ARB’s Study of Emissions from Diesel and CNG Heavy-duty Transit Buses

Alberto Ayala*, Norman Kado, Robert Okamoto, Michael Gebel, and Paul Rieger

Air Resources Board
California Environmental Protection Agency

Britt A. Holmén
Department of Civil and Environmental Engineering
University of Connecticut

*The statements and opinions expressed in this presentation are solely the authors’ and do not represent the official position of the California Air Resources Board. The mention of trade names, products, and organizations does not constitute endorsement or recommendation for use.
The identification of diesel particulate matter (PM) as a Toxic Air Contaminant (TAC) in California triggered the development of control strategies under the Diesel Risk Reduction Program (DRRP), which was recently approved by the California Air Resources Board (ARB). The DRRP aims to reduce PM emissions from diesel-fueled engines and it includes numerous control measures to be phased in over the next several years. These measures are meant to substantially curtail emissions from new and existing on-road and off-road sources. Approaches to reduce the risk of exposure to diesel PM include the use of alternative fuels, like compressed natural gas (CNG), and advanced aftertreatment control for existing and new diesel engines.

Buses fueled by CNG or using diesel particulate filters (DPF) are two “green” alternatives to conventional diesels. These alternatives have been demonstrated to reduce PM emissions. However, additional information is needed on their effect on the emissions profiles of non-regulated species, toxic and otherwise. For this reason, the ARB embarked on a research effort to collect emissions data from late-model, in-use heavy-duty transit buses in different configurations. These are, 1) a CNG bus equipped with a 2000 DDC Series 50G engine, 2) a diesel bus equipped with a 1998 DDC Series 50 engine and a catalyzed muffler, 3) the same diesel vehicle retrofitted with a Johnson Matthey Continuously Regenerating Technology (CRT™) DPF in place of the muffler, and recently 4) a 2001 CNG bus equipped with a Cummins 8.3G Plus engine and an oxidation catalyst. The CNG DDC bus was certified for operation without oxidation catalyst, but has been recently tested again with and without oxidation catalyst. The diesel bus configurations ran on ARCO’s (a BP company) Emission Control Diesel (ECD-1) fuel with a measured sulfur content of 11 ppm. The objectives of the study were, 1) to assess driving cycle effects, 2) to characterize the types and amounts of several toxic substances emitted for the various configurations, and 3) to investigate total PM and ultrafine (<100 nm) particle emissions.

This study has shown that, in terms of PM mass, CNG and trap-equipped diesel buses are significantly superior to the conventional diesel bus. However, no single “green” technology is clearly superior to the other for every pollutant indicator measured. Measurable levels of toxic compounds in the exhaust suggest that neither the CNG nor the trap-equipped bus may be clearly superior to the other in all aspects. Most importantly, possible technology improvements have been identified.
Technical Collaborators

ARB

Management: B. Croes, M. Fuentes, W. McMahon, J. Shears

Staff: Dr.L. Zafonte, C. Maddox, J. Horrocks, N.Castillo, G.Gatt, N.Verma, J. Karim, K. Sahay, Dr. B. Dharmawardhana

Clean Air Vehicle Technology Center

H. Porter, K. Stiglitz, and F. Gonzalez

Univ. of CA, Davis - Environ. Tox.

P. Kuzmicky and R. Kobayashi

SCAQMD

S. Barbosa
Project Drivers

• Heightened concern about potential health impact of ultrafine (<100nm) particle emissions

• 1996 HEI Report RE: high ultrafine particle number and low mass emissions from “late-model” diesel engine

• 1999 World Truck Conference emission results for CNG truck: most MOUDI mass in after-filter (<56nm in aero. diameter)
Project Objectives

*Take a “snap-shot” of *in-use* fleet (not a fleet average) and…*

- Assess driving cycle effects
- Characterize types and amounts of several toxic substances
- Investigate total PM and ultrafine particle emissions
Scope and Methods

- Cycles: Idle, SS, CBD, NYBC, UDDS
- Chassis dynamometer testing at ARB’s HDVEL
- PM: filters and MOUDI
- Total HC’s: heated FID
- NO\textsubscript{X}, NO\textsubscript{2}: chemiluminescence
- CO, CO\textsubscript{2}: NDIR
- Carbonyls: DNPH cartridges/HPLC
- Metals: teflon filter/XRF
- Mutagenicity: filter/PUF/XAD, modified Ames assay
- PAH’s: filter/PUF/XAD, GC-MS
- EC/OC: quartz filter/TOR
- VOC’s and NMHC: tedlar bag/GC
- PM number/size: SMPS & ELPI@micro-diluter and SMPS@CVS
Test Vehicles

<table>
<thead>
<tr>
<th>Data label</th>
<th>DDC</th>
<th>Cummins</th>
<th>DDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle</td>
<td>Diesel Baseline and Diesel CRT #3007</td>
<td>Cummins w/Oxi Cat #134</td>
<td>DDC CNG-1, -2, -3 #5300</td>
</tr>
<tr>
<td>Fleet</td>
<td>Los Angeles MTA New Flyer</td>
<td>Omnitrans New Flyer</td>
<td>Los Angeles MTA New Flyer</td>
</tr>
<tr>
<td>Chassis</td>
<td>New Flyer</td>
<td>CNG 40 passenger</td>
<td>New Flyer 40 passenger</td>
</tr>
<tr>
<td>Capacity</td>
<td>40 passenger</td>
<td>C 8.3 G-plus 2001</td>
<td>CNG Series 50 G 2000</td>
</tr>
<tr>
<td>Fuel</td>
<td>ECD-1</td>
<td>Oxidation Catalyst (OC)</td>
<td>OEM* and OC**</td>
</tr>
<tr>
<td>Engine</td>
<td>Series 50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model year</td>
<td>1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mileage at start:</td>
<td>15,169</td>
<td></td>
<td>19,629 and 56,600</td>
</tr>
<tr>
<td>After-treatment</td>
<td>OC and DPF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*OEM configuration is with no controls **1st DDCS50G w/Oxi Cat on New Flyer chassis
Highlights from 2001 Results:

Two buses powered by DDC engines:

one diesel (ECD-1) = with DOC or DPF
one CNG = no aftertreatment
Uncorrected PM, mg/mi

Note: PM uncorrected for tunnel background.
Note: 1) TPM = EC + OC + Elements
2) CRT and CNG carbon samples were primarily OC across all cycles
CBD Emissions

<table>
<thead>
<tr>
<th>Vehicle Type</th>
<th>Mutagen Emissions (TA98 Rev/mile) x 10^5</th>
</tr>
</thead>
<tbody>
<tr>
<td>CNG.1</td>
<td>8</td>
</tr>
<tr>
<td>ECD</td>
<td>2</td>
</tr>
<tr>
<td>CRT</td>
<td>0.5</td>
</tr>
<tr>
<td>CNG.2</td>
<td>14</td>
</tr>
</tbody>
</table>

- (+S9)
- (-S9)

Note: 1) Results include activity in PM and vapor phases

Mutagenicity results [especially comparison between ECD (i.e., baseline) and CRT] are cycle dependent.
Note: For CNG re-test: fuel quality in question (Methane Number < 80)
ARB’s ambient modeling suggest that a modest increase in the \(\text{NO}_2/\text{NO}_x \) fraction (20-25%) results in more benefits than disbenefits.
1,3 Butadiene Vehicle Emission
(range of values for multiple tests denoted)

- CBD cycle (LOD ~ 0.6)
- UDDS cycle (LOD ~ 0.4)
- NYC cycle (LOD ~ 2.1)
- SS test (LOD ~ 0.1)

CNG Catalyst reduces Butadiene emissions to levels below detection

Note:
1) Measurements showed high variability.
2) Tunnel background measurements were below detection limits.
Carbonyl Emission for CBD Cycle

(range of values for multiple tests denoted)

![Bar graph showing vehicle emission in mg/mile for CNG and Diesel vehicles with and without CRT.]

- **CNG vehicle**
- **Diesel w/CRT**
- **CNG re-test**

- **Formaldehyde**
- **Acetaldehyde**
- **Total Carbonyls**

Carbonyl LOD ~ 0.9

Note: Diesel baseline results exceeded holdtime QC requirement

CNG Catalyst reduces HCHO emissions by over 95%
Steady State (55 mph) Cruise

Note:
1) Diluted exhaust sample temp. ranged from 80F to 90F
2) Tunnel blank concentrations on the order of 10^2 or less

California Environmental Protection Agency
Air Resources Board
Highlights from 2002 Partial Results:
Two Catalyst-equipped CNG Buses:

Cummins = new test vehicle
DDC = same bus as 2001
Oxidation Catalyst for DDC CNG Bus

Total PM (mg/mile) Emissions for CNG Buses

- Cummins w/OxiCat
- DDC CNG-3 w/OxiCat
- DDC CNG-3
- Tunnel Blank

Total HC g/mi Emissions from CNG Buses (CBD)

- NMHC-FID
- CH4

California Environmental Protection Agency
Air Resources Board
CNG Catalyst reduces Butadiene emissions to levels below detection.
Average Particle Size Distribution - Steady State Condition
Micro-diluter Results (uncorrected for DR or TB)

Steady-State 55 mph Cycles
Compressed Natural Gas
PURPLE SMPS

Steady-State 40 mph Cycles
Compressed Natural Gas
PURPLE SMPS

Steady-State 20 mph Cycles
Compressed Natural Gas
PURPLE SMPS

Number concentrations show strong dependence on engine operating condition

Note: sample number concentrations > TB’s
Summary – 1

• “Clean” CNG and diesel vehicles = challenge for current sampling and analytical methodologies.
• Dilution tunnel background an important factor that affects conclusions. Tunnel blank is not constant.
• CNG-fueled and CRT-equipped buses offer significant total PM reduction.
• EC/OC in diesel baseline showed strong cycle dependence. For CNG and CRT, carbon is mostly OC.
• Assay activity in CNG extract > activity in diesel extracts (for both w/ DOC or DPF).
• CNG-fueled bus offers NO\textsubscript{X} and NO\textsubscript{2} advantage over CRT-equipped bus.
• NO\textsubscript{2}/NO\textsubscript{X} emission ratio in CRT-equipped bus ranged between ~ 40% and ~ 50% depending on cycle.
• Ultrafine particles in CNG exhaust appear to be smaller than ultrafine particles in Diesel exhaust.
Summary – 2

- **CNG w/OxiCat data set is not complete. Analyses for PAH’s, assay, metals, EC/OC, and transient particle number emissions in progress.**
- Catalyst for CNG shows reduction of total PM and HC’s. No effect on methane.
- 1,3-Butadiene and formaldehyde emissions from CNG bus were reduced by the catalyst.
- Catalyst on CNG reduces NMHC emissions.
- Catalyst in CNG reduces number concentrations across size range. Number concentrations are a function of engine operating condition and dilution approach (i.e. micro-diluter vs. CVS).