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Air Quality Engineering: A Focus on Asia

Population {billions]

10
B :
L
b
4
2 = #
U a5
] - - = RAMS-AS I 70 hterpolation [1995)
1950 1970 1990 1010 2030 2050 | Pt oo 1 13 toarmetaton (20001
] Kabo et al. [1991]; Akimoto and MNarita[1994) L7
Lrvdt et 2l (1907 ) o
== AFRICA 1 F:;t;:ttal.[[mml] Chira. -
304 I tal, [1996] L7
— EURDPE ] g C::i;nvimnment Yearbook (1991, 1996) 7
o~ " Higashing et al, [1995) P
== NORTH AMERICA = Streets and Waldhaff [2000)
—— ASIA AND OCEANIA iy ¥ SER(1959) ) . .
o] = W -
= LATIN AMERICA AND CARIBBEAN g - 802 Emissions --
- e, B g - ol N -
Flye:s s e o L i
A7 iR : R
% ) ] Sy
GN c & -:..-r .
w1 (=
4 E
20 /
/ o
] [m]
15 T T T T T T T T T T
1984 19286 1988 1930 1992 1994

Tear

Local to Global Impacts




Motivating Questions

» \What are the current and projected trends-in-energy
ard.emissions?

» How are these impacting human health? Food
security?, etc. :

»-What are the transboundary impacts of Asian
emissions within-Asia?

» What are the region-specific science issues that need to
be addressed (e.g.,-aerosol interactions)?

» What are present and future impacts of Asian
emissions on global air-quality? on US air quality?

» To what extent are air pollution and climate change
Issues linked? And how can these be exploited?

» What cost-effective options-are available to address
these concerns?
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TranstTfer of pollutants n thhe
atmosphere

® Pollution may be transported over long distances
<ATMOS >
® Sulphur deposition calculated by MATCH model using
"Conventional Development Scenario" emissions
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Aerosols are Pervasive Throughout Asian
Environments
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What is the Importance of Heterogeneous Chemistry on
Mineral Aerosol Surfaces in the Troposphere?
Answer Requires:

Knowing what chemistry occurs on/in the aerosol.
Quantifying mineral surfaces in space and time.

Assessing how mineral aerosols age; and how surfaces
activate/deactivate, take on water, etc.

Quantifying aerosol /radiation interactions.

Resolving chemical composition as a function of size.



Chemical Role of
THE APPROACH Aerosol Particles in the

Atmosphere

Can change the chemical balance of the
MODELING Y LABORATORY atmosphere in two ways

(Vicki Grassian (_Sink___J

—leader)
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3D STEM-III
transport/chemistry/deposition model

*Dynamics of Aerosol Processes *Detailed Reaction Mechanisms NO, + Q E 6 + NO
: . : 2
*Combined Kinetic/Thermodynamic

Approach *Kinetic Measurements

eSpectroscopic Measurements

*New Approach for Secondary
Organic Aerosol Partitioning '

«Sensitivity Analysis and Improved * Adsorption Isotherms H(a) + NO, 2 HONO
Numerical Methods

sSurface Coverages




Experimental Considerations

 Spectroscopic measurements to provide both - i T}
qualitative (what reactions are possible) and G @/ 8
quantitative information

— Provide mechanistic information on the molecular level

— Need to have techniques that can detect gas-phase and

surface-bound species
Transmission FT-IR Spectroscopy
Diffuse Reflectance UV-vis Spectroscopy
Mass Spectrometry

 Kinetic measurements to provide quantitative
information
— Determine uptake coefficients (sticking coefficients,

reaction probabilities) 'y 1610
Knudsen cell apparatus

* Provide data as input for global atmospheric
models - removal rate of gas-phase species j
2
k= [kq; (1) n(r) dr a 4m°D}V _
1 YT+ Ko (2 +40-7)13y) ord oren] | | | |

o 2000 4000 6000 8000 10000 12000

1.2 10'°
8 1015 —

4 10™°

n(r)dr = number density of particles
between r and r+dr



Mass Transfer Coefficient
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Scheme for Aldol Condensation

Reaction on Oxide Particles
(Al,O,4, Fe,0,4, TIiO,, CaO, and MgO)
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Impacts on RO2? On Organic aerosol mass?, others?



Summary of Combined Laboratory
and Modeling Study

Spectroscopic probes of gas-phase and adsorbed species along with
Kinetic measurements provide the necessary information to evaluate
reactions of potential importance in the troposphere

— reaction mechanisms, surface coverage, saturation
— uptake coefficients

Diffusion of gases into powdered samples can have a very significant
effect on the measured uptake coefficient for powdered samples

— multiple collisions amplify the observed uptake
coefficient

Atmospheric implications of uptake measurements determined from box-
model analysis

— heterogeneous pathways are competitive with other
carbonyl loss mechanisms (e.g. reaction with OH radical)




Three-Dimensional Combined
Transport/Chemistry Analysis (STEM-I111)

On/0Off Line Transport Model

Boundary Condition g-::ﬂl;;;
Met. Data (ECMWE) Aqua_pphase
* Topo Transport
* Landuse 3D advection
55T Vertical Diff. A 1
Cloud, Precip. s
; A | (size resolved; Radiation/
Emission Data vl kineticand [ [ Photolvsis
RAINS-ASIA A '+~ | thermodynamic |, [ 4 *"F0Y
China Map 'L'“‘w'#'.. D7l modules) o
Energy sectors, g
fuels, LPS,
On-line:
Emission markers; -
mineral and
sea salt emissions

Forecasts of 3-D tracer
and aerosol fields; and
detailed process oriented
analysis of observations
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Model is Able to Capture Many Important
Observed Features
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SULFATE SIZE DISTRIBUTION

RADIATIVE FORCING

S04(c)/(S04(f)+304(c)) March 05 S02 percent change March 05
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Song et al., JGR In press
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Impact of Aerosols on the
Photochemical Oxidant

H@Kﬁ%s ""‘%\«RMog Cycle Through Photolysis
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Goodman et al.,
JGR, 105:29053,
2000
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Mineral Aerosol Perturb Trace Gas Cycles
In Many Ways

Increase SO, to sulfate conversion rates.
Increase the importance of dry deposition.
Decrease the lifetime of SO,, NO, and VOC?

Control the partitioning of semi-volatile species (e.g.,
HNO,).

Influence precipitation pH.

 Provide reaction channels which may: recycle No,;
produce particulate nitrate; make longer chain VOCs;

provide radical sources; and indirectly/directly Perturb O;
and alter water uptake.

 Alter photolysis rates.



April 1998 Asian Dust Event

Transport of East Asian Dust Pall Acrosé the Pacific

Courtesy of Rudolf Husar, Washington University, St. Louis: http://capita.wustl.edu/Asia-FarEast/



Pressures are from the Pacific Rim
Countries and beyond.

Changing patterns and growth rates
of energy use and resulting
emissions are the primary forcing
factors -- with East and West
following different paths.

Impacts are local, regional (East
and West), basin-wide, and global.

Complexities in transport and
chemistry over the Pacific greatly
challenge present modeling and
measurement efforts.
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Asian Contribution to Total Ambient Ozone over Central Califomia
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Further Quantification Requires

e Continued laboratory studies: understanding the
role of water, surface reactions, etc.

* Ambient measurements: mineral aerosol size
distributions; ammonia concentrations; aerosol
chemical composition as a function of size
(including the large particles!); dry and wet
deposition of the major cations.



ACE-Asia (NSF) & TRACE-P (NASA)
Spring 2001 Experiments

Internaticnal Global Atmospheric Chemistry Project

. Agian'Pacific Regiohal Aefosol |
Characterizaion Experiment

Radiative Forcing due to Anthropogenic
Aerosols over the Asian Pacific Region

NASA/GTE DC




Development and Application of Chemical Weather Forecasting
System over East Asia

ltsushi Uno (RIAM/Kyushu-U), Gregory R. Carmichael (UI/CGRER)

We are developing and applying an operational chemical weather forecasting system based on 3-D on-line
regional scale chemical transport model fully coupled with RAMS (Regional Atmospheric Modeling System, Pielke
et al., 1992). This system consists of several important components; i) operational global forecast data set access to
NCEP and JMA, ii) RAMS weather forecast for 72-96 hours based on the NCEP & JMA data as a lateral boundary
condition, iit) On-line chemical transport calculation of important chemical tracers (SO,/SO,, mineral dust, black
carbon and sea-salt, etc.) and iv) post-processing of “chemical weather forecast” results with 2/3-D graphics into the
WW\W-page.

One of the main purposes of this system is to understand the regional transboundary air pollution and to
schedule/design the operational field monitoring campaign during the ACE(Aerosol Characterization Experiment)-
Asia and Trace-P intensive observations.

Regional Chemical Weather

Forecasting System
BoundaryCond. I E Reg. Met. Model + CTM
Met Data
Global analysis j L R
Vegetation=SST I ; '\
‘Emission Data I Jj i |
Transport Reaction Deposition
3D advection Gas—phase Dry
Vertical Dif. Aqua—phase Wet
Precipitation aerosol




Application & Model Validation

» ACE-Asia & TRACE-P Field Campaign

Planning
» Field Observation Design

o Traffic (Aviation)
e Visibility
e Environmental Assessment

« Model Validation for Episodic
Application e

— Yellow Sand (Kosa) April 1998 & — 17 Rer 56
Annual averaged L of 40

Surface level SO4 . March 2000 |:>
T : —A — S0,/SO, climate simulation




Observation at Osaka and Model Results

Observed sulfate concentration at Osaka compared with model results show a
good agreement, and the intermittency during the winter season and the
periodicity typical of spring/fall rainy seasons, when the alternance of high/low
pressure systems characterize the meteorology of the region, is nicely reproduced
by the numerical model (RAMS on-line transport model).

. - 1
Slow & Periodical

Winter & early Spring
igh freq. & intermittent

SO (ng/me)

I
APR MAY JUN JUL AUG SEP OCT NGOV DEC JAN FEB MAR
1994 19495

Model — — Obs

Modeled twelve hours averaged concentration (straight line) and daily averaged observation (dot line)




Tracer Species (2)

Several useful atmospheric tracer to
Understand the origin of air mass

12 bin Sea Salt from Gong et al.
Production rate depends on wind speed
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Frontal Outflow Is the Key Transport Mechanism
and needs to be Better Quantified

12:00:00
o8 fApr 100
8 of 14

Saturday

Transport during a frontal passage

,r‘hﬂﬁrilrﬁth toJﬁnﬁJ_ll, 2000“




Frontal Outflow: Dust (brown) & Sulfate (green)

00:00:00 green isosurface- sulfate 00:00:00 green isosurface- sulfate 12:00:00 green isosurface- sulfate

P" 100 Hpr 100 orange isosurface- dust 99 Apr 100 orange isosurface— dust
day] A > - : o e

00:00:00 green isosurface- sulfate 12:00:00 green isosurface- sulfate 00:00:00 green isosurface- sulfate

10 Apr 100 orange isosurface- dust pr 100 orange isosurface- dust \ 11 Apr 100 orange isosurface- dust
+of—14 G 4 G 4
0 ¢




JeuEr

PR I SN Errrh arEE N A N ..
B

ol | .

N

15 16 17 18 19 20 21 22 23 24 25
APRIL (GMT)

Elevated dust layer comes first and then
dense dust layer appears in PBL

(below 2km) associated with the
movement of low-pressure system

Conc unit log(ug/ms3)




Comparison of Predicted Dust and BC
Distribution to Satellite Information
April 21
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RAINS ASIA FLOW CHART
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Methodology for Asian
Emission Estimates

Other human

AL LEE activities
Biom_ass
[RAINS-AsiaJ Activity burning

Model

W

data

Biogenic,

Emission Volcanic...

factors,
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Emission Anthropogenic Natural
Controls emissions emissions
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Organization of Emissions Data
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Emission Data

@ Overview

Methodology for A=ian
Emission Estimates

*

Emission Inventories are being developed in support of the Ace—Asia and Trace—P Experiments. An overview of the Methodology for Asian
Emission Estimate and Organization of Emissions data are showmn belows,

Organization of Emissions Data
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@Gridding Procedure for Black Carbon

We wrill put procedures and examples about the gridding here.

/| @ What's Related
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CAN THESE REDUCTIONS BE SUSTAINED?
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Transport
Sector In Asla

GAS GUZZLING: A Bangkok tie up symbolizes growing Third
World energy demands. which hurt efforts to cut fossil fuel use
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A NO, projection for East Asia
Source: Klimont et al., IIASA




Emissions of VOC In East Asla
(Mt VOC)
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Structure of VOC emissions 1n 1995
for selected countries
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Ratio of NO, to VOC emissions
In East Asia
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Impacts of Human Activities are Felt on
Scales from Local to Global
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Energy Growth in Asia & Its

Links to Emissions

Bad News: Growth will have wide-ranging and
Increasing impacts on the environment at all

scales.
Projections present a very pessimistic picture.

Better News: Projections and present practices
will not be followed.

There are ways to decouple energy growth
from economic and population growth.

Key may be to recognize linkages between
urban pollution and climate change.



Data:

Chemical Composition of the
atmosphere

Aerosol composition, size and
number

Optical properties/radiances
Meteorological fields
Combined met/chem
guantities: fluxes, tendencies,

Utilities/tools for
data mining and
analysis for use
by a broad
community
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apted from Karsushika Hokusai’s masterprece “The Grear Wave off

“artistically displays the spirit of supercomputing. Complex phenomena,
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Impacts Lead To Action
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Figure 5. Estimated annual variation in Asian anthropogenic 50y emissions from 1925 - 2000,

China Emissions are changing
In unanticipated ways!

Decreased Crop Yields

Xiangtan, China - received
over 2 Million Yuan
compensation from the
neighboring cities due to

of paddy fields In

1999



Urban Environments in Asia
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4%/yr urban growth rate In
Asia-Pacific region

23 megacities in 1995 (17 in
developing countries) to 36 In

2025 (23 In Asia)

Asia presently has ~1 billion
urban dwellers, projected to
grow to ~3 billion in 2025

10 Asian Megacities will
account for ~40% of GNP In
2025

Each 1 million urban
Inhabitants emit average of
25,000 tons of CO, every day
(six times global per capita
average)

Indoor and Outdoor air

pollution pose severe human
health concerns
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