minute PAH to time-variant predictor data (one-minute if possible) (8785 observations) 
whereas Approach 2 additionally assessed the relation of one-minute PAH to each subject’s 
reported vehicle data (36 weekly exposure assessment series as described below).   
 
For Approach 1 we tested regression models to predict the subject’s one-minute average in-
vehicle PAH exposure.  Predictor data for Approach 1 is largely described above in Task 4 
including total traffic counts, roadway type (merging to freeways, freeways, major arterials, 
and minor surface streets or local roads), truck route, number of roadway lanes, VMT_AADT, 
time of day, meteorological data, and vehicle speed.  Time of day was categorized as 
morning rush hour: 06:00am -- 09:00am; mid morning: 09:00am --12:00pm; noon: 12:00pm -- 
02:00pm; afternoon: 02:00pm -- 05:00pm; evening rush hour: 05:00pm -- 07:00pm; and all 
other times: 07:01pm -- early 06:00am.  The time-stamped GPS data were linked with the 
TeleAtlas roadway map to derive roadway data.  Vehicle speed (Km/h) was estimated from 
GPS data as described above.   Meteorological data included stability class, ambient 
temperature, ambient relative humidity and wind speed.  Stability class was from A to G with 
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A indicating most unstable and G most stable.  The above data were then used to construct 
regression models based on the one minute data.   
 
For Approach 2 we added largely time-invariant data on vehicle type, mileage, and use of 
vehicle by the subject to assess average recirculation/outside air (RC/OA) conditions and fan 
use.  Based on above results (Table 5.1) we classified vehicles into vehicle manufacturer 
region: Asian, German/other, and the referent category is US manufacturers, which had the 
highest AER.  For missing odometer mileage in 7 subjects, we replaced the missing data with 
the US annual average for females of 12,000 miles 
(http://www.fhwa.dot.gov/ohim/onh00/bar8.htm) times the age of the car.  Questionnaire data 
on vehicle type, use of vehicle by the subject to assess average recirculation/outside air 
(RC/OA) conditions and fan use was coded as follows. 
 
RC/OA conditions:  We used a fixed ordinal classification at each weekly series when the 
same questionnaire was administered.  The coding from the questionnaire is given 
below.  Basically, we gave each response an equal weight of +1 if exposure is expected to 
increase as a result of increased AER as described in above sections, or weight of -1 if 
exposure is expected to decrease as a result of decreased AER.  The questionnaire below 
shown that if a subject would change one or more of their answers for the different weather 
conditions if they were in traffic, then a single positive or negative point would be scored. 
 
Ventilation Fan Setting:  We did the same as above with 8 specific responses.  The coding 
from the questionnaire is given below.   
 
The following questions ask how you typically cool and heat the inside of your car.  Please 
check the boxes to indicate the usual way you or the driver cools or heats the car you use for 
your main mode of car transportation (check all that apply down the column). 

Please check ALL that apply. 

 When it 
is hot 

outside? 

When it 
is cold 

outside? 

When 
the 

weather 
is mild? 

When I am in busy traffic or on a 
freeway? 
 Same as answers to left for when 
it is hot or cold outside (leave boxes 

below blank) 
 Different than  answers to left for 
when it is hot or cold outside (fill in 

appropriate boxes below)  
Coding for RC/OA 

Recirculation = -1 = -1 = -1 = +1 

Outside air, no 
recirculation 

= +1 = +1 = +1 = -1 

http://www.fhwa.dot.gov/ohim/onh00/bar8.htm�
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Open windows = +1 = +1 = +1 = -1 

Close window = -1 = -1 = -1 = +1 

Coding for Ventilation Fan Setting 

Lower fan setting = -1 = -1 = -1 = +1 

Higher fan setting = +1 = +1 = +1 = -1 

 
 
6.2. RESULTS AND DISCUSSION  
 
Univariate Statistics 
One-minute PAH data were positively skewed (skew = 2.06) (Figure 6.1) and were 
normalized using a square root transformation (skew = 0.48).  The untransformed PAH mean 
was 100 ng/m3 (±108), median 67, range 0-1078.  The subject weekly session average PAH 
data was normally distributed (Figure 6.2).  The PAH mean was 102 ng/m3 (± 53), median 88, 
range 14-240. 
 

  
Figure 6.1. Box plot for 1-minute average PAH 
concentrations (N=8785 in 25 subjects). 

Figure 6.2. Box plot for series average PAH 
concentrations (N=36 weekly series in 25 subjects). 

 
Of the 8785 one-minute PAH measurements, subjects were on freeways or major highways 
for 1733 minutes (19.24%), on a freeway or highway ramp for 536 minutes (5.95%), on a 
major surface street for 3321 minutes (36.87%) and on a minor surface street for 3417 
minutes (37.94%).  This is distinctly different than proportion of time on various routes used 
for Tasks 1-4 where a majority of data was collected on freeways.  The average speed was 
42 ± 36 km/hr. 
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Regression Models  
 
Table 6.2 shows results of the full model for Approach 1 including all variables and both the 
GEE model and the autoregressive model (both fit with an AR1 parameter).  Results were 
similar for the two modeling approaches. In autoregression models, stability class, VMT for  
1000 m buffers, number of roadway lanes, wind speed, ambient temperature and truck route 
were not significantly associated with in-vehicle PAH.  This also included VMT 500m (p < 
0.35, not shown).  These results were the same in the GEE models except for wind speed, 
which was inversely associated with PAH.  Significantly higher predicted PAH was observed 
during the early morning and late afternoon to early evening rush hours.   A linear increase in 
exposure with vehicle speed was observed relative to slow speeds (< 5  Km/h).  An 
autoregression model estimate for continuous speed alone was 0.0141 ng/m3 per 1.0 
increase in Km/h.  Roadway type was significantly associated with PAH with higher PAH for 
larger highways compared with the referent category of minor surface streets. 
 
The overall R2 for the ordinary least squares (OLS) model was small (0.10) whereas for the 
autoregressive model the R2 increased to 0.51, but the R2 due to regression dropped to 0.02. 
This suggests that autocorrelation explained most of the variance.  A regression of predicted 
versus observed PAH from the full GEE model in Table 6.2, adjusted for autocorrelation, 
revealed an R2 of 0.10.    
 
We then added the individual-level fixed predictors to the regression analysis of one-minute 
data (Approach 2).  As discussed, the fixed predictors were those related to vehicle 
characteristics and questionnaire-reported typical use of vehicle ventilation (RC/OA) and fan.  
We found that none of these variables were significantly associated with PAH in GEE models 
(Table 6.3).  However, in autoregressive models we found that a higher score for the RC/OA 
variables (indicating increased AER) was significantly positively associated with PAH as 
expected.  The adjusted R2 for the OLS models was 0.12 whereas for the autoregressive 
models the regression R2 was 0.03 and total R2 was 0.51, which is nominally better than the 
model without the time invariant predictors described above (Table 6.2).  Furthermore, in 
autoregressive models we found that vehicle type was significantly associated with PAH in 
the expected direction with lower exposures in German and Asian vehicles than in US 
vehicles, which is again consistent with the results in the above tasks.  Odometer mileage 
was also significant in autoregressive models, however, not in the expected direction since 
higher mileage was associated with lower PAH. 
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Table 6.2.  Multivariate regression models for the prediction of particulate PAH: continuously 
measured or estimated predictors 

 GEE Model  Autoregression Model 

Parameter Regression 
Coefficient 

Standard 
Error 

Z 
value 

p-
value  Regression 

Coefficient 
Standard 

Error 
T 

value p-value 

Intercept 6.8432 2.8123 2.43 0.0150  7.1521 1.0220 7.00 <.0001 

Time of Day:a          

    6:00-9:00 1.8075 0.6532 2.77 0.0057  1.7826 0.3303 5.40 <.0001 

    9:00-12:00 1.0002 0.7380 1.36 0.1753  0.9801 0.3853 2.54 0.0110 

   12:00-14:00 0.8913 0.6307 1.41 0.1576  0.8538 0.4041 2.11 0.0346 

   14:00-17:00 1.4719 0.4977 2.96 0.0031  1.5117 0.3484 4.34 <.0001 

   17:00-19:00 1.6616 0.4896 3.39 0.0007  1.6626 0.3728 4.46 <.0001 

Speed 5-15 Km/h 0.4438 0.2153 2.06 0.0393  0.5268 0.1386 3.80 0.0001 

Speed ≥15 Km/h 0.9266 0.2546 3.64 0.0003  1.0484 0.1243 8.43 <.0001 

Stability E,F,Ga -0.0306 0.3267 -0.09 0.9253  -0.0541 0.2268 -0.24 0.8115 

VMT 1000m 0.0033 0.0026 1.27 0.2058  0.0039 0.0026 1.50 0.1331 

No. of Lanes -0.0233 0.0480 -0.49 0.6266  -0.0182 0.0348 -0.52 0.6012 

Wind Speed (m/s) -0.4484 0.3299 -1.36 0.1741  -0.4947 0.1260 -3.93 <.0001 

Roadway Type:a          

   Major Street 0.3392 0.1165 2.91 0.0036  0.3633 0.1114 3.26 0.0011 

   Freeway Ramp 0.4289 0.1608 2.67 0.0077  0.4690 0.1861 2.52 0.0118 

   Freeway/Major 
   Highway 

0.5483 0.1388 3.95 <.0001  0.5705 0.1619 3.52 0.0004 

Amb. Temp (°C) 0.0349 0.1051 0.33 0.7400  0.0200 0.0338 0.59 0.5539 

Truck Route (Y/N) 0.1138 0.3310 0.34 0.7310  0.1378 0.2344 0.59 0.5567 
a Referent categories were: Time of Day, 19:00 – 6:00; Stability, A-D; Roadway Type, minor 
surface streets. 
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Table 6.3.  Multivariate regression models for the prediction of particulate PAH: continuously 
measured or estimated predictors plus time-invariant subject-reported vehicle characteristics. 

 GEE Model  Autoregression Model 

Parameter Regression 
Coefficient 

Standard 
Error 

Z 
value 

p-
value  Regression 

Coefficient 
Standard 

Error 
t 

value 
p-

value 

Intercept 7.9428 2.7245 2.92 0.0036  8.1933 1.1107 7.38 <.0001 

Time of Day:a          

    6:00-9:00 1.9688 0.6351 3.10 0.0019  1.9640 0.3300 5.95 <.0001 

    9:00-12:00 1.1556 0.7310 1.58 0.1139  1.1544 0.3850 3.00 0.0027 

   12:00-14:00 0.9900 0.5893 1.68 0.0929  0.9693 0.4048 2.39 0.0167 

   14:00-17:00 1.6218 0.4320 3.75 0.0002  1.6749 0.3509 4.77 <.0001 

   17:00-19:00 1.9108 0.4777 4.00 <.0001  1.9551 0.3736 5.23 <.0001 

Speed 5-15 Km/h 0.4382 0.2150 2.04 0.0415  0.5180 0.1386 3.74 0.0002 

Speed ≥15 Km/h 0.9178 0.2528 3.63 0.0003  1.0308 0.1244 8.29 <.0001 

Stability E,F,Ga 0.0528 0.3061 0.17 0.8631  0.0438 0.2295 0.19 0.8485 

VMT 1000m 0.0036 0.0024 1.51 0.1315  0.004379 0.002600 1.68 0.0922 

No. of Lanes -0.0177 0.0454 -0.39 0.6959  -0.0119 0.0348 -0.34 0.7327 

Wind Speed (m/s) -0.5329 0.3352 -1.59 0.1119  -0.5773 0.1321 -4.37 <.0001 

Roadway Type:a          

   Major Street 0.3422 0.1155 2.96 0.0031  0.3650 0.1115 3.27 0.0011 

   Freeway Ramp 0.4105 0.1667 2.46 0.0138  0.4424 0.1861 2.38 0.0174 

   Freeway/Major 
   Highway 

0.5174 0.1465 3.53 0.0004  0.5285 0.1618 3.27 0.0011 

Amb. Temp (°C) 0.0513 0.1106 0.46 0.6429  0.0375 0.0362 1.04 0.3001 

Truck Route (Y/N) 0.0764 0.3266 0.23 0.8149  0.0929 0.2344 0.40 0.6918 

RC_OA score 0.3240 0.3073 1.05 0.2917  0.3102 0.0985 3.15 0.0016 

Fan Use score 0.1680 0.3666 0.46 0.6468  0.1619 0.1289 1.26 0.2092 

Vehicle typea          

   Asian -1.2051 1.0098 -1.19 0.2327  -1.2306 0.2595 -4.74 <.0001 
   German -1.4601 1.5316 -0.95 0.3404  -1.4390 0.5684 -2.53 0.0114 
Odometer (miles) -0.0027 0.0016 -1.64 0.1012  -0.002534 0.001189 -2.13 0.0331 

a Referent categories were: Time of Day, 19:00 – 6:00; Stability, A-D; Roadway Type, minor 
surface streets;  Vehicle type, U.S. manufacturers. 
 

6.3  SUMMARY AND CONCLUSIONS 
 
In Task 5, using data from 25 subjects during one to several weeks of exposure assessment, 
we examined the predictive ability of model variables also tested in the other tasks.  Only PM 
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PAH was tested for subjects mainly due to the instrument portability and the importance of 
PAH as markers of traffic emissions.  Future work with separate funding is envisioned to test 
the other modeled pollutants in similar epidemiologic settings.  
 
For the one-minute PM PAH models, although many predictors were significant and in the 
direction anticipated, the overall predictive power of the models was low compared to the 
models from the technician-administered testing for Tasks 1-4.  This is likely due to the fact 
that the on-road and in-vehicle measurements for Tasks 1-4 were done by field technicians 
and much of the predictive data were collected in real time by staff who planned and well-
documented all travel routes and procedures.  In addition, most of the data for Tasks 1-4 
were collected on freeways, with higher and perhaps more predictable emission sources.  In 
contrast, for Task 5 subjects were relied upon to carry the personal samplers and in-vehicle 
exposure times were extracted using GPS data from the total personal exposure dataset.  
Other predictors such as vehicle characteristics, the use of RC/OA and fans were not scripted 
as in Tasks 1-4 but were derived from baseline questionnaires collected before each of a 
subject’s weekly exposure series.   
 
Also, we did not specifically collect in-vehicle exposure data only.  Although our time-activity 
model performed reasonably well in identifying in-vehicle travel points based on personal 
GPS data (approximately 88% sensitivity, 99% specificity, and 86 % precision) (1), there 
were still misclassified in-vehicle travel points, especially for points with a relatively low 
speed.  To reduce the impact of misclassified in-vehicle travel points, we visually checked 
and removed apparently erroneous points (e.g. scattered low-speed points that lasted for at 
least 10 minutes) before the modeling.  Furthermore, the women may or may not have used 
the vehicle she usually drove during the sampling week, especially if families have more than 
one vehicle at home or if she carpooled with others.  In addition, their actual driving patterns 
during the sampling week may also be different from answers in the baseline questionnaire 
data.   
 
In Task 4, we developed and validated multiple models for in-vehicle PN (Part 1) and on-road 
BC, UFP number, PM2.5, particle-bounded PAH, and NOx (Part 2). Fitted models for each 
species were validated against measurement data collected in Tasks 1 and 2 using validation 
methods.  The extensive model validations provided us with useful and rich information on 
model performances in predicting in-cabin concentrations of the selected pollutants under 
normal driving conditions in our study region.  Predictions were strong in general. 
 
However, our ultimate goal is to use the validated models to estimate in-vehicle exposure for 
a large number of subjects in epidemiological studies where personal exposure 
measurements are not feasible.  The limited sample of Task 5 using only PM PAH in 25 
subjects was informative, but exposure predictions were less than desired due to data 
limitations, which can be improved in future epidemiological studies.  For example, we could 
monitor only in-vehicle exposures.  We also could obtain vehicle and driving pattern 
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information after or during the one-week of sampling, which would be more accurate than the 
information we obtained before the sampling in the present study.   
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CHAPTER 7. STUDY LIMITATIONS 

We conducted an extensive exposure measurement and modeling study. However, it was not 
feasible in proposed work to cover all possible exposure conditions in vehicles. We consider 
this the main limitation of the study. For instance, we were not able to assess every day of 
the week (Mon vs. Friday) or every season and climatic condition.  Model predictive power 
thus varied by species investigated (e.g., PN vs. PAH vs. BC). The different measurements 
were also not always highly correlated and so the different predicted concentrations may 
have varying associations with health outcomes in future epidemiologic analyses. This is 
anticipated based on the degree to which each measurement represents underlying toxicity 
or is subject to exposure error in the model predictions. We cannot predict that at this time.  
 

CHAPTER 8. OVERALL SUMMARY AND CONCLUSIONS 

Air exchange rate (AER) is the dominant factor in affecting how close in-vehicle 
concentrations of traffic-related particulate pollutants come to equal on-road concentrations.  
Despite this importance of AER in affecting in-vehicle particle exposures, few studies have 
characterized AER and all have tested a small number of cars.  We developed a simplified 
yet accurate method for determining AER using the occupants’ own production of CO2 (Task 
1).  By measuring initial CO2 build-up rates and equilibrium values of CO2 at fixed speeds, 
AER was calculated for 59 vehicles representative of California’s fleet, thus producing the 
first accurate and representative characterization of vehicle AERs.  AER measurements 
correlated and agreed well with the largest other study conducted (R2 = 0.83).  Multivariate 
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models captured 70% of the variability in observed AER using only vehicle age, mileage, 
manufacturer and speed, all easily ascertainable information suitable for studies with large 
numbers of subjects.  We found that AER increases strongly with increasing vehicle age and 
mileage and increasing speed, and AER is high if windows are open or outside air ventilation 
settings are chosen.   
 
In-vehicle concentrations result from the interaction of on-road concentrations with vehicle 
characteristics that can reduce or remove the pollutants, depending on the pollutant and the 
vehicle AER.  A sufficiently high AER results in in-vehicle concentrations equaling on-road 
particle mass and number concentrations while low AER tends to reduce particle mass and 
number concentrations.   The actual pollutant removal rates are due to a complicated 
interplay between a vehicle’s physical characteristics, ventilation condition, particle size, and 
changes in AER.  To address this interplay, we made determinations of losses using on-road 
testing under realistic aerodynamic conditions (Task 2).  We focused on ultrafine particle 
number concentrations, the particle pollutant with the highest and most widely-varying loss 
rates.  Six vehicles were tested at different driving speeds, fan settings, cabin filter loadings, 
and ventilation conditions (outside air or recirculation).  During outside air conditions, the 
fraction of particles removed averaged 0.33 ± 0.10 (SD).  The fraction removed did not vary 
with vehicle speed but decreased at the higher ventilation flow rates of higher fan settings.  
During recirculation conditions, AER was much lower and removal fraction higher.  Removal 
fraction averaged 0.83 ± 0.13 and was highly correlated with and was a strong function of 
AER.  Under both ventilation condition types, particle removal was primarily due to losses 
unrelated to filtration.  Filter condition, or even the presence of a filter, played a minor role in 
particle fraction removed.  Based on these results, predictive models for in-vehicle ultrafine 
particle number concentration were developed, as described below. 
 
To characterize on-road concentrations, extensive on-road measurements were made on two 
arterial and three freeway routes covering 39 to 57 and 77 to 86 miles, respectively.  
Measurements of real-time black carbon, UFP, PM2.5, NO, NO2, CO, CO2, and particle-bound 
PAH were made, with GPS and video to capture time, location, and surrounding traffic 
conditions.   
.   
 
For Task 3, fuel-based emission factors (EF) were calculated based on simultaneous on-road 
pollutant and CO2 measurements (Task 3).  Partitioned EFs were used to calculate freeway 
emission rates (ER).  EFs for light-duty vehicles (LDV) were generally in agreement with the 
most recent studies but lower for heavy-duty vehicles (HDV), and significantly lower only for 
oxides of nitrogen (NOx).  Annually on I-710, a major truck route, 6.5% fraction of total vehicle 
miles travelled (VMT) is associated with HDV, but HDV were estimated to contribute 69% to 
total NOx emissions.  These differences in EFs by freeway segment and traffic mix were 
incorporated into our on-road concentration prediction models discussed below.  
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For Task 4, we first developed models for predicting in-cabin UFP concentrations if roadway 
concentrations are known, taking into account vehicle characteristics, ventilation settings, 
driving conditions and air exchange rates (AER). Particle concentrations and AER were 
measured in 43 and 73 vehicles, respectively, under various ventilation settings and driving 
speeds.  Multiple linear regression (MLR) and generalized estimating equation (GEE) 
regression models were used to identify and quantify the factors that determine inside-to-
outside (I/O) ratios and AERs across a full range of vehicle types and ages.  AER was the 
most significant determinant of UFP I/O ratios, as I/O was most strongly influenced by 
ventilation setting (decreased with recirculation vs. increased with outside air intake).  
Additional inclusion of ventilation fan speed, vehicle age or mileage, and driving speed 
explained greater than 79% of the variability in measured UFP I/O ratios.  
 
We also developed and validated predictive models for on-road concentrations of particle-
bound PAH, UFP, PM2.5, NOX and BC (Task 4) that can be combined with subject information 
on vehicle use and our predictive models for AER to evaluate exposure to in-vehicle 
pollutants.  The on-road measured data were one-minute averaged and compiled with traffic 
variables (traffic volume, roadway type, number of lanes), on-road or ambient meteorological 
factors (dew point, wet bulb, relative humility, ambient temperature, atmospheric stability) and 
time of day to develop linear regression models and non-linear generalized additive models.  
We found that time of day was statistically significant predictor of the six pollutants, 
accounting for a considerable part of the variance explained (5.2%-30.3%). Traffic variables 
such as VMT_AADT, roadway type, and number of lanes were significant for the traffic-
derived pollutants but not PM2.5.  PM2.5 is a regional pollutant and meteorological factors were 
stronger predictors than the traffic variables. Final prediction models showed the variance 
explained ranged from 37% to 73% depending on the pollutant and modeling method (linear 
or nonlinear).  Adjustment for temporal autocorrelation of residuals led to a modest 
improvement in prediction.  Models were shown to be valid using 3x3 cross validation and 
independent holdout validation.     
 
We examined the predictive ability of model variables tested in above tasks for human 
subjects using personal particle-bound PAH exposure for 25 subjects during their time in the 
in-vehicle environment (derived from personal GPS data).  Although many predictors from 
Task 4 were significant and in the direction anticipated, the overall predictive power of models 
for our human subjects data was low (R2 around 0.1) compared to the models from the 
technician-administered testing for Tasks 1-4.  Perhaps the most important factors that 
limited our predictive power were that the time on freeways was limited (unlike work in Tasks 
1-4) and predictors such as ventilation conditions that determine AER were not scripted but 
were derived from baseline questionnaires on general preferences collected before each of a 
subject’s weekly exposure series.  Because our studies demonstrated the overwhelming 
importance of AER on in-vehicle exposure, our limited ability to predict our human subject 
exposures indicates the importance of accurately characterizing AER and ventilation setting 
preference.  Our baseline questionnaires were not designed to do this, although this would be 
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easily remedied in future work.  The limited sample size of Task 5 using only PM PAH in 25 
subjects was informative, but exposure predictions were less than desired due to these data 
limitations.  
 
Most of the previous in-vehicle exposure studies conducted in California (1-3) are 
characterization studies, which provide helpful information on in-cabin concentrations under 
various conditions but are difficult to quantitatively apply to other exposure and 
epidemiological studies.  One of our major goals and the strength in this study is that we can 
now generalize the measurement data to a larger population by developing models based on 
information of vehicle (age and type), roadway type, traffic activity (total and diesel traffic 
count), emissions, driving pattern (ventilation condition, window position), meteorology 
(mixing height, temperature, relative humidity), season and time of day.  We believe the 
strong relationship of inside-to-outside ratio of ultrafine particles to AER will also apply to 
other particulate pollutants, but could vary in predictable ways due to differences in size.  
These models will provide helpful information to other researchers on the impact potency of 
various parameters.  They can also be adapted and applied to other regions after validation 
using local measurement data.  
 
Furthermore, it must be recognized that we did not develop total personal exposure models.  
Exposures in other microenvironments were not assessed in the study, but will be addressed 
in future epidemiologic research that will likely use the models developed in this study.  Given 
the potentially large impact of in-vehicle exposures, the impact of that type of exposure alone 
on health outcomes should be investigated.  Nevertheless, there is great potential to 
incorporate the predicted in-vehicle exposures using the proposed data with other 
microenvironmental exposure data to predict total personal exposure.  
 
We envision that time-activity data (GPS, questionnaire, etc.) will also assist us in assessing 
exposure at other locations, including commuting routes as discussed.  It is possible that 
among actual study subjects in an epidemiologic study, questionnaire-reported vehicle data 
will not accurately reflect exposure conditions during all times as suggested by less accurate 
predictions in Task 5 as compared with Task 4.  For example, a subject uses the outside air 
vs. the recirculation settings more variably that the simple questionnaire predicts, or a subject 
uses another vehicle of on-road mass transit that cannot be easily assessed using GPS data.  
This may be a limitation in a cohort or other epidemiologic study.  As such, the next stage will 
be to test models in a sample of subjects in a cohort study using the available study tools as 
compared with a gold standard (e.g., long-term GPS and electronic diary data that would not 
otherwise be feasible in all subjects in a large cohort).  This type of validation study is well 
beyond the scope of the present study and it would require extensive resources to conduct.  
We anticipate that such a study will be conducted given the supportive data obtained in the 
present study.  
 
We conclude that models developed in this study are a major advance in studying in-vehicle 
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exposures and will help us to directly study the relationship between in-vehicle air pollutant 
exposures and the health of the people of California.  It is expected that the models 
developed will help to predict exposure with sufficient accuracy for large epidemiologic 
studies of chronic disease outcomes using information that can be gathered in large part by 
questionnaire and GIS-based exposure assessment methods.  The findings of this study will 
have direct application to health effect studies or epidemiological studies, to CARB’ 
Vulnerable Populations Research Program, and eventually to evaluations of air quality 
standards for PM and gas pollutants. 
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CHAPTER 9. RECOMMENDATIONS 

Results of this study can be used to conduct epidemiologic investigations of the health effects 
of in-vehicle exposures to air pollutants, but additional testing of exposure models may be 
needed.  In particular, additional subjects with varying commute behaviors would be needed 
to validate predictive models for the range of exposures assessed in this study.  
 
Additional research is needed in consort with health studies so that the relevance of this 
potentially important source of traffic-related air pollution exposure can be assessed.  Given 
the long duration of commuting for the average Californian, adverse health impacts could be 
great and completely unrecognized to date. 
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S1. Project Vehicles  
Table S1: List of vehicles tested and relevant information 

 

 

 
 

 

 

 

S2. Vehicle Air Exchange Rates (AER) and AER Measurements 

 

Table S2: AER rates (h-1) at recirculation setting for the vehicles tested.  

Speed 
(miles h-1) 

Fan Ford 
Contour 

Ford 
Escort 

Toyota 
Prius 

Toyota 
Scion xB 

Toyota 
Matrix 

Honda 
Civic 

0 No 2.1 2.20 0.53 0.27 1.70 1.15 
0 Medium 3.1 3.50 0.83 0.53 2.40 3.00 
0 Full 6.2 5.40 1.50 1.40 3.20 4.20 

20 Medium 11.2 8.10 3.00 3.50 4.10 5.50 
20 Full 14.1 9.50 3.70 4.80 4.70 6.30 
35 Medium 16.0 11.5 3.70 4.50 5.10 7.30 
35 Full 19.0 13.5 4.30 5.70 6.30 8.80 

 

 

 

 

 

 

Vehicle Model Mileage In-Cabin Filter Vehicle Age  
(Years) 

Ford Contour             1999 115990 Yes 10 
Ford Escort                2001 127280 Yes 10 
Toyota Prius              2010 3210 Yes <1 (3 months) 
Toyota Matrix            2009 26125 Yes >1 (16 months 
Toyota Scion Xb        2010 24068 Yes <1 (11 months) 
Honda Civic               2009 22000 Yes >1 (14 months) 
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Table S3: AER rates (h-1) at outside air intake setting for the vehicles tested. 1

Ford Contour 

 

Ford Escort Toyota Scion xB 
Fan AER Fan AER Fan AER 
1/4 36.0 1/3 51.0 1/4 20.0 

2/4* 65.0 2/3* 64.0 2/4* 35.0 
3/4 94.0 3/3§ 83.0 3/4 50.0 

4/4§ 117.0   4/4§ 75.0 

Honda Civic Toyota Prius Toyota Matrix 

Fan AER Fan AER Fan AER 
2/12 57.0 1/7 23.0 1/4 20.0 
4/12 72.0 2/7 36.0 2/4* 35.0 
6/12* 93.0 3/7 48.0 3/4 - 
8/12 112.0 4/7* 59.0 4/4§ 71.0 

10/12 125.0 5/7 69.0   
12/12§ 141.0 6/7 84.0   

  7/7§ 97.0   

 

  

                                            

 

 
1 *Medium fan setting, §Full fan setting 
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S3. Particle loss at different fan speeds at recirculation condition 

 

Figure S1: Rates of decay of particles at different fan and vehicle speeds in Honda Civic 2009 at recirculation ventilation setting. 

 

S4. Correlation Coefficient 

 
The Pearson correlation coefficient was calculated between AF based on data reported by CPC 3007 
and AER under RC conditions for each car and for each set of speeds for a given fan setting. In Table 
S4, the correlation between vehicle speed and fan setting is based on data from all six cars.  

Table S4: Correlation between AF and AERs at RC setting.  

  Speed (miles h-1) 
  0 20 35 

Fa
n 

 Off -0.56   
Medium -0.86 -0.96 -0.95 
Full -0.80 -0.96 -0.95 
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S5. Attenuation Factors in the absence of filter   

In order to isolate the effect of filtration, AF measurements were conducted without filter, with an 
already in-use (loaded) filter, and with a new filter for OA and RC ventilation conditions in 3 
stationary cars. The Ford Contour’s in-use filter had been operational for 36 months at the time 
of testing and was heavily loaded. The Honda Civic’s filter had been in operation for ~14 months 
at the time of testing and was moderately loaded, and the Prius’s filter had been in use for ~3 
months. All new filters were standard replacement cabin air filters bought from an auto parts 
store (all either brands STP or Purolator). 

Studies have shown that cabin filter efficiencies range from 0.6-0.7, for the size range of particles 
tested in this study (6,7). However, our results indicate that the laboratory test efficiencies reported for 
the car filters far exceed the field observations. We believe that laboratory experiments were 
conducted is an experimental set that was air tight, i.e., all air passed only through the filter. However, 
inside vehicles the filter and filter housing unit (if exists) are placed such that the seal is not airtight. 
This is likely the cause for lower AFs observed in our experiments at OA setting.  

 

Table S5: Attenuation factors for three filter scenarios 

 
Attenuation factors for three filter scenarios. 
 
 Recirculation Setting Outside Air Setting 
 No Filter New Filter In-use 

Filter 
No Filter New Filter In-use Filter 

Honda 
Civic 

0.92 ± 0.02 0.96 ± 0.01 0.97 ± 0.01 0.23 ± 0.08 0.24 ± 0.09 0.33 ± 0.07 

Ford 
Contour 

0.89 ± 0.02 0.93 ± 0.01 0.94 ± 0.01 0.40 ± 0.05 0.36 ± 0.08 0.47 ± 0.01 

Toyota 
Prius - 1 

0.95 ±0.01 0.97 ± 0.01 0.98 ± 0.01 0.40 ± 0.08  
 

0.43 ± 0.06 
  

0.48 ± 0.04  
 

Toyota 
Prius – 2* 

   (0.49 ± 0.06) (0.53 ±0.07) (0.59 ± 0.04) 

* Measurements made in two Prius 2010 (vehicle 1 had ~3,200 miles and vehicle 2 had ~11,000 miles) to check for 
the effects of vehicle make. 
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S6. Effect of absence of filter at recirculation ventilation condition  

 

 

 

Figure S2: Effect of presence of filter in RC ventilation mode. C0 is the concentration at the beginning of experiment, i.e., at time t = 0 

and is equal to the ambient concentration. 
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S7. Effect of cabin filter loading at outside air intake ventilation setting 

 
Four loaded filters and a brand new filter were placed into Honda Civic 2010 model and tested at OA 
setting. Experiments were conducted in a stationary vehicle. Highest pressure drop (plotted as a 
subset in Figure S4) was observed for the heaviest loaded filter L4, while values for moderately 
loaded filters L1, L2 and L3 were comparable (Figure S4). Under OA setting, the AF increased with 
filter loading for UFP particles (>100 nm) from 0.36 (± 0.05) for new filter to 0.36 (± 0.04), 0.42 (± 
0.05), 0.49 (± 0.05) and 0.54 (± 0.05) for L1, L2, L3 and L4, respectively.  A large increase in filter 
loading resulted in significantly better filtration efficiency for nano-particles (<50 nm), as seen in the 
abrupt change of AF values for L3 and L4 in Figure S4.   

 
Figure S3: Effect of filter loading on AF for filters tested in Honda Civic vehicle under OA conditions. 
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S8. Suggested Equations for in-vehicle particle concentration modeling 

 

The standard mathematical model for describing the change in particle/pollutant concentration in the 
vehicular cabin environment, when ventilation is set to intake outside air, is given by the equation: 

Equation 3 

𝑑𝐶𝑖𝑛
𝑑𝑡 = 𝐶𝑜𝑢𝑡� 𝐼𝑃 +  𝐼𝑣 �1 − 𝜂𝑓�� − 𝐶𝑖𝑛[ 𝐼 + 𝐾 + 𝐼𝑣 +  𝐼ℎ𝜂ℎ] 

where, Cin is the concentration of particles/pollutants inside the cabin at any time, Cout is the 
concentration of particles/pollutants in the environment the vehicle is being driven in, I is the air 
exchange (h-1) due infiltration of air via leaks in the vehicle body (windows, doors, cracks), P is the 
penetration factor defined as the ratio of particles that are able to navigate through cracks and make it 
into the cabin from the outside environment, Iv (h-1) is the rate of air turnover due to  the ventilation 

system (i.e., drawn from outside into the vehicular cabin through the filter), ƞf is the filtration efficiency 

for the filter in the car ventilation system, K is deposition rate on the in-cabin surfaces, Ih is the human 

respiration rate (h-1) normalized to the car volume and ƞh is the human respiratory particle uptake 

efficiency.   

At recirculation ventilation setting, the cabin air passes through the ventilation system and a filter (if 
present) in the recirculation loop repeatedly. The corresponding model for recirculation mode is given 
by equation: 

Equation 4 

𝑑𝐶𝑖𝑛
𝑑𝑡

= 𝐶𝑜𝑢𝑡[ 𝐼 𝑃 ] − 𝐶𝑖𝑛� 𝐼 + 𝐾 + 𝐼𝑣𝑟  𝜂𝑓 + 𝐼ℎ𝜂ℎ�   

The term in Ivr (h-1) is defined as the rate of air turnover due to the ventilation system set to recirculate 
the cabin air. Is should be distinguished from Iv, as the values might differ at these two different 
ventilation settings.  Two additional variables were found to be of significance in determining the in-
cabin concentrations. The first variable that needs to be incorporated in model equations is the 
intrusion rate of outside air into ventilation system at recirculation setting. Knibbs et al., 2010, 2009 (1, 
2) and Fruin et al., 2011 (3) report that at RC, the presence of fan changes the AER. They also 
reported that the difference seems to increase with age of the vehicle and could vary considerably by 
vehicle. Knibbs et al., 2009 (1) have reported an increase at RC when ventilation fan was set to 
lowest fan setting as opposed to when there was no fan and all vents were closed. Less than 15% 
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increase is reported by Fruin et al., 2011 (3) when fan setting was changed from medium to full, but it 
was up to 40% for older vehicles. The increment in AER can either be due to differences in cabin 
pressure at difference ventilation fan strengths (increasing infiltration flow) or also due to intrusion of 
air as leaks into the recirculation system. Xu et al., 2009 (4) measured and reported that pressure 
difference between inside the cabin and outside environment. The pressure difference was similar at 
fan-off and fan-on at RC setting. Therefore, the increase in AER can be attributed to the outside air 
intrusion into the recirculation system, resulting in an additional pathway for particles to enter vehicle’s 
cabin. In order to account for this pathway, Equation 3 needs to be modified as follows: 

Equation 4  

𝑑𝐶𝑖𝑛
𝑑𝑡

= 𝐶𝑎𝑚𝑏� (𝐼 − 𝐼𝑟𝑙)𝑃 +  𝐼𝑟𝑙 �1 − 𝜂𝑓�� − 𝐶𝑖𝑛� 𝐼 + 𝐾 + (𝐼𝑣𝑟 − 𝐼𝑟𝑙)  𝜂𝑓 + 𝐼ℎ𝜂ℎ� 

where, I is the total AER observed under this ventilation setting and Irl is the component of I due to 
outside air intrusion into the RC system. Assuming that intrusion into the ventilation system occurs 
before the filter housing unit, the flow balance is shown in Figure S4. 

 

Figure S4: Flow scheme for recirculation ventilation setting accounting for intrusion of outside air into ventilation system. 

 

The second variable that should be accounted in quantitative modeling is the loss of particles in the 
ventilation system lines. Current studies in the literature (4-6) attribute all losses in the ventilation 
system to filters. Our results (Figure 5) show that filters are only responsible for a fraction of the 
losses. Therefore, a variable analogous to removal efficiency of the ventilations system needs to be 
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introduced to Equations 2 and 4, which should substitute ƞf. This is defined as ƞv, the removal 

efficiency of the ventilation system, which would be the combination of the filtration efficiency and loss 
rate in the ventilation system due to combined diffusion and impaction/interception of particles in 
ventilation lines.  The modified equations for OA and RC setting can be written as Equation 5 and 6. 

 Equation 5  

𝑑𝐶𝑖𝑛
𝑑𝑡 = 𝐶𝑜𝑢𝑡[ 𝐼𝑃 +  𝐼𝑣 (1 − 𝜂𝑣)] − 𝐶𝑖𝑛[ 𝐼 + 𝐾 + 𝐼𝑣 +  𝐼ℎ𝜂ℎ] 

Equation 6 

𝑑𝐶𝑖𝑛
𝑑𝑡

= 𝐶𝑜𝑢𝑡[ (𝐼 − 𝐼𝑟𝑙)𝑃 +  𝐼𝑟𝑙 (1− 𝜂𝑣)] − 𝐶𝑖𝑛[ 𝐼 + 𝐾 + (𝐼𝑣𝑟 − 𝐼𝑟𝑙)  𝜂𝑣 +  𝐼ℎ𝜂ℎ] 

Summary of Variables 

1. I (h-1): Air Exchange Rate on account of leaks in the vehicle’s body 

2. Iv (h-1): Air Exchange Rate on account of the ventilation system of the vehicle at outside air intake 
setting 

3.  Ivr (h-1): Air Exchange Rate on account of the ventilation system of the vehicle at recirculation 
setting 

4. Irl (h-1): Air Leakage Rate into the ventilation system of the vehicle at recirculation setting 

5. Ih (h-1): Human Respiration Rate normalized to vehicle volume 

6. ƞh: Particle retention in human respiration system 

7. ƞf: Particle removal efficiency of vehicle cabin filters 

8. ƞv: Particle retention in vehicle’s ventilations system, > ƞf 

9. P: Penetration efficiency of particles through cracks in vehicle’s body 
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S9. Size range specific Attenuation Factors (AF) 

 

Figure S5: Size range specific Attenuations Factors at Outside Air intake (OA) ventilation setting 

 

Figure S6: Size range specific Attenuations Factors at Recirculation (RC) ventilation setting 
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Table S6: Size range specific AF at medium fan and outside air intake (OA) ventilation setting 

   Size(nm) 
Vehicle Speed 14-736.5 14-25 25-50 50-100 100-200 200-400 
Contour 0 0.56±0.08 0.68±0.12 0.61±0.21 0.40±0.06 0.29±0.12 0.18±0.18 

20 0.49±0.02 0.70±0.33 0.48±0.09 0.34±0.04 0.31±0.16 0.30±0.13 
35 0.56±0.12 0.56±0.12 0.58±0.12 0.42±0.22 0.31±0.19 0.32±0.19 

Escort 0 0.28±0.04 0.33±0.14 0.29±0.13 0.19±0.08 0.19±0.08 0.15±0.14 
20 0.19±0.03 0.37±0.07 0.18±0.03 0.12±0.02 0.09±0.07 0.11±0.09 
35 0.23±0.03 0.31±0.09 0.20±0.02 0.16±0.01 0.16±0.13 0.12±0.09 

Civic 0 0.41±0.07 0.54±0.28 0.35±0.05 0.27±0.10 0.20±0.04 0.26±0.15 
20 0.30±0.03 0.40±0.13 0.37±0.16 0.28±0.06 0.17±0.11 0.13±0.12 
35 0.39±0.07 0.60±0.15 0.47±0.21 0.27±0.13 0.11±0.10 0.04±0.04 

Matrix 0 0.44±0.12 0.54±0.23 0.38±0.06 0.33±0.16 0.16±0.02 0.39±0.18 
20 0.24±0.03 0.31±0.05 0.23±0.09 0.18±0.01 0.16±0.07 0.12±0.11 
35 0.35±0.07 0.45±0.06 0.31±0.11 0.26±0.03 0.14±0.06 0.07±0.06 

Prius 0 0.36±0.10 0.45±0.07 0.30±0.12 0.25±0.06 0.25±0.08 0.26±0.09 
20 0.36±0.05 0.41±0.12 0.31±0.03 0.35±0.05 0.39±0.19 0.33±0.32 
35 0.43±0.03 0.54±0.12 0.39±0.06 0.37±0.06 0.32±0.19 0.34±0.33 

Scion xB 0       
20 0.20±0.06 0.24±0.11 0.19±0.03 0.17±0.02 0.15±0.07 0.23±0.09 
35 0.19±0.03 0.39±0.18 0.17±0.03 0.10±0.02 0.11±0.07 0.07±0.04 

Table S7: Size range specific AF at full fan and outside air intake (OA) ventilation setting 

  Size(nm) 
Vehicle Speed 14-736.5 14-25 25-50 50-100 100-200 200-400 
Contour 0 0.34±0.01 0.38±0.04 0.39±0.07 0.29±0.02 0.16±0.08 0.10±0.05 

20 0.37±0.21 0.58±0.22 0.34±0.04 0.25±0.02 0.21±0.11 0.26±0.13 
35 0.57±0.14 0.57±0.14 0.25±0.02 0.21±0.03 0.23±0.12 0.27±0.18 

Escort 0 0.13±0.02 0.18±0.10 0.10±0.03 0.12±0.06 0.10±0.05 0.09±0.08 
20 0.16±0.02 0.29±0.10 0.19±0.06 0.11±0.02 0.07±0.06 0.09±0.08 
35 0.22±0.02 0.34±0.11 0.24±0.05 0.12±0.01 0.11±0.09 0.03±0.02 

Civic 0 0.21±0.05 0.24±0.10 0.23±0.06 0.16±0.05 0.07±0.02 0.20±0.11 
20 0.12±0.01 0.39±0.14 0.22±0.10 0.08±0.02 0.06±0.05 0.07±0.06 
35 0.20±0.02 0.41±0.14 0.22±0.11 0.16±0.06 0.03±0.03 0.03±0.02 

Matrix 0 0.30±0.03 0.37±0.11 0.27±0.06 0.19±0.09 0.08±0.01 0.23±0.13 
20 0.28±0.03 0.38±0.09 0.18±0.08 0.24±0.02 0.18±0.08 0.10±0.10 
35 0.20±0.01 0.28±0.05 0.14±0.07 0.11±0.01 0.09±0.04 0.06±0.06 

Prius 0 0.07±0.05 0.06±0.03 0.11±0.06 0.03±0.06 0.06±0.08 0.06±0.10 
20 0.35±0.03 0.31±0.11 0.41±0.04 0.35±0.08 0.30±0.16 0.27±0.25 
35 0.42±0.06 0.47±0.17 0.44±0.03 0.38±0.06 0.32±0.18 0.22±0.20 

Scion xB 0       
20 0.21±0.02 0.34±0.15 0.17±0.02 0.07±0.01 0.12±0.06 0.18±0.07 
35 0.24±0.02 0.34±0.13 0.30±0.09 0.17±0.04 0.06±0.04 0.11±0.06 
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Table S8: Size range specific AF at medium fan and recirculation (RC) ventilation setting 

  Size(nm) 
Vehicle Speed 14-736.5 14-25 25-50 50-100 100-200 200-400 
Contour 0 0.86±0.28 0.92±0.29 0.88±0.29 0.79±0.17 0.71±0.32 0.62±0.55 

20 0.78±0.14 0.87±0.22 0.80±0.08 0.72±0.08 0.64±0.30 0.570±0.6 
35 0.68±0.20 0.77±0.20 0.70±0.07 0.63±0.12 0.56±0.26 0.42±0.39 

Escort 0 0.89±0.21 0.93±0.14 0.89±0.27 0.83±0.22 0.77±0.29 0.76±0.78 
20 0.77±0.10 0.86±0.35 0.80±0.21 0.72±0.10 0.70±0.51 0.64±0.52 
35 0.75±0.05 0.80±0.18 0.76±0.33 0.67±0.10 0.61±0.29 0.58±0.66 

Civic 0 0.94±0.13 0.96±0.24 0.93±0.36 0.92±0.17 0.91±0.40 0.92±0.99 
20 0.90±0.26 0.90±0.39 0.91±0.14 0.90±0.20 0.87±0.46 0.86±0.96 
35 0.89±0.25 0.90±0.32 0.91±0.12 0.88±0.15 0.84±0.52 0.80±0.72 

Matrix 0 0.97±0.36 0.98±0.44 0.96±0.42 0.95±0.31 0.90±0.29 0.89±0.66 
20 0.89±0.07 0.93±0.38 0.91±0.14 0.86±0.15 0.81±0.41 0.72±0.63 
35 0.87±0.15 0.93±0.28 0.87±0.14 0.82±0.10 0.75±0.34 0.69±0.72 

Prius 0 0.97±0.41 0.98±0.91 0.96±0.44 0.94±0.28 0.94±0.33 0.95±0.69 
20 0.95±0.07 0.97±0.51 0.95±0.24 0.94±0.12 0.93±0.61 0.93±0.98 
35 0.92±0.09 0.94±0.40 0.92±0.21 0.92±0.11 0.90±0.57 0.91±0.88 

Scion xB 0 0.95±0.28 0.98±0.45 0.97±0.23 0.93±0.23 0.87±0.27 0.85±0.59 
20 0.89±0.15 0.96±0.46 0.91±0.25 0.87±0.13 0.82±0.40 0.79±0.33 
35 0.81±0.06 0.90±0.50 0.84±0.21 0.77±0.12 0.70±0.33 0.67±0.26 

Table S9: Size range specific AF at full fan and recirculation (RC) ventilation setting 

  Size(nm) 
Vehicle Speed 14-736.5 14-25 25-50 50-100 100-200 200-400 
Contour 0 0.83±0.16 0.86±0.32 0.83±0.29 0.75±0.21 0.73±0.5 0.72±0.68 

20 0.72±0.11 0.68±0.22 0.77±0.08 0.73±0.11 0.67±0.33 0.62±0.56 
35 0.59±0.16 0.56±0.15 0.65±0.13 0.57±0.10 0.56±0.26 0.46±0.47 

Escort 0 0.87±0.15 0.91±0.31 0.87±0.40 0.82±0.27 0.78±0.33 0.77±0.81 
20 0.77±0.14 0.84±0.23 0.79±0.19 0.73±0.07 0.72±0.52 0.70±0.61 
35 0.71±0.08 0.79±0.28 0.76±0.16 0.66±0.07 0.61±0.41 0.59±0.45 

Civic 0 0.97±0.22 0.98±0.35 0.96±0.40 0.95±0.23 0.93±0.39 0.94±0.93 
20 0.94±0.06 0.96±0.49 0.94±0.26 0.92±0.29 0.88±0.40 0.85±0.91 
35 0.93±0.29 0.95±0.51 0.95±0.17 0.91±0.21 0.87±0.54 0.84±0.91 

Matrix 0 0.88±0.18 0.88±0.42 0.88±0.34 0.86±0.42 0.89±0.38 0.92±0.82 
20 0.81±0.06 0.75±0.20 0.83±0.11 0.84±0.16 0.85±0.47 0.84±0.80 
35 0.80±0.08 0.82±0.15 0.79±0.21 0.78±0.16 0.78±0.36 0.77±0.75 

Prius 0 0.85±0.45 0.88±0.48 0.84±0.40 0.80±0.40 0.64±0.42 0.72±0.53 
20 0.90±0.12 0.82±0.41 0.91±0.16 0.93±0.16 0.94±0.65 0.94±1.02 
35 0.90±0.12 0.83±0.29 0.91±0.15 0.92±0.12 0.92±0.62 0.92±0.92 

Scion xB 0 0.89±0.19 0.92±0.30 0.90±0.12 0.87±0.36 0.86±0.26 0.85±0.70 
20 0.73±0.17 0.58±0.15 0.75±0.21 0.77±0.11 0.79±0.46 0.82±0.39 
35 0.69±0.09 0.60±0.18 0.69±0.10 0.75±0.10 0.75±0.39 0.75±0.37 
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S.1. Instruments used and data analysis 

Table S-1. Instruments used in this study 

Instrument Parameter 
measured 

Instrument 
Flow Rate 

(lpm) 

Response 
Time (s) 

Resolution Detection Limit 

TSI portable 
CPC (butanol-
based) model 
3007 

UFP count, 10 
nm - 1 um 

0.8 1 1 
particle/cm^3 

10 nm, <0.01 
particles/cm^3 

TSI DustTrak 
DRX, model 
8533 

PM2.5 mass 1.7 5 +/- 0.001 
mg/m^3 

0.001 - 100 
mg/m^3, 0.1 - 

2.5 um size 
range 

Magee 
Scientific 
Aethalometer 
AE 51 

Black carbon 150 mL/min 60 0.001 µg 
BC/m3 

 
±0.1 µg BC/m3 

, 1 min avg., 150 
mL/min flow rat 

LI-COR model 
LI-820 

CO2 1 <1  
>4% of the 
reported  

value 

3.0 ppm 

2-B Technology 
Nodel 408 

NO 1 8 Greater of 3 
ppb or 3% of 
reading 

 

2-B Technology 
Nodel 401-410 

NOX 1 8 Higher of 1.5 
ppb or 2% of 
reading 

 

EcoChem PAH 
analyzer, 
model PAS 
2000 

Particulate 
matter-phase 
PAH 

2 < 10 ~ 0.3 -1 g /m3 
 PAH per 
picoamp 

3 ng/m^3 

TSI Q-Trak Plus 
monitor, 
model 7565 

CO, 
Temperature, 
humidity 

 20  1 ppm 

Garmin 
GPSMAP 76CSx 

GPS location, 
speed 

N/A 1 3m  

 

 

A limitation of the Dust Trak DRX (Model 8533, TSI, USA) is its potential lack of sensitivity to smaller 
particles, such as those found in diesel exhaust, which could decrease the accuracy of the 
measurements of emissions. Since the instruments were not calibrated to accurately reflect fresh 
emissions, its data may be used for quantitative inter-comparisons within this study. In this campaign 
black carbon (BC) mass concentrations were determined by using an Aethelometer (Magee Scientific, 



173 

 

Model AE51), which measures the optical attenuation (ATN) of a light beam transmitted through a 
sample collected on a filter.  At low filter loadings, there is a linear relationship between BC and ATN; 
however, as particles accumulate on the filter this linearity breaks down, and a correction (described 
in Wang et al. 2011 (1) was applied to obtain an accurate BC concentration. UFP concentration 
reported by CPC 3007 was corrected using the method described in Westerdahl et al. 2005 (2) when 
levels exceed 105 particles cm-3.  

S.2 Sampling routes, days and meteorological conditions 

 

 

Figure S-1. Freeway segments where measurements were conducted. 
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Table S-2. Sampling days, hours and meteorological conditions 

 
 

 

 

 

 

 

Date Hours
Temp 

(deg C)

Relative 
Humidity 

(%)

Wind 
Speed 
(m/s)

Wind 
Direction 
(degrees) Date Hours

Temp 
(deg C)

Relative 
Humidity 

(%)

Wind 
Speed 
(m/s)

Wind 
Direction 
(degrees)

710 (North) 710 (South)
17-May 10:00-11:00 15.6 56 1.8 76 17-May 09:00-10:00 13.9 87 2.2 79
19-May 10:00 13.9 86 0.9 296 19-May 09:00-10:00 14.4 81 1.3 275

1-Jun 20:00 13.9 71 3.1 261 1-Jun 20:00 13.9 71 3.1 261
2-Jun 08:00 20.0 51 1.3 353 2-Jun 07:00-08:00 18.9 56 1.3 186
3-Jun 13:00-15:00 23.1 46 4.0 201 3-Jun 12:00, 14:00 23.3 43 4.0 199
4-Jun 12:00 21.7 47 3.1 207 4-Jun 12:00 21.7 47 3.1 207
8-Jun 06:00-08:00 16.1 79 2.7 161 8-Jun 05:00-08:00 16.3 79 2.6 162

14-Jun 11:00 26.1 52 2.8 252 14-Jun 10:00 25.6 51 2.2 155

110 N (North) 110 N (South)
17-May 08:00 11.7 84 4.9 75 1-Jun 19:00-20:00 15.0 63 2.5 172

1-Jun 19:00 15.6 61 3.1 179 2-Jun 09:00 15.0 63 2.5 172
2-Jun 09:00 21.1 45 4.5 264 3-Jun 13:00-14:00 24.2 47 4.0 236
3-Jun 13:00 24.4 46 4.0 228 4-Jun 13:00 22.2 48 0.0 187
4-Jun 13:00 22.2 48 3.6 187 8-Jun 07:00 16.1 75 2.2 174
8-Jun 06:00 16.1 77 2.2 159 14-Jun 12:00 25.0 56 4.5 258

14-Jun 11:00 26.1 53 3.6 210

110 S (North) 110 S (South)
1-Jun 18:00 16.1 59 3.6 263 1-Jun 16:00-17:00 18.6 49 4.5 256
2-Jun 11:00, 13:00 21.7 41 4.7 256 2-Jun 10:00-12:00 21.1 45 4.5 263
4-Jun 11:00 20.6 51 3.6 228 4-Jun 10:00 20.0 54 3.1 225

14-Jun 14:00 24.4 57 3.1 278 14-Jun 12:00-13:00 25.3 54 2.9 271
15-Jun 18:00 18.3 74 2.7 281 15-Jun 16:00 22.2 63 2.7 260

405 (North) 405 (South)
1-Jun 18:00 16.1 49 4.5 275 17-May 12:00 18.3 65 1.8 357
2-Jun 10:00-11:00 20.0 47 3.4 253 2-Jun 12:00 20.0 66 4.9 275
4-Jun 11:00 18.3 57 2.7 216 15-Jun 16:00 19.4 77 2.7 200

14-Jun 13:00-14:00 23.3 61.5 3.4 278

60 (West) 60 (East)
19-May 11:00-12:00 20.6 48 3.1 180 17-May 14:00 18.3 52 3.1 148

3-Jun 08:00-09:00 20.6 51.5 1.6 201 19-May 11:00-12:00 20.6 48 3.1 180
8-Jun 09:00 16.7 65 2.2 194

91 (West) 91 (East)
19-May 11:00-12:00 20.8 53 3.4 148 1-Jun 17:00-18:00 16.9 55 4.0 261

2-Jun 12:00-13:00 21.7 40 4.9 260 2-Jun 10:00 21.1 48 4.0 277
15-Jun 17:00-18:00 19.4 71 2.5 281 4-Jun 10:00-11:00 20.3 53 3.4 227

14-Jun 13:00 25.0 54 3.1 261



175 

 

S.3 CO2 Apportionment and EF sensitivity to fd 

 

Figure S-2. CO2 apportionment curve. 

 

 

Table S-3. Effect of fd mis-estimation on EFs 
 

 

fd Statistics NOX NO BC PM2.5 PNC
g kg-1 g kg-1 g kg-1 g kg-1 # kg-1

Study Average HDV 24.4 13.3 0.53 0.57 5.70E+15
St Dev HDV 10.7 6.6 0.39 0.54 2.50E+15
Study Average LDV 2.99 1.76 0.02 0.16 2.89E+14
St Dev LDV 0.01 0.01 0.01 0.04 5.32E+13
Study Average HDV 18.99 10.23 0.55 0.54 4.15E+15
St Dev HDV 7.97 4.89 0.78 0.91 1.99E+15
Study Average LDV 2.99 1.76 0.02 0.16 2.89E+14
St Dev LDV 0.01 0.01 0.01 0.04 5.32E+13
Study Average HDV 21.61 11.61 0.64 0.61 4.80E+15
St Dev HDV 9.31 5.72 0.9 1.06 2.32E+15
Study Average LDV 2.99 1.76 0.02 0.16 2.89E+14
St Dev LDV 0.01 0.01 0.01 0.04 5.32E+13

Used in the study

10% underestimation of 
HDV would have resulted 

in

10% overestimation of 
HDV would have resulted 

in



176 

 

 

S.4 Pollutant Concentrations 

Table S-4. Pollutant concentrations on freeways 

 

Direction in parentheses indicates lane of travel.   
Note: I-110 is divided into a LDV-only section (110 N) and a mixed fleet section (110 S). 
 
 
  

Route Statistic CO2 CO BC NO NOx PNC PM2.5 PB-PAH Speed
ppm ppm ng/m3 ppb ppb #/cm3 mg/cm3 ng/m3 miles h-1

I-110N Mean 495 1.4 3190 88 69 29929 0.03 34 44
SD 48 1.2 3482 53 49 15697 0.032 83 18

Median 485 1.35 3550 78 54 25900 0.03 17 53
5th Percentile 436 0.5 1373 23 12 14735 0.012 6 12

IQR (463 - 516) (0.9 - 1.9) (1930 - 4130) (52 - 115) (30 - 93) (19600 - 35000) (0.016 - 0.073) (10 - 32) (44 - 57)
I-110S Mean 474 1.6 3642 119 104 42772 0.021 47 49

SD 30 1.9 5816 71 74 25268 0.014 61 21
Median 470 1.4 2350 103 82 38000 0.02 30 58

5th Percentile 432 0.6 718 43 31 13641 0.01 10 0
IQR (455 - 489) (0.9 - 1.8) (1540 - 3480) (76 - 142) (56 - 133) (26900 - 52900) (0.01 - 0.02) (19 - 54) (44 - 63)

I-405 Mean 497 1.3 6049 121 98 43493 0.024 75 46
SD 40 0.6 6894 60 54 31335 0.015 99 24

Median 488 1.2 4490 114 91 34000 0.02 51 59
5th Percentile 445 0.6 986 42 28 13454 0.008 11 1

IQR (470 - 516) (0.8 - 1.5) (2500 - 7490) (81 - 144) (60 - 124) (22500 - 53800) (0.01 - 0.03) (29 - 94) (24 - 65)
I-710 Mean 493 1 8665 194 152 72255 0.024 82 54

SD 37 1 20719 85 74 61994 0.017 67 16
Median 491 1.05 4554 170 131 57298 0.02 59 60

5th Percentile 438 0 835 73 53 20643 0.009 15 16
IQR (466 - 516) (0 - 1.5) (2483 - 8045) (132 - 244) (99 - 189) (43387 - 85635) (0.015 - 0.025) (38 - 104) (50 - 65)

SR-91 Mean 482 1.5 6295 158 140 54014 0.024 98 51
SD 34 1.2 4940 86 90 40303 0.014 123 20

Median 478 1.3 4750 147 123 46900 0.02 65 61
5th Percentile 429 0.7 1203 43 30 12803 0.01 12 7

IQR (502 - 459) (1.6 - 0.9) (8180 - 2790) (211 - 93) (187 - 73) (67600 - 25800) (0.03 - 0.02) (119 - 32) (65 - 40)
SR-60 Mean 509 1.8 10411 190 170 68289 0.027 122 35

SD 46 0.7 5537 105 100 41468 0.009 115 24
Median 501 2 9950 193 178 60994 0.025 102 32

5th Percentile 449 1.2 3342 47 24 19197 0.015 9 0
IQR (533 - 475) (1.9 - 1.4) (15072 - 5050) (250 - 101) (226 - 84) (84759 - 39627) (0.031 - 0.02) (169 - 39) (60 - 17)
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S.4 Vehicle Activity Trends on freeways 

 
Figure S-3 Vehicle miles travelled, truck vehicle miles travelled and fraction of total miles traveled by truck on 

four Los Angeles freeways in LA County during 12/1/2010 – 30/11/2011. 
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Figure S-4 Diurnal vehicle activity trend on two Los Angeles freeways, representative of general trend on all 
freeways. 
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Appendix C 
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S.1 Vehicles tested 
Table S1: List of Vehicles tested in the study. 

Manufacturer Model Year Odometer Manufacturer Model Year Odometer 
Mazda  Mazda121 1989 98955 Chevrolet Tahoe 2002 157776 
Toyota Cressida 1990 286872 Ford  E Series 2003 196778 
Buick Sabre 1991 191198 Chevrolet Silverado 2004 123634 
Toyota Camry 1992 332878 Chevrolet Cavalier 2004 109509 
Buick Sabre 1992 197576 Chevrolet Traverse 2004 43235 
Cadillac DeVille 1993 265342 Toyota Corolla 2005 53234 
Honda Accord 1993 134521 Honda Accord 2005 106656 
Saab Saab 1994 137600 Chevrolet Silverado 2005 152896 
Chevrolet Astro van 1995 280046 Mazda Mazda-6 2005 141003 
Jeep  Cherokee 1995 225835 VW Golf 2005 10663 
Jeep  Cherokee 1995 306675 Toyota Scion xB 2006 70538 
Toyota Corolla 1996 300774 GMC Sierra 2006 118160 
Nissan Sentra 1996 428982 Toyota Corolla 2006 139461 
Toyota RAV4 1997 295957 GMC Colorado 2007 65238 
Hyundai Accent 1997 164968 Honda Accord 2007 67800 
Honda Civic 1998 137430 Toyota Yaris 2007 67141 
Mitsubishi Magna 1998 85677 Toyota Matrix 2007 65501 
Honda Civic 1999 122336 Subaru Outback 2007 6777 
Toyota Lexus 1999 80528 Chrysler Crysler300 2008 66955 
Ford Expedition 1999 86061 Toyota  Hilux 2008 6992 
Honda Accord 1999 244470 Toyota Prius 2009 16713 
Ford Taurus 1999 156619 Toyota Scion xD 2009 11200 
Ford Contour 1999 183632 Toyota Scion XB 2009 63894 
Honda Accord 2000 148626 Toyota  Matrix 2009 42078 
Subaru Liberty 2000 58648 Ford Explorer 2010 1893 
Toyota Corolla 2000 126176 Toyota Prius 2010 4733 
Toyota Camry 2000 167235 Toyota Prius 2010 26741 
Chevrolet Tahoe 2001 142445 Toyota Scion XB 2010 39934 
Ford Escort 2001 202419 Honda Insight 2010 45771 
Nissan Pathfinder 2001 258848 Honda Insight 2010 39740 
Chevrolet Cavalier 2001 80184 Honda Civic 2010 10245 
Chevrolet Express 

2500SL 
2002 24882 Smart SmartCar 2010 2339 

Nissan Infinity 
G35 

2002 98219 Toyota Prius 2010 1893 

Toyota Camry 2002 173610 Honda  Civic 2010 35520 
Toyota RAV4 2002 387434 Hyundai Elantra 2011 660 
Audi A4 2002 166126     



181 

 

S.2 Instrumentation 
 
Table S1: Instruments used for the study. 

 
 INSTRUMENT 

 
  Units TSI Q-TRAK 

7565 
LICOR LI-820 Garmin 

GPSMAP 76CSC 
Range   0-5000 ppm 0-20000 ppm   
Resolution   1  ppm 0.1 ppm 0.1 mph 
Accuracy   ±3% of reading 

or ±50 ppm, 
whichever is 
greater 

>3% of the 
reported value 

0.05 m/sec 

Response Time   20 secs - 1 sec 
Logging Interval (sec) 10 1 1 
Averaging 
Interval 

(sec) 10 10 10 

Calibration 
Frequency 

  ~ 50 hours of 
operation 

Factory 
Calibration 
before and after 
the  sampling 
campaign 

- 

Time-Sync 
Frequency 

  ~ < 10 hours of 
operation 

 At the 
beginning of 
each car tested 

- 

  Units CPC 3007   
Range   Size: 0.01 to >1 

µm 
Concentration: 
0 to 100,000 
particles/cm3 

  

Resolution   1 particle/cm3   
Accuracy   ±20%   
Response Time   <9 sec for 95% 

response 
  

Logging Interval (sec) 1 sec   
Averaging 
Interval 

(sec) 10 sec   

Calibration 
Frequency 

  Factory 
calibrated 
before study 

  

Time-Sync 
Frequency 

  every operation   
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S.3 Input Distributions 

S.3.1 Age Distribution 

 

S.3.2 Speed Distribution 
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S.3.3 Volume Distribution 

 
 

S.3.4 Manufacturer Distribution 
 
Table S3: Manufacturer share of the vehicles in operation in U.S. 

 
 

Manufacturer % of vehicle currently in 
operation 

Ford 20 
GM 28.5 

Chrysler 12.8 
Toyota 11.8 
Honda 8.1 
Nissan 5.3 

Hyundai 2.9 
Other 10.6 
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S.3.5 Percentile values for distribution of ultrafine particles on roadways  
 
Table S4: Ultrafine Particle Distribution on typical arterial roads and freeways in Los Angeles.  
 
Percentile Concentration 

Arterial  
Concentration 
Freeway 

Percentile Concentration 
Arterial  

Concentration 
Freeway 

1 6572 2671 51 21614 38068 
2 8406 5637 52 21946 38765 
3 9623 7920 53 22306 39497 
4 10465 9555 54 22646 40038 
5 11039 11109 55 22992 40677 
6 11426 12085 56 23329 41345 
7 11783 12930 57 23620 42076 
8 12072 13617 58 23955 42575 
9 12330 14178 59 24268 43269 

10 12605 14902 60 24570 43923 
11 12817 15662 61 24895 45051 
12 13010 16103 62 25219 45979 
13 13178 16759 63 25688 46891 
14 13367 17287 64 26249 47791 
15 13529 17892 65 26775 48529 
16 13724 18387 66 27211 49179 
17 13924 18895 67 27629 49822 
18 14147 19503 68 28095 50709 
19 14448 20153 69 28513 51487 
20 14687 20778 70 28987 52274 
21 14862 21401 71 29531 53143 
22 15046 21717 72 30130 53772 
23 15242 22212 73 30763 54708 
24 15460 22627 74 31458 55659 
25 15698 23160 75 32106 56481 
26 15900 23603 76 32647 57328 
27 16088 23964 77 33180 58493 
28 16275 24692 78 33786 59448 
29 16478 25326 79 34676 60822 
30 16671 25880 80 35671 62019 
31 16864 26408 81 36960 63150 
32 17079 26861 82 38184 64504 
33 17290 27417 83 39618 66200 
34 17490 27931 84 41194 67427 
35 17687 28516 85 42900 68812 
36 17888 29059 86 44552 70349 
37 18074 29668 87 46760 71994 
38 18272 30116 88 48909 74808 
39 18516 30946 89 51159 77286 
40 18750 31367 90 53886 79518 
41 19004 31945 91 56730 83510 
42 19219 32478 92 60338 87571 
43 19428 33040 93 64419 92591 
44 19624 33672 94 70721 98119 
45 19812 34154 95 77975 103589 
46 20031 34776 96 88281 115102 
47 20288 35573 97 103533 122556 
48 20600 36161 98 127935 137610 
49 20916 36835 99 168251 169101 
50 21248 37611 100 364221 318278 
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