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Outline 
• Introduction to California GHG emissions  
• Approach 

– Collaborative Measurement Network 
– Regional Inverse Modeling Framework 

• Results 
– GHG Measurements 
– Atmospheric Transport Evaluation 
– Methane Emissions 
– Nitrous Oxide Emissions 
– Fossil Fuel Carbon Dioxide Emissions 

• Summary 
• Recommendations 
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California GHG Emissions Context 
 California leading the US and 

world in responsible action limiting 
climate change 

 “Climate Solutions Act” (AB-32) 
and Governor’s Executive Orders 
call for matching and reducing 
(40% to 80%) emissions from 
1990 by 2020, 2030, and 2050 

 Fossil fuel CO2 currently 
dominates ( 80-90%) total 
emissions 

 Non-CO2 GHG emissions 
uncertain and may offer short-term 
opportunities for mitigation 

 Regional, urban, and facility-scale 
measurements support inventory 
and mitigation evaluation efforts 
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http://www.arb.ca.gov/cc/inventory/background/ghg.htm 
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Regional Inverse Emission Estimates 

Predicted Signals and 
uncertainties 

Statistical Estimator of 
Emissions (e.g., Bayesian) 

Improved Emission Estimate 

Measured Signals 
and uncertainties 
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 California GHG and GHG Background Inflow   Prior Emission Model  

Atmospheric Transport 



CALGEM GHG Measurements 
 Multi-site deployments 

across California capture 
rural and urban 
emissions 

 Comprehensive design 
provides control and 
calibration all major GHG 
species (CO2,CH4, CO, 
and N2O) 

 Flask sampling provides 
full GHG suite + tracers 
for source identification ( 
e.g., 14CO2, VOC, etc.) 

Flask 
Sampler 

Flask 
Sampler 

Spectrometers: 
CO2/CH4 
N2O/CO 

Gas 
Processing 

Racks 
 

Calibration 
Gases 

Walnut Grove 
(WGC) 

San Bernardino 
(SBC) 
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Estimating Local Signals  
 Global GHG background inflow dominates local measurement 
 California emissions estimated from local-background enhancement 
 Accurate local & background GHG measurements essential 
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note global trend 

Local-background enhancement 

Large background offset Very large background offset 

Local-background enhancement 

Methane Nitrous Oxide 



California GHG Measurement Network 

• Collaborative GHG 
measurement sites 
• 6 CARB anchor sites (CO2, 

CH4, CO, N2O)  
• CH4 measurements at 13 

sites 
• N2O at 6 sites (STB, WGC, 

STR, ARV, CIT, SBC) 
• Fossil fuel CO2 at 3 sites 

(WGC, CIT, SBC) 

Measurement Sites with CA Air Basins 
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Development of Hierarchical Bayesian 
Inversion Method 

Posterior Probability in Hierarchy (Jeong et al. [2016], in press) 

• Develop a hierarchical Bayesian inversion (HBI) method to 
estimate emissions (CH4 and N2O for 0.3° pixels) 

Parameters to Be Solved 
λ: scaling factor for emissions 
y: measurements - p(y|λ,R)~N(Kλ,R) 
where K is prediction and R is model-
measurement covariance [Jeong et al., 
2013] 
µλ: prior mean for λ; σλ: prior error for λ 
σR, η, τ: parameters for R 
 

In HBI, these parameters are 
optimized as opposed to using 
fixed values (e.g., Jeong et al. [2013]). 

Likelihood: 
atmospheric data 

Prior probability in hierarchy:  
a priori knowledge (e.g., GHG 
inventory) 

Posterior probability: 
most probable emissions  
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Parameter Estimation Example  
Using HBI 

Posterior 
distribution for 
average σλ in 
SoCAB (January 
2014) 

SE = standard 
error 
Unit: ppb 
CIT, January 
2014 

Examples of estimated region-averaged 
prior uncertainty for CH4 (SoCAB) – prior 
uncertainty was fixed in previous work 
and is optimized in Jeong et al. [2016] 

Estimated model-measurement  
uncertainty for CH4 (in ppb) at CIT 
In Jeong et al. [2016], model-
measurement uncertainty is also 
optimized 
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ATMOSPHERIC TRANSPORT 
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Evaluation Using Carbon Monoxide Measurements 



Evaluation of Atmospheric Transport  
• Transport model 

(WRF-STILT) is 
assessed using a 
combination of 
meteorological and 
carbon monoxide 
(CO) measurements 
coupled with the 
gridded CARB CO 
emission inventory 
 

(a) Locations of meteorological stations, (b) tower sites 
with radiosondes and wind profilers, (c) key regions, and 
(d) WRF domains with prior CO emissions from CARB 
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Evaluation of Key Transport Variables 
• Numerous observations from 

surface, profiler, Lidar, and 
radiosonde stations across 
California were used  
 

• WRF configurations were 
selected to minimize 
meteorological biases in winds 
and boundary layer   
 

• The seasonal mean biases in 
wind speed (< ~ 0.5 m/s), 
direction (< ~ 15°), and 
boundary layer height ( <  ~ 
200 m) were generally small 

Simulated vs. observed boundary layer for LA 
and San Francisco Bay Area (2013 -2014) 

Simulated (red) and observed (black) surface 
wind speed and direction, CIT and STR 

12-17 LST 
Irvine Profiler 

Data from surface stations within 50 km of 
CIT and STR used 

12 - 17 LST 
SJSU Lidar  
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Footprint Simulations from Selected 
WRF-STILT Configuration (2013 – 2014) 

• ppb/(nmol/m2/s) 

• Footprint represents the 
sensitivity of concentration 
to a unit emission change 

• Multiplication of footprint 
with emissions yields mixing 
ratio concentration 

 
• The seasonal footprints 

shown represent the most 
complete sensitivity maps 
in California  

• Full annual cycle in 
time 

• 13 sites in space 
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Comparison of Predicted vs. Measured 
CO for Summer and Fall 

• Regression of predicted and measured CO yields near-unity slopes for the 
majority of sites and seasons (Bagley et al., in review) 

• A subset of sites/seasons exhibit larger (~ 30%) uncertainty, when weak 
winds combined with complex terrain (e.g., South Central Valley)  
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Comparison of Predicted vs. Measured 
CO for Winter and Spring 

• WRF-STILT simulations are sufficient to estimate emissions of CO and other 
GHGs with similar emission patterns to within 10% ± 10% (95% CI) on 
annual timescales across California  
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METHANE 
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Predicted vs. Measured CH4 
Central Valley Sites 

Urban or Coastal Sites 

ARV 

MAD 

STB 

TRA 

TSB 

WGC 

CIT 

LVR 

SBC 

SIO 

STR 

VTR 

THD 



Prior Emission Maps 
• High-resolution CH4 prior emission map scaled by CARB inventory (year 2012, 

version March 2014; most recent version at the time of analysis) by sector  with 
adjustments for regions [Jeong et al., 2016] 

• Includes seasonal emissions from wetland and rice CH4  
• The new prior emissions are higher than those (for 2008) in Jeong et al. [2013] 

by ~30% 
• Central Valley and major urban regions (SoCAB & SFBA) account for 55 and 29% 
• Livestock is the largest source sector in the prior (52%) 

10 km x 10 km 
CA Total: 
1.7 Tg CH4/yr 

State Total Emission 2008 vs. 2012 Emissions 

Major regions only 
SoCAL: Southern CA 
(SoCAB + SD + MD  
+ SS) 

CA Air Basins 
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Comparison of Predictions vs. 
Measurements by Season 

• After inversion, RMS errors and best-fit slopes are improved (shaded region 
= 95% CI region) 

• Best-fit slopes are derived from the median values of the posterior 
emissions (25000 Markov chain Monte Carlo (MCMC) samples used) 
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CH4 Emission by Season and Sector 

CH4 Emissions by Season Annual CH4 Emissions by Sector 

• State annual anthropogenic CH4 emissions are 2.42 ± 0.49 Tg CH4/yr (at 
95% CI), 1.2 - 1.8x the  CARB inventory (1.64 Tg CH4/yr in 2013, 1.0 – 1.6x 
the inventory if corrected for the 10% transport bias; Jeong et al. [2016]) 

• Given the posterior errors, the posterior emissions are greater than the 
prior across seasons, but only with weak seasonality  

• Livestock sector is likely the major contributor to the state total CH4, in 
agreement with CARB’s inventory 
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Estimated Regional CH4 Emissions 
• Posterior CH4 emissions from the Central Valley and urban regions (SF Bay and 

SoCAB) account for ~58% and 26% of the posterior total, respectively 
 

• Consistent results in SoCAB with those from recent studies suggests the 
robustness of the inversion method developed in Jeong et al. [2016] 
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Map of Estimated CH4 Emissions 

95% CI 95% CI 
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(e) Posterior (median) - prior 



NITROUS OXIDE 
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Measured vs. Predicted N2O Ratio of Ocean and Forest N2O 

Ocean - Prior 

Ocean - Posterior 

Forest - Posterior 

Forest - Prior 
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ARV 

CIT 

SBC 

STB 

STR 

WGC 



Prior Emissions 
• Anthropogenic N2O prior emission maps are generated from EDGAR scaled 

by CARB inventory (Year 2012; year 2012, version March 2014; most recent 
version at the time of analysis) by sector   

• The Central Valley and major urban regions (SoCAB & SFBA) account for 
46% and 26% of the state total, respectively 

• The largest emissions from agricultural soils (41% of the total) followed by 
industrial processes and product use (20%) and manure management (20%)  

Annual Anthropogenic N2O Annual Forest N2O Annual Ocean N2O 

State total: 
48 Gg N2O/yr 

State total: 
2 Gg N2O/yr 
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Comparison of Predictions vs. 
Measurements by Season 

• After inversion, RMS errors and best-fit slopes are improved (shaded region 
= 95% CI region) 

• Best-fit slopes are derived from the median values of the posterior 
emissions (50000 MCMC samples used) 
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State Anthropogenic N2O Emissions 

Example posterior distribution for 
state total N2O from HBI (May 2014) 

Statewide anthropogenic N2O 
emissions by season 

Distributions 
derived from 
50000 MCMC  
samples 

• State annual anthropogenic N2O emissions are 1.5 – 2.5 times (95% CI) the 
CARB inventory (44 Gg N2O/yr in 2013; 1.3 - 2.3x the inventory if corrected 
for the 10% transport bias) 

• Seasonal variations in California’s N2O emissions are likely smaller than for 
interior portions of the continental US, similar results to Jeong et al. [2012] 
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Annual Anthropogenic Emissions by 
Major Region and Sector 

agricultural soils (AGS), manure 
management (MNM), industrial 
processes and product use 
(IPU), indirect N2O emissions 
from agriculture (N2O), waste 
(solid & wastewater) (WST), 
road transportation (TRO)  

• Central Valley emissions are 1.4 – 2.2 times (95% CI) the prior (22 Gg N2O/yr)  
• Emissions from two major urban regions (SoCAB & SFBA) are 1.1 – 2.0 times 

(95% CI) the prior (12.7 Gg N2O/yr) 
• Actual emissions in the Central Valley dominated by agricultural soil and 

manure management appears to be higher than the prior 
N2O Emissions for Major Regions N2O Emissions by Sector 
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Estimated Anthropogenic N2O Emissions 

95% CI 95% CI 
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(e) Posterior (median) - prior 



FOSSIL FUEL CO2 
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Fossil Fuel CO2 Prior Emissions 

CARB-scaled Vulcan ffCO2 Emissions 
Used in Inversion 

Comparison of Original Vulcan 2.2 vs. 
CARB-scaled Vulcan ffCO2 by Sector 

• Vulcan 2.2 ffCO2 emissions are scaled to CARB 2012 inventory by sector 

Total: 
343 Tg CO2/yr 
[CARB inventory, 
Version March 2014] 



Estimated Fossil Fuel CO2 Emissions 
 Radiocarbon 14CO2 provides 

sensitive (~ 1 ppm) measure of 
atmosphere fossil fuel (14C free) CO2 

 Compare local signals with WRF-
STILT-VULCAN scaled to CARB 
(2013) inventory by year 

 Walnut Grove 2009-2012: model-
measurement comparison match to 
+/- 10% (results from individual years 
more variable (e.g., +10 to -25%) 

 Measurements for single year 2013-
2014 from San Bernardino (- 26 +/- 
8%) and Caltech (-9 +/- 4%) similar 
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RESEARCH SUMMARY AND 
RECOMMENDATIONS 
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Summary 
• Increased ARB capacity for State-wide GHG  inventory 

assessment  
– Continued multi-species GHG measurements at Walnut Grove 
– Implemented measurements at a new site in San Bernardino 
– Combined 13 sites in collaborative CA-wide network 
 

• Optimized NCAR Weather Research Forecast WRF) model  
– Selected WRF physics to match with meteorological measurements and 

evaluated residual random error and biases 
– Compared measured and predicted carbon monoxide signals to estimate 

GHG signal prediction errors  
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Summary (cont’d) 
• Estimated CH4, N2O, and fossil fuel CO2 emissions for CA 

(compared with a recent ARB inventory for year 2013, version 
April 2015)  
– CH4 slightly higher (1.0- 1.6 times) than the 2013 ARB inventory (Jeong et 

al., 2016) 
• Livestock emissions are likely the largest source, consistent with CARB 

inventory 
• Actual natural gas/petroleum production emissions are likely higher than 

the prior while posterior emissions from the other sectors are slightly 
higher or similar to the prior 
 

– N2O emissions higher (1.3 – 2.3 times) than 2013 CARB inventory  
• Likely higher emissions than the prior in the agricultural soil (1.4 – 2.4x 

the prior) and manure management (1.3 – 2.5x) sectors 
• Non-agricultural sources in CA are also important (~36% of the total 

posterior emissions) 
 

– ffCO2 approximately consistent with 2013 CARB inventory 
• On-road mobile is likely the largest source sector 
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Recommendations for Further Work 
• Expand work on inventory-based estimation of CA GHG 

emissions  
– Perform 1st first order uncertainty analysis (e.g., US Environmental 

Protection Agency) 
– Create spatiotemporally disaggregated GHG emission inventories for 

all major species.  

• Continue developing GHG and meteorological capabilities 
– Implement wind profiling and boundary layer mixing height observations near 

measurement sites to refine/evaluate meteorological models 
– Add multi-species tracer gas measurements (e.g., ethane and other alkanes, 

stable isotopes, 14CO2) for source sector attribution  
– Incorporate available satellite and ground-based full-column and airborne 

GHG observations 
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