i

NextSTEPS (Sustainable Transportation Energy Pathways)

Modeling Optimal Transition Pathways to a Low

Carbon Economy in California
Results from CA-TIMES v1.5 Energy System Model
and Implications for Policymakers

Sonia Yeh, Christopher Yang

Research Seminar
California Air Resources Board
May 1, 2014

UC DAVIS www.steps.ucdavis.edu




CA-TIMES Researchers
I

* Primary Modelers
— Dr. David McCollum?
— Dr. Christopher Yang
— Dr. Sonia Yeh
— Kalai Ramea
— Saleh Zakerinia

« Supporting Researchers
— Prof. David Bunch®
— Prof. Joan Ogden

Institute of Transportation Studies, University of California, Davis
2 International Institute for Applied Systems Analysis, Austria
b Graduate School of Management, University of California, Davis

UCDAVIS

SUSTAINABLE TRANSPORTATION ENERGY PATHWAYS



CA-TIMES Model Goals
I

« The goal of CA-TIMES is to understand the role of technologies,
resources and policies for achieving deep reductions in California’s
energy system GHG emissions by 2050

— Integrated model of entire energy system (demand and supply
sectors)

— Understand cost trade-offs between different uses of scarce
resources

— Scenario approach varying technology and resource costs and
availability

— Understand the impacts of policies and assumptions on energy
resource mix, electricity and fuel supplies, and end-use
technologies
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CA-TIMES General Modeling Approach

« CA-TIMES is a bottom-up, technologically detailed energy and
economic optimization model of California’s energy sectors
— System includes thousands of technologies and hundreds of time periods
— The model makes technology investments and operations decisions

— Minimizes total system cost of meeting energy service demands with
perfect foresight

« Scenarios with welfare maximization are examined (elastic demand (ED)
scenarios)

— Model California’s energy system under 80% GHG reduction by 2050
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CA-TIMES is useful for answering many questions
|

e Current work

— How does placing a limit (or cap) on GHG emissions influence the evolution
of the energy system in terms of technology adoption and system costs?

— What is the incremental cost (or savings) of GHG mitigation?

— How do policies and the availability of technologies and resources influence
the mitigation strategies and costs?

 Potential future work

— How do policies interact with one another? What are the integrated effects
(costs/benefits) of policies or possible tradeoffs?

— What are the effects of technology forcing policies on mitigation costs and
emissions (endogenous learning)?

— How can policy incentives/investments affect consumer choices in
alternative fuels/technologies?

— What’s the role of demand reduction? How does demand reduction interact
with the other policies/mitigation options?

— How does the presence or absence of GHG policies outside of California
affect California GHG emissions and costs?
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Representation of entire California Energy System
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Examine Emissions Across Three System Boundaries

« We only account for energy-related GHG emissions
— lIgnore cement and other industrial processes, ag and waste emissions

as well as natural sources and sinks

CARB’s 1990: 427 MMT vs CA-TIMES 391 MMT (difference 36 MMT)
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Two BAUs, Two GHG Caps, and Nine Sensitivity Analyses

« BAU — Existing policies, including CAFE, LCFS, ZEV, RPS
— Light-duty VMT grows slightly per capita (9% from 2010 to 2050)

e BAU-LoVMT - Same as BAU but with lower VMT
— 24% lower LDV VMT than BAU (17% reduction/capita from 2010-2050)
— 10% lower MD and HD truck VMT than BAU

— Cost/benefits of VMT reductions are not quantified (infrastructure,
smart growth, health and quality of life are not included in the cost
calculations)

* GHG scenarios — Includes 80% GHG emissions reduction cap in
2050 and low VMT assumptions (same as BAU-LoVMT)
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GHG Emissions (Mt CO2-eq)

CA-TIMES Modeling Results — GHG emissions
-

 GHG emissions in BAU and Primary GHG scenario (GHG-Step)

 GHG-Step scenario achieves 75% GHG reduction
— CCS and nuclear power are not available in this scenario
— lIgnores out-of-state aviation and marine travel and excludes offsets
— Significant emissions reduction across all sectors (44 to 81% reduction)
— Transportation continues to contribute majority of emissions
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GHG Targets and Emissions Under & Outside the Caps
@

« Alinear cap is more stringent between 2020-2050 than “Step” cap

 @GHG-Line makes earlier investments in low-carbon technologies
and resources (at higher cost)

« Same level in 2050, but different cumulative emissions (2010-2050)
* Included vs Overall emissions
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California Climate Policy Modeling (CCPM) Comparison
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California Climate Policy Modeling (CCPM) Comparison

 CA-TIMES is one of the few economic models that integrate across all
sectors

* Optimized solution with a 2050 cap (GHG-Step) favors later reductions

— 4% discount rate
— CA-TIME v1.5 does not include learning-by-doing in which early investment can
lead to more cost reductions
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« Transportation is driven by exogenously specified demand for
vehicle miles, ton-miles in different sectors
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Total Transport Fuel Use — Scenario
X

« Decrease in petroleum and increase in biofuels, hydrogen and electricity
 Difficulty in electrifying most transport sectors

« Liquid fuels requirements and limited biofuels availability (7.3 billion GGE)
makes it hard to fully decarbonize sector

* |ncludes fuels for interstate/international aviation and marine
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Light-Duty Vehicles — GHG-Step Scenario
I

« Light-duty vehicles exhibit significant electrification to primarily
battery electric and H2 fuel cell vehicles
— Small contribution from PHEVs in 2050
— On-road fuel economy climbs to over 110 mpgge in 2050

— LDV fuel demand decreases by ~ >° L
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Transportation Carbon Intensity (Cl) Declines 40% by 2050

» Average transportation fuel Cl (gCO2e/MJ (HHV)) declines 40% by
2050 (~60% reduction for instate fuels)

— Electricity: 12 g/MJ*

— Hydrogen: 50 g/MJ*

— Biofuel: 9 g/MJ

— Shift high-carbon fuels (petroleum) to uncapped emissions
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Transportation Mitigation Cost Curves

« Cumulative mitigation cost ($ spent on emissions reduction per unit
of emissions reduced relative to BAU-LoVMT scenario)
— Relative to optimized baseline which already includes significant

transportation efficiency improvements
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Electricity Generation and Supply
|

« Simplified electricity sector

— Electricity demand is treated like one node

— Imports are phased out after 2025, all generation is built for CA demand

— Electricity demand is endogenously determined within model
* Regional solar and wind resources ensures generation diversity

— CREZ groups with transmission costs
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Electricity Supply More Than Doubles in the GHG Scenarios
£ 1

» Electricity demand increases significantly due to electrification of end-use
demands (residential, commercial, industrial, transport)

— 2010 demand: 290 TWh, 2050 demand (BAU: 407, GHG-Step: 600 TWh)

«  Without nuclear or CCS in primary scenario, renewable electricity
sources are needed to decarbonize electricity generation

— Wind: 221 TWh
— Solar: 217 TWh 700000
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Electricity Carbon Intensity Reduced by More than 90%
N

« Cl declines to under 30 g/kWh in 2050
— GHG-Line earlier investment in efficiency and renewables reduces CI
— Same level of demand and generation in 2050

« Slight increase in electricity Cl in GHG scenarios relative to BAU
scenario 2017 to 2025.

— Related to the increase in total electricity demand. Same quantity of low

carbon generation, so greater | 400
demand means more natural
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Balancing Electricity Supply and Demand

* As intermittent renewables grow to greater proportion of the
generation mix, balancing demands is critical for system operation

« Natural gas and hydro are flexible, dispatchable generators

« Generation can exceed demand during some model timeslices
(annual excess generation ~3-5%)
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Efficiency Improvements in End Use Sectors
-
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GHG Scenario Costs (relative to
X

The incremental cost of the GHG scenario is calculated as the difference in
annual cost between the GHG-Step scenario and BAU scenarios
— Two different BAU scenarios (BAU and BAU-LoVMT)
 GHG-Step has same VMT demand as BAU-LoVMT and lower than BAU

« Transport costs are mostly negative compared to BAU because lower VMT
means fewer vehicle and fuel purchases (even if they are more expensive)

— Cost differences rise over time as more expensive, efficient, low-carbon

technologies are adopted

and

— Costs of industrial/ag sectors mitigation not modeled
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Key Results from Scenario Variations

Availability of CCS technology has the largest impact on the results
— Used in electric sector and for negative emission biofuels (bioCCS)

— Can use more natural gas and biomass provides offsets

Other low carbon electricity scenarios (Nuclear and High Ren.)
— Further lower electricity Cl and increase quantity

Higher biomass supply increases supply of biofuels
— Enables greater reductions from transport sector

Elasticity scenarios reduce emissions via demand reduction
— Reduction in electricity (~10-14%) and fuels (5%) demand

— Reductions mean that limited renewables and biofuels can make up
greater proportion of electricity/fuel mix lowering average CI
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Mitigation Costs by Scenario

« Cost of emissions reduction
— Depends on which BAU comparison is made (BAU or BAU-LoVMT)
— Is cost of elastic demand reductions (loss of consumer utility) included?

« Average cost of cumulative emissions reduction ($/tonneCO2e¢)
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Other CA-TIMES Models

« These models are too complex to be fully integrated with core model at this
point:
— Consumer Choice for Light Duty Vehicles (COCHIN)

+ Kalai Ramea, David Bunch
 Introducing non-monetary factors and consumer heterogeneity into the optimization
decision-making framework of TIMES, based upon consumer choice modeling work
from Z. Lin and D. Greene at Oak Ridge Lab
— Air Quality Modeling of Future Energy Systems in California
» Christina Zapata, Mike Kleeman
« Using detailed, spatial air quality models to assess the criteria pollutant and health
impacts of future, low-carbon scenarios
— Hydrogen Infrastructure Deployment
» Christopher Yang, Joan Ogden
» Tracks evolution of California hydrogen infrastructure with disaggregated demands by
region under different scenarios
— Water Use in Future Energy Systems
« Jacob Teter, Kate Tiedeman, Gouri Shankar Mishra, Sonia Yeh
» Assessment of the water use impacts of future, low-carbon energy systems in 2030
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Key Conclusions
1

Carbon intensity of electricity reduced by 90% by 2050

— Renewables produce 60 to 85% of total generation in GHG scenarios,
requiring large investments and fast ramp up

— 70 to 100 GW capacity of wind and solar each must be installed by 2050

« Carbon intensity of transportation fuels decreased by 40% by 2050;
on-road LD fuel economy climbs to over 110 mpgge in 2050

— Low-carbon biofuels are critical for decarbonizing non-LDV modes of
transportation given limitations on electrifying transport

 Electricity demands grow by 80-140% under GHG scenarios from
greater electrification of all end use sectors

« Carbon reduction costs range -$75 to $124/tonne CO, (4% discount).

— Availability of CCS, nuclear, and renewables, and demand reduction all
serve to lower the mitigation costs.
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Thank you!

Christopher Yang, ccyang@ucdavis.edu
Sonia Yeh, slyeh@ucdavis.edu




