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Reactive Oxygen Species 
•O2 + e- → O2

-     

•O2
- + 2H+ + e- → H2O2    

•H2O2 + e- → OH- + OH  

 
Other ROS: HO2, ROOH, ClO-, 
O(1D), ONOO etc. 
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Three types 
of ROS 

• H2O2, ROOH etc. present in the particles when they are inhaled 
“prompt ROS” 

• ROS produced by components in the particles once they are 
inhaled “generated ROS” 

• There are lots of health endpoints. Different health 
outcomes may be sensitive to different forms of ROS  

• There appears to be some overlap in chemical 
components that cause exogenous ROS formation and 
elicit endogenous ROS formation. 

 
 

• Endogenous ROS 
• Exogenous ROS: 
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Field Campaigns 
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Field Measurements 
• Winter in Fresno, CA  Urban/Agricultural/
    Residential wood burning 
    (= Biomass burning) 

• Summer in Claremont (Los Angeles)  urban/
     photochemical SOA  

• Samples collected on filters (hi-vol and 47 mm) 
• Morning (6 hours), afternoon (6 hours) 
  Overnight (12 hours). Overnight samples had ~ 
2x mass 
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FIELD CAMPAIGNS 

Claremont 

Fresno 
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Assays 
• Measure ROS and species believed to generate ROS: 

• OH (mostly on site) 
• DTT 
• H2O2 
 

• Quinones  
• Soluble Transition metals with  
ICP-MS  
• Soluble Fe(II), Fe(III)  
(mostly on site) 
• Brown Carbon (UV abs. on filters) 
• Mass 

 
 

3-D Fluorescence scan of Jan 19 
2013 Fresno overnight sample 
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Measuring Exogenous ROS 
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Many ROS Assays: OH, H2O2 and DTT were used here. 

• OH (benzoate, 
terephthalate) 
 
 
 
• OH is the most reactive ROS, 

responsible for lipid 
peroxidation, DNA damage and 
protein oxidation 

• H2O2 (horseradish 
peroxidase) 
• An intermediate in ROS 

chemistry; assay measures 
steady-state concentration 
instead of cumulative formation. 
  

• DTT consumption 
– Mimics biological reductants, is 

oxidized by ROS-generating 
PM components (e.g., metals 
and quinones) 
 

• Ascorbic acid    
consumption 
 

• Electron Paramagnetic 
Resonance 
 

• Dichlorofluorescin 
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Several Extraction Solutions for ROS 
We mostly use “Simulated Lung Fluid” or “SLF”: 
• pH  7.4 /Phosphate 
• NaCl 
• Lung Antioxidants & Citrate,    

 100 – 300 µM  
• Ascorbate, reductant 
• Glutathione, chelator 
• Urate 

• Citrate, protein mimic, chelator  
Also used:  
• Concentrated phosphate buffer 
• Lung Lavage Fluid 
• Water @ pH 3.5 
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Iron solubility is strongly dependent on 
extraction solution; more so for Claremont 
than Fresno  
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pH 3.5: water @ pH 
3.5 
 
SLF: Simulated lung 
fluid (salt, ascorbate, 
citrate, urate, 
glutathione) 

Copper solubility appears to be less solution 
dependent, potentially due to effective 
chelation of copper by the antioxidants. 
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LABORATORY WORK  
ON HOOH AND OH  
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Impact of SLF Composition on HOOH Production 
Charrier et al., ES&T, 2014 
• Goal 

– Past work: antioxidants in SLF have 
large impact on OH production 

– Here we examine the effect of 
antioxidants on HOOH 

– Antioxidants: Asc (200 μM), Cit (300 
μM), GSH (100 μM), UA (100 μM) 
 

• Results 
– Copper (top) 

• Asc is major reductant (e– source) 
• GSH suppresses activity; Cit enhances 

– Quinones (bottom) 
• Asc is required as reductant 
• Adding other 3 antioxidants suppresses 

activity, which is surprising  
 

 
 
 

250 nM Cu(II) 

• Bottom line: Composition of SLF has large effect on ROS formation 
– We use all four antioxidants (Asc, Cit, GSH, UA) as the standard condition 
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HOOH Production  
Charrier et al., ES&T, 2014 

• Goals 
– Quantify HOOH production from metals & 

quinones in surrogate lung fluid (SLF) 
– Examine HOOH production in mixtures 
– Estimate which redox-active species are 

most important for HOOH in ambient PM 
 

• Results 
– Cu and three quinones make HOOH 

• Other metals tested (Fe, Mn, Co, V, Ni, Pb, 
Zn, Cd, and Cr) do not make HOOH 

– HOOH from Cu and quinones is additive 
– Fe suppresses HOOH production 

• Suppression in lab samples can be modeled 
• Ambient PM results (Fresno samples from 

ARB/EPRI project) do not fit lab model 
• Due to PM organics altering metal reactivity? 

– Will discuss importance of individual 
species for HOOH production later 
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OH Production from Metals & Quinones  
Charrier and Anastasio, ES&T, 2015 

• Goals 
– Quantify OH production by metals and 

quinones in SLF 
– Examine OH production in mixtures 
– Estimate which redox-active species are 

most important for OH in ambient PM 
 

• Results 
– Fe, Cu and three quinones make OH 

• Other metals tested (Mn, Co, V, Ni, Pb, Zn, 
Cd, and Cr) do not make OH 

– Mixtures 
• OH from Cu and quinones is additive 
• Fe gives synergistic OH, up to ~2x 
• We can model synergy in lab samples 
• Fe synergy in ambient PM extracts generally 

follows lab model 
– Importance of species for OH shown later 
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“Mechanistic” Approach to Identifying Redox-Active Species in 
PM Extracts 

• Regression Analysis 
– Linear regressions often used to assess PM 

components most strongly correlated w/ ROS 
– Can be useful, but has issues 

• Non-redox-active species are often strongly 
correlated with ROS 

• Some species have non-linear concentration-
response curves (e.g., Cu and Mn)  

• Correlation ≠ causation 
 

• Mechanistic Approach 
– We developed method in 2008 and have 

used it in 7 studies since (DTT, HOOH, OH) 
– Approach accounts for redox activity and 

concentrations of species (see figures) 
– Uncertainties 

• PM organics might alter metal reactivity  
• Have examined mixtures, but more work to do 

 
 

Concentration-response curves 
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Relative Importance of  
Metals & Quinones for ROS 
Charrier and Anastasio, ES&T, 2015 

• Apply mechanistic approach to hypothetical 
PM2.5 sample w/ US median concentrations, incl: 
– Water-soluble Fe, Cu, Mn = 7, 2, 2 ng/m3 

– PQN, 1,2-NQN, 1,4-NQN = 0.3, 0.02, 0.1 ng/m3 
 

• Cu is the major player 
– Cu, Mn & PQN dominate DTT loss 
– Cu dominates HOOH formation 

• But impacts of PM organics might be significant 
– Cu, Fe and Fe-Cu synergy dominate OH formation 

 

• Cu and the California REL 
– There is in vitro, in vivo, and epidemiological 

evidence that Cu is very redox active and toxic 
– Current REL: 100 μg/m3.  Unlikely health protective.  
– OEHHA is revisiting the Cu REL 
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Quinones 
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Background and Goals 

• Redox-active Quinone mass loadings in Fresno up to > 10 ng m-3. 
• Quinones accounted for H2O2 generation from PM extracts in the 

presence of diothiothreitol (DTT). 
Primary Goals 
• Quantify quinone levels in PM extracts to enable their contributions 

to ROS generation to be evaluated. 
• Identify origins of quinones (if their contributions are significant) 
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Overview 
• Sampling Sites 

• Claremont (07/26/12-08/13/12). 56 Samples 
Organics mostly anthropogenic; significant 
photochemical component. 
 

• Fresno (01/15/13-01/30/13). 45 Samples 
More primary, biogenic organics. 
 

• Procedure 
• Samples collected with Hi-Vol PM2.5 sampler on 8 x 

10 inch Teflon-coated filters and PUF sampler. 
• 3 samples/day: Morning (6 hr), Afternoon (6 hr), 

Overnight (12 hr) 
• Filter sections extracted with SLF and then organic 

solvent; PUFs extracted with organic solvent. Organics 
quantified by GC/MS. 

• Sections provided to UCLA and UC Davis for ROS 
assay and other chemical measurements. 

• (Sections used in rat alveolar macrophage ROS assay.) 
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Quinones 
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Distribution of Quinones 
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Claremont – All Quinones 
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Summary 
• Mass loadings of quinones are higher in Fresno than 

Claremont; more quinones are detectable in Claremont. 
 

• Measurements at both sites consistent with 
photochemical production of quinones from anthropogenic 
sources. 
 

• In Fresno – no change in redox-active quinone levels 
since 2004, but total quinone mass loadings decreased. 
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DTT 
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DTT Mass Bias 
Charrier et al., Atm Env, In Press 
• DTT mass normalization 

– Rates of DTT loss are generally normalized 
by mass of PM in extract (i.e., rate/mass) 

– Implicitly assumes linear concentration-
response curves; not true for Cu and Mn 
 

• Hypothetical PM sample 
– Calc’d DTT responses for single PM sample 

over a range of PM mass conc’s in extract 
– Top panel shows extract results 
– 2nd panel shows mass-normalized results 

 

• Actual samples (bottom figure) 
– 8 Claremont (C) and Fresno (F) samples 

• Each sample meas’d at several concentrations 
– “Mass-normalized” result depends on mass 
– Need to correct for this bias in DTT results 

• We recommend normalizing results to a PM 
extract concentration of 10 μg/mL 

 
 

 
 

(a)

(b)
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Metals and Quinones at Claremont & Fresno 
Anastasio et al., In Prep 

• Examine concentrations since 
these species likely drive DTT 
activity 
 

• Average metal concentrations 
– Aqueous-soluble component only 
– Broadly similar to previous results 
– Cu is high (~ 25 ng/m3), though 

lower than previous LA average 
 
 

• Average quinone concentrations 
– SLF-soluble quinones for current 

work; only some of species shown 
– Results similar to previous work for 

1,4-NQN and PQN 
– 1,2-NQN high for Claremont but 

Fresno was generally below LOD 
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DTT Loss in PM Extracts 
• DTT results (normalized to extract concentration of 10 μg/mL) 

– Time course is modestly interesting for Fresno (below); rather stable at Claremont 
– DTT rates are in the (wide) range of values reported previously 
– No difference in average values for morning, afternoon, overnight samples   

• Impacts of mass normalization 
– Results shown for Fresno 
– Big impacts on range & RSD 
– Smaller effect on mean 
– ~½ of variability in “standard” 

rates due to extract mass diff’s 

DTT Rates 
(pmol min-1 μg-1) 

Standard Mass 
Normalization 

Normalized to 
10 μg/mL 

Range 23 - 238 55 - 153 

Mean ± σ 79 ± 42 89 ± 24 

RSD 53% 27% 
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Species Responsible for DTT Loss 
• Applied mechanistic approach using measured PM metals and quinones 
• Results 

– Copper (purple) dominates DTT loss at both sites 
– Unknown species (gray) are small, but significant, and variable 
– PQN (yellow) generally small contribution, but dominates in a few Fresno PM 

Claremont (Normalized) 

Fresno (Normalized) 



• Mechanistic approach 
– Graph show average percent 

contribution to DTT loss from each 
species 

– Copper dominates 
– Unknown species are significant 
– Manganese minor 
– PQN important at Fresno 
– Fe: < 1% at both sites 

• Regression approach 
– There are strong correlations between DTT rates and  

• Fe, Cu, and Mn at Claremont 
• HULIS (especially), Fe, and Cu at Fresno 

– HULIS correlation might indicate that it is driving the “unknown” contribution 
– Fe correlations are more difficult to understand 

• Fe has very weak activity in the DTT assay and modest water-soluble amounts 

Species Responsible, Part 2 
38 



OH and H2O2, and comparisons to 
DTT etc. 
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OH & H2O2: no clear dependence on mass 
concentration in the assay solution  
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ROS assays in relation to one 
another 
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OH vs. DTT: correlated but different slopes 

y = 7.4x + 1.6 
R² = 0.68 
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H2O2 behaves differently from OH and DTT. M 
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Do chemical components do a better 
job than mass at predicting ROS? 
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DTT correlates strongly with mass 

y = 2.18x - 0.02 
R² = 0.88 

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0

D
TT

 lo
ss

 ra
te

 (u
M

/m
in

) 

Mass (mg) 

Claremont 
M

A

N

y = 2.34x - 0.08 
R² = 0.79 

0

1

2

3

4

5

6

0.0 0.5 1.0 1.5 2.0

D
TT

 lo
ss

 ra
te

 (u
M

/m
in

)) 

Mass (mg) 

Fresno 

y = 2.32x - 0.08 
R² = 0.82 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 0.5 1.0 1.5 2.0

D
TT

 lo
ss

 ra
te

 u
M

/m
in

 

Aerosol mass (mg) 

Combined 

Claremont, M
Claremont, A
Claremont, N
Fresno, M
Fresno, A
Fresno, N

45 

Presenter
Presentation Notes
Is Cu the same between the two sites?



DTT is more strongly 
predicted by Fe and 
Cu in the Claremont 
summer samples,  
 
and about equally well 
by biomass burning in 
the Fresno winter 
samples  
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Claremont 
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OH: is also strongly correlated with mass; slopes 
are very different between the two sites. Fresno 
afternoon samples have minimal activity. 
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OH Claremont 

OH = 3 + 0.65*Cu + 2.4*Mn +  
    1.8*Fe(ferrozine) 
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OH Fresno:  
Mass is the best single 
predictor, followed by 
biomass burning aerosol 
(BBA), soluble iron 
(measured with 
ferrozine), and copper. 
The data have too many gaps to 
perform a reliable multivariate 
regression on BBA, Fe, Cu and 
other metrics. 
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H2O2 Claremont: 
as has been observed 
before, H2O2 is not 
well correlated with 
mass, or components. 

y = 6.78x + 1.84 
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H2O2 Fresno 

y = 61.65x - 4.05 
R² = 0.20 
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Copper: similar range for both sites; Very low & 
constant in afternoon especially in Claremont 

y = 0.022x - 0.07 
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Soluble Iron: same range for both sites except Fresno 
Overnight samples. Much better correlated with mass 
in Claremont than Fresno. Very low in afternoon 
samples, especially in Fresno. 
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Soluble Mn: Much higher in Claremont 
than Fresno; evenly distributed by time of 
day 
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BBHULIS interactions with iron & 
copper 
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Effect of Fulvic Acid on Key Reactions  
 Gonzalez et al., 2016 submitted  Units of M-1 s-1 

• Fe(II) + O2  Fe(III) + O2
.-    k = 0.98  

• FA-Fe(II) + O2  FA-Fe(III) + O2
.-  k = 2.8 

___________________________________________________________________ 

• Fe(II) + O2
.-  + 2 H+  Fe(III) + H2O2

 k = 200 

• FA-Fe(II) + O2
.-  + 2 H+       

   FA-Fe(III) + H2O2
 k = 2×107 

___________________________________________________________________ 

• Fe(II) + H2O2  Fe(III) + OH- + OH.  k = 55  
• FA-Fe(II) + H2O2        

 FA-Fe(III) + OH- + OH.  k = 2×107 
___________________________________________________________________ 

• Fe(III) + HAsc-
  Fe(II) + H+ + HAsc.-

 
 k = 1×102 

• FA-Fe(III) + HAsc-
       

   FA-Fe(II) + H+ + HAsc.-
 
 k = 1×102 
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H2O2 @ 24 hours vs. Fe and Cu: What a 
difference BBA makes 
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ROS Summary 
• DTT is the same at the two sites, once aerosol 
mass concentration is considered. 

• OH is higher in the Claremont samples. It was 
very low in the Fresno samples unless they 
contained biomass burning aerosols (BBA). 

• H2O2 is much higher in the Fresno samples, 
where significant biomass burning aerosol 
was present, and this is associated with strong 
interactions between BBA with Fe and Cu. 
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ROS Summary 
• The largest differences between Fresno and 
Claremont are: 
-Significant biomass burning aerosol in Fresno, absent in Claremont; 
-Somewhat higher Cu, Fe and Mn in Claremont compared to Fresno, 
except samples with high BBA in Fresno, which have high iron.  

• The BBA activity could be due to  
• higher solubilization of available iron,  
• higher Fe content,  
• or increases in the rates of the oxidant producing reactions by 

complexed iron and other transition metals.  
• Since copper is fairly well solubilized already, BBA may not impact 

its activity as much.  
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Comparison of field and lab results 
OH 
summer 

OH 
winter 

OH lab* DTT 
summer 

DTT 
winter 

DTT 
lab** 

H2O2 
summer 

H2O2 
winter 

H2O2 
Lab*** 

Cu 
ICP   Other 

evidence ~   
(weak)    

 weak 
 

 weak 
 

 

Fe 
(Ferrozine)  

 
  ~ 

 
 --    

negative
weak 

 
 weak 

Negative 

Mn 
ICP  -- -- --   weak -- -- 

 quinones -- -- PQN, 
1,4-

&1,2-
NQN 

-- --  
PQN 

-- -- PQN, 
1,4-

&1,2-
NQN 

BB HULIS --  Not 
tested 

--  Not 
tested 

--  Not 
tested 

Mass -- 
  

 

-- -- 
 

-- 
 

-- -- -- -- 
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DTT 
correlates 
most strongly 
with iron, 
WSOC and 
biomass 
burning; AA 
with copper 
 
(Fang et al. ACP 
2016) 
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Conclusions  
• Lots of ROS assays and conditions; results depend strongly 

on the extraction solution and the assay. 

• We were unable to find relationships between ROS quinones, 
although lab results support such relationships This may be 
due partly to limited amounts of quinone data.  

• DTT and OH are generally well correlated with aerosol mass, 
but (clearly) mass doesn’t consume DTT or generate OH. 
DTT and OH are best predicted by: 
• Soluble iron, copper, and where present, biomass burning aerosol.  

• In most cases, iron measured with ferrozine is much more strongly 
correlated to ROS than iron measured by ICP.  
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Conclusions  
• Organics in aerosols play a significant role in adjusting the 

activity of the redox active transition metals. This is most 
clearly seen in the hydrogen peroxide data.  

• DTT consumption had the same mass-response in both 
cities, but OH did not. Fresno samples had lower OH 
production but much higher levels of hydrogen peroxide, 
pointing to a different distribution of reactive oxygen species, 
which may be related to the “even” response of the DTT 
samples.  
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Conclusions  
• Some major unanswered questions:  

• What the assays are measuring. The chemistry is complicated, but it is 
not intractable.  

• Which assay is best. 

• Role of endogenous v. exogenous ROS. 

• The source and distribution of active iron. 
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