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Presentation Overview

Transportation Life Cycle Assessment Overview
Significance of infrastructure and supply chains
Forecasting future behavior and technologies

Los Angeles Light Rail and Bus Rapid Transit
California High-speed Rail

Integrated Transportation and Land Use



Transportation LCA
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Life Cycle Grouping Automobiles/Buses Air Rail
Vehicle
Manufacturing = Sedan = Aircraft Manufacturing = Train

Operation

Maintenance

Insurance

Transport to Point of Sale

Propulsion
Idling

Typical Sedan Maintenance
Tire Replacement
Battery Replacement

Sedan Liability

= Engine Manufacturing

= APU / Startup / Taxi Out /
Takeoff / Climb Out / Cruise /
Approach / Landing / Taxi In

= Aircraft Maintenance
= Engine Maintenance

= Crew Health & Benefits
= Liability

= Transport to Point of Sale

= Propulsion
= |dling

= Typical Train Maintenance
= Train Cleaning
® Flooring Replacement

= Train Liability
= QOperator Fringe Benefits

Infrastructure

Construction

Operation

Maintenance

Parking

Insurance

Roadway

Roadway Lighting
Herbicide Use

Curbside Parking

Road Workers Fringe Benefits

= Airport
= Runway/Taxiway/Tarmac

= Airport Energy

= Runway Lighting

= Deicing Fluids

= Ground Support Equipment

= Airport
= Runway/Taxiway/Tarmac

= Airport Parking

= Non-crew Health and Benefits

® Infrastructure Liability

= Track
= Station

= Track, Station, and Parking
Lighting

= Herbicide Use

= Train Control

= Miscellaneous (Escalators,
Equipment)

= Track and Station
Maintenance

= Dedicated Parking

= Non-vehicle Workers Fringe
Benefits
= |nfrastructure Liability

Energy Production

Extraction, Processing, &
Distribution

Gasoline/Diesel/Natural Gas
Extraction, Processing, &
Distribution

= Jet Fuel Extraction, Processing,

& Distribution

= Raw Fuel Extraction and
Processing, Electricity
Generation, Transmission &
Distribution




Environmental Indicators

Energy Energy
Air Emissions Inputs
SO, Respiratory irritant, acid deposition
CO  Asphyxiant
NO, Respiratory irritant, smog
VOC Photochemical smog, cancerous Process
PM  Respiratory and cardiovascular damage
Greenhouse Gases
CO,, CH,, N,O
Emission
Outputs
Human Health and Environmental Impact Potentials
Respiratory: SOx, NOx and PM, . ,
Acidification: SOx and NOx | Impact
Photochemical Smog Formation: CH,, CO, VOC, and NOx Potentials

Eutrophication Potential




Los Angeles Metro

Infrastructure and automobile shifts: positioning
transit to reduce life-cycle environmental impacts

for urban sustainability goals
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The life-cycle footprint of a
passenger mile of travel«
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Parameterizing LCA

Today

Future
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Greenhouse Gas Emissions

Greenhouse Gas Emissions in g CO,e per Passenger Mile Traveled
- 100 200 300 400
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Sedan Long-term
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P
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| i
1 Vehicle Operation M Vehicle Manufacturing ™ Vehicle Maintenance
M Vehicle Insurance M Infrastructure Construction M Infrastructure Operation
W Infrastructure Maintenance [1Infrastructure Parking ] Infrastructure Insurance

I Energy Production Auto Indirect

M Chester, S Pincetl, Z Elizabeth, W Eisenstein, & J Matute, Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-cycle

Environmental Impacts for Urban Sustainability Goals, Environmental Research Letters 8(1), 015041, doi:10.1088/1748-9326/8/1/015041.



Preliminary Results: Respiratory Stressors

Human Health Respiratory Effects Potential in mg PM, .e per Passenger Mile Traveled
- 20 40 60 80 100 120 140 1e0

Sedan Near-term | N || H |
Sedan Long-term | [N || | |
Orange BRT Near-term [N 0 W | 7
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Gold LRT Near-term | %
Gold LRT Long-term
1Vehicle Operation M Vehicle Manufacturing I Vehicle Maintenance
M Vehicle Insurance M Infrastructure Construction M Infrastructure Operation
M Infrastructure Maintenance [ Infrastructure Parking ] Infrastructure Insurance

I Energy Production Auto Indirect

Life-cycle Respiratory Effects Hotspots

PM, .: Steel and alum. production furnace emissions for vehicle manuf.
PM, .: Supply chain diesel truck use.

NOx: Supply chain diesel truck emissions.

SOx: Direct and supply chain electricity consumption.

M Chester, S Pincetl, Z Elizabeth, W Eisenstein, & J Matute, Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-cycle

Environmental Impacts for Urban Sustainability Goals, Environmental Research Letters 8(1), 015041, doi:10.1088/1748-9326/8/1/015041.




Preliminary Results
Photochemical Smog Stressors

Photochemical Smog Formation Potential in Mg O;e per Passenger Mile Traveled

- 2 4 6 8 10 12 14
Sedan Near-term | I 1 I Y
Sedan Long-term | | B I V72
Orange BRT Near-term | 1 N
Orange BRT Long-term [Tl [V
Gold LRT Near-term | N | ¥
Gold LRT Long-term [l [}
1 Vehicle Operation M Vehicle Manufacturing [ Vehicle Maintenance
M Vehicle Insurance I Infrastructure Construction M Infrastructure Operation
M Infrastructure Maintenance [ Infrastructure Parking 1 Infrastructure Insurance
M Energy Production Auto Indirect

Life-cycle Smog Hotspots

NOx: Orange line tailpipe.

NOx: Supply chain diesel truck emissions.

VOC: Vehicle fluids (steering, brake, transmission, coolants, etc.).
VOC: Vehicle manufacturing and truck transport.

VOC: Volatile organic diluents in asphalt.

M Chester, S Pincetl, Z Elizabeth, W Eisenstein, & J Matute, Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-cycle

Environmental Impacts for Urban Sustainability Goals, Environmental Research Letters 8(1), 015041, doi:10.1088/1748-9326/8/1/015041.
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" Local

Local + Remote Impacts m remoe
Energy GHGs Respiratory Smog

Auto

(most remote)

Orange BRT

(second most remote)

Gold LRT

(least remote)

000

M Chester, S Pincetl, Z Elizabeth, W Eisenstein, & J Matute, Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-cycle

Environmental Impacts for Urban Sustainability Goals, Environmental Research Letters 8(1), 015041, doi:10.1088/1748-9326/8/1/015041.
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Footprinting Consequential
(per PMT) (Corridor Effects)




Consequential Effects

[ Avoided Transit [ Avoided Auto [ Orange

Added

) TIME

Avoided

Energy Consumption or Emissions



Orange BRT Impacts by Decade (D) Gold LRT Impacts by Decade (D)

D1 D2 D3 D4 D5 De D7 D38 D% DID
']-DD i i i i

Orange

L
]

Global Warming
Potential in Mg CO,e

3
[

)

Respiratory Impact
Potential in kg PM, e

B Transit Operation/Propulsion ) Transit Life-cycle I Automobile Operation ] Automobile Life-cyde s Cumulative ===-- Cumulative (Local)
4—= Paybackoccursin decade. Gray text(eg., ) are the impact savings in decade.

M Chester, S Pincetl, Z Elizabeth, W Eisenstein, & J Matute, Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-cycle

Environmental Impacts for Urban Sustainability Goals, Environmental Research Letters 8(1), 015041, doi:10.1088/1748-9326/8/1/015041.




Orange Line Mode Shifts £5§

2009

CO
GHG

Full Adoption

(1-10 yrs) FAST
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VOC
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NEVER

Percentage of Orange Line Trip Takers Shifted from Automobiles

M Chester, S Pincetl, Z Elizabeth, W Eisenstein, & J Matute, Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-cycle

Environmental Impacts for Urban Sustainability Goals, Environmental Research Letters 8(1), 015041, doi:10.1088/1748-9326/8/1/015041.
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M Chester, S Pincetl, Z Elizabeth, W Eisenstein, & J Matute, Infrastructure and Automobile Shifts: Positioning Transit to Reduce Life-cycle

Environmental Impacts for Urban Sustainability Goals, Environmental Research Letters 8(1), 015041, doi:10.1088/1748-9326/8/1/015041.




Igh-speed Rail with Emerging Automoblles
and Aircraft Can Reduce Environmental
Impacts in Future Long-distance
Transportation




Infrastructure Tradeoffs

Llfe CyC|e Assessm e nt Broad Suites of Environmental Indicators

Human Health, Ecosystem Services, Resource Depletion Impacts
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@ Sacramento

@® San Francisco

Phase 1: San Francisco to Los Angeles
Phase 2: Sacramento to San Diego

@ Los Angeles

@ San Diego




Uncertainty

Future vehicle technologies

Future energy mixes

Ridership uncertainty produces a range in per-PKT
performance

Challenges: Adoption period, full adoption (typical peak
and off-peak)

Without a strong understanding of ridership, breakeven
points can be more illustrative of environmental tradeoffs



Greenhouse Gas Emissions in Grams CO.e per PKT
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Greenhouse Gas Emissions in Grams CO.e per PKT
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Chester M and Horvath A, 2012, High-speed Rail with Emerging Automobiles and Aircraft Can Reduce Environmental Impacts in California’s
Future, Environmental Research Letters 7(3), doi:10.1088/1748-9326/7/3/034012.



Human Health and Environmental Impact Potentials per PKT
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Long-run per PMT Rankings
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Footprinting Consequential
(per PMT) (Corridor Effects)




Greenhouse Gas Payback in Million Tonnes

CAHSR Authority Business Plan Medium Forecast Payback Sensitivity
(25) (20) (15) (10) (5) - 5 (10)  (5) - 5
Decade1 | avro [ ks [ AR

Deca d e 10 e

Chester M and Horvath A, 2012, High-speed Rail with Emerging Automobiles and Aircraft Can Reduce Environmental Impacts in California’s Future, Environmental
Research Letters 7(3), doi:10.1088/1748-9326/7/3/034012.



Payback with Cumulative Radiative
Forcing
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CAHSR Impact Reduction Strategies

GHG Emissions in kg CO,eq/VKT NOx Emissions in g/VKT
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Chester M and Horvath A, 2012, High-speed Rail with Emerging Automobiles and Aircraft Can Reduce Environmental Impacts in California’s

Future, Environmental Research Letters 7(3), doi:10.1088/1748-9326/7/3/034012.



Auto VMT 324 billion 517 billion 511 billion

AirVMT 65 million 107 million 8o million
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LA’'s roadway network has enabled
automobile use but the infrastructure
may be saturated.




Transportation

Cumulative Roadway Miles
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Los Angeles Network Growth
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Andrew Fraser and Mikhail Chester, 2013, Life-cycle Greenhouse Gas Emissions and Costs of the Deployment of the Los Angeles Roadway Network,

Working Paper SSEBE-CESEM-2013-WPS-001, Arizona State University, Tempe, AZ, http://repository.asu.edu/items/16574.




Los Angeles Network Growth
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Unsustainable Long-term Financing?
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Natural Limits to Infrastructure
Services?
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Transportation

Emergent Greenhouse Gas
Emissions from Vehicle Travel
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Integrated
Transportation + Land Use
Life Cycle Assessment
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Kimball M, Chester M, Gino C, and Reyna J, TOD Infill in Phoenix Can Reduce Future Transportation and Land Use Life-cycle Environmental Impacts,

In Review at the Journal of Planning, Education, and Research.



Potential Development around Stations
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Kimball M, Chester M, Gino C, and Reyna J, TOD Infill in Phoenix Can Reduce Future Transportation and Land Use Life-cycle Environmental Impacts,

In Review at the Journal of Planning, Education, and Research.
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Kimball M, Chester M, Gino C, and Reyna J, TOD Infill in Phoenix Can Reduce Future Transportation and Land Use Life-cycle Environmental Impacts,

In Review at the Journal of Planning, Education, and Research.





















Greenhouse Gas (GHG) Emissions
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Kimball M, Chester M, Gino C, and Reyna J, TOD Infill in Phoenix Can Reduce Future Transportation and Land Use Life-cycle Environmental Impacts,
In Review at the Journal of Planning, Education, and Research.
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Maximizing the Investment|1/2]

The transportation-land use interdependency
can be used to the region’s advantage:

Investments in light rail yield transportation and
land use energy and environmental gains

The marginal benefits received from land use
strategies that utilize light rail are significantly
larger than the marginal costs

Kimball M, Chester M, Gino C, and Reyna J, TOD Infill in Phoenix Can Reduce Future Transportation and Land Use Life-cycle Environmental Impacts,

In Review at the Journal of Planning, Education, and Research.




Maximizing the Investment|2/2]

. ) (the equivalent of 1.2
Reduction potentials (over 60 yrs):  million households each

GHG emissions: 500 tonnes CO,e/du ~ °V"& %% fewer annual
miles, or turning off

Energy consumption by 7.5 TJ/du 22,000 households for 2.6
days of the year).

The potential for human health respiratory effects
will be reduced by 18% and smog formation by
21% for TOD households

Phoenix could reduce their GHG emissions
footprint to 1990 levels by targeting 120,000
dwelling units for TODs

We show how up to 22,000 dwelling units can be added.

Kimball M, Chester M, Gino C, and Reyna J, TOD Infill in Phoenix Can Reduce Future Transportation and Land Use Life-cycle Environmental Impacts,

In Review at the Journal of Planning, Education, and Research.




@® Neighborhood-
specific designs
® Adaptive Reuse

ey
@® Commercial: Office VY -
and Retail space




Phase 3'“

@ Redevelopment

Redevelopment Qutcome Development
Vacant + Surface (New Construction) Single Family Residential

Vacant + Surface (New Construction) Multi Family Residential + Commercial
Vacant + Surface (New Construction) + Low Value (Adaptive Reuse) Multi Family Residential + Commercial
Vacant + Surface (New Construction) + Low Value (New Construction)  Multi Family Residential + Commercial




Opportunities for Future
Research

Economic activity changes

Project Life Cycle Costing

Cost optimization of energy and
environmental investments

Socio-demographic assessment to prioritize
nouseholds that will produce the greatest
nenefits by moving to TODs

_ong-run infrastructure cost changes
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