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CA-TIMES Model Goals!

•  The goal of CA-TIMES is to understand the role of technologies, 
resources and policies for achieving deep reductions in California’s 
energy system GHG emissions by 2050!
–  Integrated model of entire energy system (demand and supply 

sectors)!
–  Understand cost trade-offs between different uses of scarce 

resources !
–  Scenario approach varying technology and resource costs and 

availability!
–  Understand the impacts of policies and assumptions on energy 

resource mix, electricity and fuel supplies, and end-use 
technologies!
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CA-TIMES General Modeling Approach 

•  CA-TIMES is a bottom-up, technologically detailed energy and 
economic optimization model of California’s energy sectors!
–  System includes thousands of technologies and hundreds of time periods!

–  The model makes technology investments and operations decisions!

–  Minimizes total system cost of meeting energy service demands with 
perfect foresight!

•  Scenarios with welfare maximization are examined (elastic demand (ED) 
scenarios)!

–  Model California’s energy system under 80% GHG reduction by 2050!
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CA-TIMES is useful for answering many questions !!

•  Current work!
–  How does placing a limit (or cap) on GHG emissions influence the evolution 

of the energy system in terms of technology adoption and system costs?!
–  What is the incremental cost (or savings) of GHG mitigation?!
–  How do policies and the availability of technologies and resources influence 

the mitigation strategies and costs?!
•  Potential future work!

–  How do policies interact with one another? What are the integrated effects 
(costs/benefits) of policies or possible tradeoffs?!

–  What are the effects of technology forcing policies on mitigation costs and 
emissions (endogenous learning)?!

–  How can policy incentives/investments affect consumer choices in 
alternative fuels/technologies? !

–  What’s the role of demand reduction? How does demand reduction interact 
with the other policies/mitigation options? !

–  How does the presence or absence of GHG policies outside of California 
affect California GHG emissions and costs?!
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Examine Emissions Across Three System Boundaries!

•  We only account for energy-related GHG emissions!
–  Ignore cement and other industrial processes, ag and waste emissions 

as well as natural sources and sinks!
–  CARB’s 1990: 427 MMT vs CA-TIMES 391 MMT (difference 36 MMT)!

1 

3 2 

•  Capped instate emissions (1) 
•  Capped + Other instate 

emissions (1+2)  
•  Life-cycle CA emissions (1+2+3)  
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Two BAUs, Two GHG Caps, and Nine Sensitivity Analyses!

•  BAU – Existing policies, including CAFE, LCFS, ZEV, RPS!
–  Light-duty VMT grows slightly per capita (9% from 2010 to 2050)!

•  BAU-LoVMT – Same as BAU but with lower VMT !
–  24% lower LDV VMT than BAU (17% reduction/capita from 2010-2050)!
–  10% lower MD and HD truck VMT than BAU!
–  Cost/benefits of VMT reductions are not quantified (infrastructure, 

smart growth, health and quality of life are not included in the cost 
calculations)!

•  GHG scenarios – Includes 80% GHG emissions reduction cap in 
2050 and low VMT assumptions (same as BAU-LoVMT)!
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CA-TIMES Modeling Results – GHG emissions!

•  GHG emissions in BAU and Primary GHG scenario (GHG-Step)!
•  GHG-Step scenario achieves 75% GHG reduction!

–  CCS and nuclear power are not available in this scenario!
–  Ignores out-of-state aviation and marine travel and excludes offsets!
–  Significant emissions reduction across all sectors (44 to 81% reduction)!
–  Transportation continues to contribute majority of emissions!

2020 Target (391 MtCO2e) 

2050 
Target 

78 
MtCO2e 9 



GHG Targets and Emissions Under & Outside the Caps!

•  A linear cap is more stringent between 2020-2050 than “Step” cap!
•  GHG-Line makes earlier investments in low-carbon technologies 

and resources (at higher cost)!
•  Same level in 2050, but different cumulative emissions (2010-2050)!
•  Included vs Overall emissions!
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California Climate Policy Modeling (CCPM) Comparison!

http://policyinstitute.ucdavis.edu/initiatives/ccpm/  

Scenarios that Achieve Deep GHG Emission 
Reductions by 2050 
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California Climate Policy Modeling (CCPM) Comparison!

•  CA-TIMES is one of the few economic models that integrate across all 
sectors!

•  Optimized solution with a 2050 cap (GHG-Step) favors later reductions!
–  4% discount rate!
–  CA-TIME v1.5 does not include learning-by-doing in which early investment can 

lead to more cost reductions!

* CA-TIMES emissions do not include non-energy emissions 
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Transportation Sector Energy System!

•  Transportation is driven by exogenously specified demand for 
vehicle miles, ton-miles in different sectors!
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Total Transport Fuel Use – GHG-Step Scenario!

•  Decrease in petroleum and increase in biofuels, hydrogen and electricity!
•  Difficulty in electrifying most transport sectors!
•  Liquid fuels requirements and limited biofuels availability (7.3 billion GGE) 

makes it hard to fully decarbonize sector!
•  Includes fuels for interstate/international aviation and marine!

Fuel 2010 
share (%) 

2050 
share (%) 

Petroleum 95% 41% 

Electricity <0.1% 9% 
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Light-Duty Vehicles  – GHG-Step Scenario!

•  Light-duty vehicles exhibit significant electrification to primarily 
battery electric and H2 fuel cell vehicles!
–  Small contribution from PHEVs in 2050!
–  On-road fuel economy climbs to over 110 mpgge in 2050!
–  LDV fuel demand decreases by ! ! ! !

!77% (2010 to 2050)!
–  Liquid fuel demand decreases ! ! ! !

!from ~15 BGGE to 0.3 BGGE !
–  H2: 1.9 BGGE!
–  Elec: 1.1 BGGE!

!

15 

ICE HEV PHEV BEV FCV Fleet
2010 FE 24 49 61.5 106 73 24

CI 84 84 98.8 129 56 84
2030 FE 37 75 135 95 36

CI 79 85 86 58 84
2050 FE 108 143 98 113

CI 29 12 50 36
Units FE: On-Road Fuel Economy (mpgge)

CI: Carbon Intensity (gCO2e/MJ)
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Transportation Carbon Intensity (CI) Declines 40% by 2050 !

•  Average transportation fuel CI (gCO2e/MJ (HHV)) declines 40% by 
2050 (~60% reduction for instate fuels)!
–  Electricity: 12 g/MJ* !  !
–  Hydrogen: 50 g/MJ*!
–  Biofuel: 9 g/MJ !
–  Shift high-carbon fuels (petroleum) to uncapped emissions !

!

** CI values WTW but not fully lifecycled; do 
not include the efficiency multipliers (EER) of 
the LCFS for electricity and hydrogen (CIs 
and EERs are fully endogenized based on 
scenarios) 
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* (FT process for drop in fuels has char 
sequestration (not CCS) which lowers CI 
(20-30% of carbon in final fuel is sequestered) 
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Transportation Mitigation Cost Curves!

•  Cumulative mitigation cost ($ spent on emissions reduction per unit 
of emissions reduced relative to BAU-LoVMT scenario)!
–  Relative to optimized baseline which already includes significant 

transportation efficiency improvements!
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Electricity Generation and Supply!

•  Simplified electricity sector!
–  Electricity demand is treated like one node!
–  Imports are phased out after 2025, all generation is built for CA demand!
–  Electricity demand is endogenously determined within model!

•  Regional solar and wind resources ensures generation diversity!
–  CREZ groups with transmission costs!

48 timeslices represented  
 

2012 Generation 
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Electricity Supply More Than Doubles in the GHG Scenarios!

•  Electricity demand increases significantly due to electrification of end-use 
demands (residential, commercial, industrial, transport)!
–  2010 demand: 290 TWh, 2050 demand (BAU: 407, GHG-Step: 600 TWh)!

•  Without nuclear or CCS in primary scenario, renewable electricity 
sources are needed to decarbonize electricity generation!

–  Wind: 221 TWh!
–  Solar: 217 TWh!
–  Geothermal: 28 TWh!
–  Tidal: 22 TWh!
–  No biomass gen!

•  Natural gas: !48 TWh! ! ! ! ! !
!8% of gen!

–  NG is marginal ! ! ! ! !
!generator!

•  RPS renewables!
       ~80% in 2050!
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Electricity Carbon Intensity Reduced by More than 90%!

•  CI declines to under 30 g/kWh in 2050!
–  GHG-Line earlier investment in efficiency and renewables reduces CI!
–  Same level of demand and generation in 2050!

•  Slight increase in electricity CI in GHG scenarios relative to BAU 
scenario 2017 to 2025.  !
–  Related to the increase in total electricity demand. Same quantity of low 

carbon generation, so greater ! ! ! ! 
demand means more natural ! ! ! !     
gas.!

0 

50 

100 

150 

200 

250 

300 

350 

400 

2010 2015 2020 2025 2030 2035 2040 2045 2050 

El
ec

tr
ic

ity
 C

ar
bo

n 
In

te
ns

ity
 (g

C
O

2e
/k

W
h)

 

BAU 

GHG-Step 

GHG-Line 

20 



Balancing Electricity Supply and Demand !

•  As intermittent renewables grow to greater proportion of the 
generation mix, balancing demands is critical for system operation!

•  Natural gas and hydro are flexible, dispatchable generators!
•  Generation can exceed demand during some model timeslices 

(annual excess generation ~3-5%)!
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Efficiency Improvements in End Use Sectors!
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GHG Scenario Costs (relative to BAU and BAU-LoVMT)!

•  The incremental cost of the GHG scenario is calculated as the difference in 
annual cost between the GHG-Step scenario and BAU scenarios!

–  Two different BAU scenarios (BAU and BAU-LoVMT) !
•  GHG-Step has same VMT demand as BAU-LoVMT and lower than BAU !
•  Transport costs are mostly negative compared to BAU because lower VMT 

means fewer vehicle and fuel purchases (even if they are more expensive)!
–  Cost differences rise over time as more expensive, efficient, low-carbon 

technologies are adopted!
–  Costs of industrial/ag sectors mitigation not modeled!
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Key Results from Scenario Variations!

•  Availability of CCS technology has the largest impact on the results!
–  Used in electric sector and for negative emission biofuels (bioCCS)!
–  Can use more natural gas and biomass provides offsets!

•  Other low carbon electricity scenarios (Nuclear and High Ren.) !
–  Further lower electricity CI and increase quantity!

•  Higher biomass supply increases supply of biofuels !
–  Enables greater reductions from transport sector!

•  Elasticity scenarios reduce emissions via demand reduction!
–  Reduction in electricity (~10-14%) and fuels (5%) demand!
–  Reductions mean that limited renewables and biofuels can make up 

greater proportion of electricity/fuel mix lowering average CI!

!
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Mitigation Costs by Scenario!

•  Cost of emissions reduction !
–  Depends on which BAU comparison is made (BAU or BAU-LoVMT) !
–  Is cost of elastic demand reductions (loss of consumer utility) included?!

•  Average cost of cumulative emissions reduction ($/tonneCO2e)!
!
Mitigation Cost vs BAU-LoVMT!
 $20 to 332 billion (4% disc.)!
"
per resident per yr"
$9 to $177/person/yr (4% disc.)!
!
% of 2010-2050 GSP (@3.3%/yr)"
0.03% to 0.49% (4% disc.)!
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Other CA-TIMES Models!

•  These models are too complex to be fully integrated with core model at this 
point:!

–  Consumer Choice for Light Duty Vehicles (COCHIN)!
•  Kalai Ramea, David Bunch!
•  Introducing non-monetary factors and consumer heterogeneity into the optimization 

decision-making framework of TIMES, based upon consumer choice modeling work 
from Z. Lin and D. Greene at Oak Ridge Lab!

–  Air Quality Modeling of Future Energy Systems in California!
•  Christina Zapata, Mike Kleeman!
•  Using detailed, spatial air quality models to assess the criteria pollutant and health 

impacts of future, low-carbon scenarios!
–  Hydrogen Infrastructure Deployment!

•  Christopher Yang, Joan Ogden!
•  Tracks evolution of California hydrogen infrastructure with disaggregated demands by 

region under different scenarios!
–  Water Use in Future Energy Systems!

•  Jacob Teter, Kate Tiedeman, Gouri Shankar Mishra, Sonia Yeh!
•  Assessment of the water use impacts of future, low-carbon energy systems in 2030!
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Key Conclusions!

•  Carbon intensity of electricity reduced by 90% by 2050!
–  Renewables produce 60 to 85% of total generation in GHG scenarios, 

requiring large investments and fast ramp up !

–  70 to 100 GW capacity of wind and solar each must be installed by 2050!

•  Carbon intensity of transportation fuels decreased by 40% by 2050; 
on-road LD fuel economy climbs to over 110 mpgge in 2050 !
–  Low-carbon biofuels are critical for decarbonizing non-LDV modes of 

transportation given limitations on electrifying transport!

•  Electricity demands grow by 80-140% under GHG scenarios from 
greater electrification of all end use sectors!

•  Carbon reduction costs range -$75 to $124/tonne CO2 (4% discount).!
–  Availability of CCS, nuclear, and renewables, and demand reduction all 

serve to lower the mitigation costs.!
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Thank you! 
Christopher Yang, ccyang@ucdavis.edu 
Sonia Yeh, slyeh@ucdavis.edu  
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