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* Introduction: health effects, methods and background
* Extended freeway plumes in the early morning

* (Classifying days based on their propensity to high
levels of primary pollutants

* Differences in pollutant concentration between
neighborhoods

® Summary
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ultiple Pathways to Increased Morbidity and
Mortality are Associated with Proximity to Traffic

for Adults
Mortality

e Holland - living near roadways doubled risk of death
from heart or lung disease.

(Hoek, G. et al. (2002) Lancet 360: 1203-1209.)

e Canada - living near roadways increased the risk of

death due to stroke and cardiovascular disease by 40%.
(Finkelstein, M. M. et al. (2005) J. Epidemiol. Comm. Health 59: 481-487)

Heart Attack

e Germany - the risk of a myocardial infarction was tripled

by exposure to traffic in the previous hour. (eters A etal. oog) N
Engl. ]J. Med. 351: 1721-1730.

Other Effects

e Increase in a variety of adverse health outcomes
including type II diabetes, asthma, respiratory
symptoms. 3



"~ Multiple Pathways to Increased Morbidity in Children are
Associated with Proximity to Traffic

Prenatal Impacts

e Los Angles - women living near high heavy duty traffic
areas were at increased risk of premature delivery and
low birth weight babies (Ritz and Co-workers, UCLA)

Asthma Prevalence and Respiratory Symptoms

e Southern California - prevalence of asthma among
children was associated with several indicators of

exposure to traffic including proximity of the home to a
freeway (USC Childrens health study)

Childrens’ Lung Development

e Southern California - Exposure to elevated indicators of
diesel exhaust is associated with poorer lung
development and lower overall lung function,
conditions that are largely irreversible (USC Childrens
health study) 4
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Size distribution of atmospheric particles
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d Mostly from vehicular emissions highly concentrated on UFP region:

~80% of the total number conc. but negligible in mass conc. [Kumar et al,,

2010]

0 Formed generally by condensation in the diluting exhaust plume (semi-

volatile hydrocarbons and hydrated sulfuric acid) [Shi et al., 2000]



Instrument

CPC (TSI, Model 3007)

FMPS (TSI, Model 3091)

DustTrak (TSI, Model
8520)

EcoChem PAS 2000
LI-COR, Model LI-820

Teledyne API Model
300E

Teledyne-API Model
200E

Sonic Anemometer
(Vaisala)

Garmin GPSMAP 76CS

SmartTether™

KciVacs video

Measurement Parameter

UFP number concentration (10 nm ~
1um)
Particle size distribution (5.6~560 nm)

PM, ; and PM,, mass

Particle bound PAHs
CcoO
CcoO

2

NO

Temperature, Relative humidity, \

Wind speed/direction
GPS

Vertical profiles of temperature, RH,
wind speed/direction

Video record

SmartTether™




Factors controlling freeway plumes in
the early morning



he Freeway Imprint is Many Times Larger

Before and Just After Sunrise (normalized data)

Relative UFP Concentration

1
—e— Pre-Sunrise: Winter
Kansas .
—O— Pre-Sunrise: Summer
0.8 | w —=— Daytime (Zhu et al 2002b)
0.6 |
04 |
Olympi
0.2 < ~ Palms
y‘Freeway
Upwind <—§—)Downwind
O \\\\\\\\S\\\\\\\\\
-1500 -1000 -500 0 500 1000 1500 2000 2500

Distance from Freeway (m)

3000




UFP Concentration (#/cm”3)

Santa Monica: Summer is Cleaner; why?
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raffic Counts

1.0 :
B |
|
! °
1
o) Increase Rapidly
I

— |

= I ! —— Winter e

Soef he Early AM

g o | ~ — Summer In the rarly

Q !

B :

= :

X 1

s ;

o |

o |

2 ‘

46 I Ty | :

o CoOocCOcCocOOcOoOOcOOOOOOOOO : e March 7 Winter sunrise time '
(choololchohooolohechohchohohohohole! [ » March 12 o
SHNGIBOrOSggNaEREaNE » YO s ‘

g i Winter Winter measurement oo
Time & 800 L[| « June30 | - period: 6:00-7:30 SN
= + July 2
©5 --- - Summer
. @2 600

Summer is cleaner 5=

b h g 1 o¥ w00 A

ecause there 1s less 5 :

t ffo d o th = 200 g “summer messurement eriod: |

i S o-fa ummer measurement period:
rarric auring e i 4:15-6:35
(] [ ] 0 I 1 \' L 1 L L 1 1 1 I
pre-sunrise period s 3 8 8 8 8 8 8 8 3
™ < < ol el © © ~ ~ e



)
b SR r l-L
Fnionn, wﬁ*—x@«: Bdib) &
c . i A

il 00t

[ @"-, DOLA . R T ~*0®
&) (OVEI’IOE%S FWY) | / C Jaremont :

\ O¢OW83“ Bema dino:Fr eeway-(u I‘lde_{,%ass FWY)
: pataMonicasfwy== AR "R o\l O”CB /
@’ V% s (\A(@f o

W\l

Q@ (@)
oo

y IEN""

ue

’"\___,-—( 059___1;.

déuq} 4

8

|\}I

it

~Aemooresal\ ey




Transect (small 2-lane street running through quiet residential neighborhoods)

Freeway

Overpass Freeway
(DoLA and
Paramount)

Mobile Monitoring Platform

Underpass
Freeway
(Carson &
Claremont)

Mobile Monitoring Platform



ide Impact Area Downwind of Freeways
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[Choi et al., Atmos. Environ., 62, 318-327, 2012]



R o T

200 B T 50% of population lives within 1.5

California South Coast Air Basin [Polidori et al., 2009]

About 11% of US households are located within 100 m of 4-lane
highways [Brugge et al., 2007]

Extension of pre-sunrise freeway plume up to 2 km has
potentially significant implication for human exposure to UFP
as well as other pollutants

Paramount



urve Fits to Observed Profiles to Extract Emission

Factor and Dispersion Coefficients
[Choi et al., submitted |
Q. =Emission rate corrected with wind speeds
H  =Source height

1.5m = Measurement height

Gaussian Plume

DisperSion mOdEI o, = Dispersion parameter
x = Horizontal distance from the source
1.5m+HY 1.5m—H)
C(x,1.5m) : exp| — ( : ) +exp| — ( > )
o, 20, 20,
\
References Equation Land use Stability Class Dlspfer_smn
form coefficients
Briggs (1973) E2 (slightly stable) a=0.03
d/zl'stance £=0.3x103
@ X Rural
2 F2 (moderately a=0.016
z
. . 1+4(5)x) stable) B=0.3x107
Dispersion Parameter
Urban E — F2 (stable) a=0.08

B=1.5x1073




The Model Fits the Obse
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stimating the Particle Number Emission Factor

’ Q. = Wind speed-corrected Emission rate (#-m-cm3)
0, x (Traffic flow) : o
Q == 9ven = Particle number emission factor (PNEF)
2/ 27Z'Ue (#-mile-vehicle)
Traffic flow =vehicles-s™
1 U, = Effective wind speeds [Chock, AE, 1978]
(wind speed + speed correction factor due to traffic wake)
V27Q. -U, : : :
Oyer, = _ with the mean values obtained from observations
(traffic flow)

N 27 X (8.12><104)>< (0.64m/s+0.2m/s)x10° Cm%ﬁ XSOO%min
= (680.2 vehicles/5min)

= 1.2x10" particles-mi*-vehicle™

This is 15% of the Particle Emission Factor measured in
West LA in 2001

8.3x10' particles-mi*-vehicle® in 2001 [Zhu and Hinds, AE, 2005]



Factors Controlling Plume Transport and Decay

2 2
o 20, 20,
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Effects of
Dispersion
Coefficients
on

Plume Shapes
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bserved Dispersion Coefficients, ¢ and g
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Underpass Freeways
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Transect

$ Sampling height = 1.5 m
=/

Source height = o m
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Hypotheses

A strong positive relationship between dispersion coefficients oand f,

and their variations are likely caused by:

(1) Meteorological conditions (Advection and turbulence)

(2) Plume intensities (Conc. difference from the background)

% =K. [C (t) 5 Cbkgnd ] [Dillon et al., JGR, 2002]



Hypothesis I Windé—,;”EffeCtS

Wind Direction T
DTLA
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DoLA & Paramount: Overpass freeways

Wind Speed Carson & Claremont: Underpass freeways
O Negative correlation for overpass fwys 8 o ‘ ‘
O Less clear positive correlation for underpass * 4+ DTLA
fwys . % Paramount |
0.12 ‘ ‘ ‘ ‘ ' O Carson
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0.1 + =1 *
— *
X :
0.08' v ;
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+
' Nu i i e o
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",»:\ _ . Scalar wind speed (m - s )
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Hypothesis Il: Effects of Plume Intensity

A[UFP]=[UFP]-[UFP],,,.« Conc. difference from the background
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peak

A[UFP]

Hypothesis Il. Effects

of Plume Intensity
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Hypothesis Il: Effects of Plume Intensity
Vertical Stability (R; #) - do (dU jz R, > 0 :stable

R. = o : neutral

I 6 dz dz R, < 0 : unstable
S 6 ‘ ‘ |
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g e 3% Paramount
. 2 * 5 O Carson |
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Multivariate Regression Model

Q.; = coef, - Traffic + coef, .MD

Predicted Q_ (x10°)

2.5

-
a

0.5¢

a; or B, =coef, -Q, ; +coef, -’\ND

rel, j

-
T

0.5

1 15
Observed Q_ (x10%)

R?>=0.95

2

25

rel, j

T

Prediction of Dispersion Coe‘fficients
Q.

: emission rate factor
WD, ;: relative wind direction to freeway
: temperature

WSR :vector mean resultant wind speed
RH

C

|+ coef, - T, +coef, -WSR,; +coefs - RH +C

: relative humidity
: correction factor

|+ coef, - T, +coef, -WSR, +coef,-RH; +C  (j=123,...k)
0.12 w w ‘ 8 .
[ Overpass freeways L 7
| }A( Underpass freeways o -
0.1 ///D 6 */// * |
 0.08f DD (?3 *75(
3 L X 4r 7‘(// 7‘(
S 0.06 O Dd'_‘l i %
8 ¥ O % g 5 X
* 0.04 w ﬁ ki 0
o B¥ : @m
0.02/ ‘%, o m v
% 002 o004 o006 008 01 o012 % 0 2 a 6 8
Observed a Observed B(x10%)
R?=0.88 R?=0.86



Summary |
i

Pre-sunrise (or nocturnal) extension of freeway plumes far downwind (> 2 km)
compared to daytime plume length (<300 m) is a general phenomenon in the
SoCAB.

. Curve fits using a Gaussian dispersion model solution allowed us to extract

emission factor, and dispersion parameters directly from the observed UFP
profiles.

. From emission factor obtained from observed UFP profiles, estimated particle

number emission factor was 1.2 x10' particles-vehicle*-mile™.

Plume intensity (A[UFP]) was an important factor to control pollutant plume
length downwind of freeways under stable conditions as well as
meteorological parameters, such as wind direction and speeds.

. Based on strong correlations of dispersion coefficients with readily and

routinely measurable parameters, plume shapes and areal impact can be
predicted.
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Classification of Meteorology during
Measurement Periods based on CART
(Correlation and Regression Tree)
analysis of primary pollutants



eteorological variables considered in the CART model and their

effects on atmospheric primary pollutant concentrations

Meteorological variables

Importance on primary pollutant level

Geopotential heights (@) at 1000/925/850/500
mbar

Mean temperature (T) at 1000/925/850 mbar

Stab”ity (Tlooombar 7 T925mbar! TlOOOmbar %7 T850mbar)

Indicator of synoptic-scale weather
pattern or vertical mixing height

A measure of the strength and height of
the subsidence inversion

Indicator of atmospheric stability

Upper-air
(NCEP model) x Related to the mean temperature in the
Thickness (Dy,smbar = @ ;g00mbar) la
yer
Relative humidity at 1000 mbar (RHg00mpar) Indirect effect
Pressure gradient at 1000 mbar level (@, — Related to wind fields and ventilation
¢south’ ¢east_¢west) Strength
; Indirect effects on air stability and
mean/min./max. temperature (T c.ns Trmins T VA ;
. (Trmeans Trmin: Tma) emission rates from the engine
SUlface : Related to dispersion/ventilation
observations mean/max. wind speed (Upean: Unmax)
strength
(LAX)

Relative humidity (RH)
Mean surface pressure

Indirect effect
Indicator of synoptic-scale weather




Regression Tree for [CO]

at the Downtown Los Angeles

max
AQM D Station Daily max. [CO),,.a
[CO],.x=1.0(0=0.6)
N=553
Uppean < 2.64 Uiean > 2.64
[CO]=1.64 (c=0.5) [CO]=0.87 (6=0.4)
N=169 N=384
I ! e
&, >7714 AD, . <3.88 AD,  >3.88
[CO]=1.70(c=0.5) [CO]=0.75 (c=0.4) [CO]=1.19 (c=0.4)
N=156 N=280 N=104
| / \
Toin $11.85 Toin £11.85 T > 11.85
[CO]=1.88(c=0.5) [CO]=1.88(c=0.5) [CO]=1.88(c=0.5)
N=83 N=86 N=194
1
RH, 000 >50.2
[CO]=1.79(c=0.4)
N=69
/\
¢925 RHIOOO S925 s925 Trnin Umean Umean RHIOOO Rl"ll)t)\‘.i 0925 (DSZS
<7714 <£50.2 <1.14 >1.14 >11.85 <3.19 >3.19 <64.8 >64.8 <789.8 || >789.8
[cO] [CO] [cO] [CO] [CO] [cO] [CO] [CO] [CO] [CO] [CcO]
=0.82 =2.33 =2.22 =1.65 =1.51 =1.18 =0.80 =0.79 =0.55 =0.97 =1.30
(6=0.3) || (6=0.3) || (0=0.3) || (6=0.3) || (6=0.5) || (6=0.4) || (6=0.3) || (=0.4) || (=0.3) || (0=0.3) || (c=0.4)
N=13 N=14 N=16 N=53 N=73 N=30 N=56 N=97 N=97 N=36 N=68
Nodel Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 Nodel0 Nodell




Different pollutants at the same site

closely correlated.

[NOlmax
linear fit for [NO]max

[NO]mean
linear fit for [NO]mean

Daily [NO]max (PPb)

e D
0¥J

-

node 8 T !

A
A

0.5 1.0 1.5
Daily [CO]max (PPM)

Daily [NO]mean (ppb)




The Same Pollutants at Different Sites are also

Closely Correlated.
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Mean nodal [CO]max at DoLA (ppm)




Air Quality in Several Los Angeles
Neighborhoods
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Summer time regression tree for daily [CO]

max

observed at Downtown LA (N. Main

St.) for 2007 - 2009 (Jun. 21% to Sep. 21%t). Choi et al. (2013).

Daily max. [CO],,..

[cO],., = 0.75 (5=0.35)

N=154
AD, <3.875 A®, ;>3.875
[CO]=0.67 (5=0.29) [CO]=1.10 (5=0.35)
N=124
T ean$ 22.19
[CO]=0.60 (5=0.25)
N=115
l"'mron Umorn Tmean RI-ILAX RHLAX
<0.88 >0.88 >22.19 <71.38 >71.38
[co] [co] [co] [co] [co]
=0.93 =0.59 =1.13 =1.35 =0.95
(5=0.28) (5=0.23) (5=0.24) (5=0.30) (5=0.28)
N=15 N=100 N=9 N=11 N=19
Nodel Node2 Node3 Node4 Node5

DTLA/
BH

Measurement DEVAV
A Ti . (°C

07/14/2008

Mon.

(14:00 - 17:00)
07/16/2008
(14:00 - 17:00)
07/18/2008
(14:00 - 17:00)
Mean (Std.)

06/30/2008
(14:00 - 16:30)
07/08/2008
(14:00 - 16:30)
07/10/2008
(14:00 - 16:30)
07/12/2008
(14:00 - 16:30)
Mean (std.)

07/08/2011
(12:00 - 14:00)
07/09/2011
(12:00 - 13:30)
07/10/2011
(12:00 - 13:30)
07/15/2011
(13130 - 15:00)

Wed.

Fri.

Mon.

Tue.

Thu.

Sat.

Fri.

Sat.

Sun

Relative Wind Wind
humidity speeds direction
(m-s?)
27.6
26.7 49 2.4 260
24.6 61 2.9 250
263 (.5 s50(9) 2.6(0.7) 250(10)
21.9 60 4.1 243
20.7 73 5.1 240
23.4 63 4.4 227
23.9 63 4.3 240
2255 65(5) 4.5(0.6) 238(13)
22.6 70 3.9 233
21.5 72 3.8 228
21.8 68 41 235

07/17/2011
(1315 - 14:45)
07/22/2011
(14:20 - 16:00)
07/23/2011
(13:30 - 15:00)
Mean (std.)

Fri.

Sat.

20.9
20.9 66 4.8 233
21.1 66 4.4 240

213(07) 67(4) 4.4(04) 237(6)

CART
final
node?

2

2

2



Afternoon UFP Concentrations in Residential
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[PM,.], mgm®

PM, . was similar throughout except during

50%

“Carmageddon” (all afternoon data) e
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O has a similar trend but much less variability so%
than UFP; trend may be dampened by higher O;in T 5/;
dotwntown :
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Neighborhood-Scale Air Quality in
West Los Angeles
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UFP conc. (# cm™)

Substantial Variations in"UI'trafi'n'e Particle

Concentrations between Neighborhoods
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High emitting vehicles
(HEV) effects on UFP
levels

C, =3x O AUFP<C;

N
% time HEV were encountered = — %

total

A ZCC>Ci
% of total UFP from HEV = & ——L

Z Ctotal

6-8% of time HEV were
encountered account for 17-30%
of total UFP in residential
neighborhoods

Less than 1% HEYV of the fleet
contributed to more than a third

of total CO and HC emissions.
[Bishop et al., 2012]

)

N W & O O N o0 ©

UFP concentrations (particles- cm”

W > [3)]

Baseline-subtraced AUFP (particles cm'3)
N

(Daytime measurements)

x10°

-o Observations
Smoothed baseline
=~ Hu et al. (2012)'s threshold value

Or—e—————0




Summary

* The regression tree (CART) analysis is helpful, but
more resolution is desired.

* UFP are much more variable than other metrics like
PM 2.5, black carbon and NO, between
neighborhoods.

* Particle concentrations are much higher in the
afternoons in Downtown Los Angeles than in the
coastal area, but more similar overall.

* Behavior of UFP concentrations in neighborhoods is
sufficiently complex to be easy to explain but difficult
to predict.



1.

Summary IllI

High emitting vehicles significantly contributed to total UFP
distributions both on arterial roadways and in residential
neighborhoods.

Roughly 30 - 70% traffic reductions in WLA during the
“Carmageddon” period led to about 70% reductions in particulate
pollution area-wide in WLA.

Present case study makes clear the potential benefits for public health
of achieving significant vehicle emission reductions through
strategies such as HDDT retrofits, and transition to electric vehicles
and alternative fuels such as natural gas. This study also showed the
significant impact of HEV on total UFP concentrations, and hence,
retrofits or earlier retirement of high-emitting vehicles can help

improve urban air quality.
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