ARB’s Study of Emissions from “Late-model” Diesel and CNG Heavy-duty Transit Buses: Preliminary Nanoparticle Measurement Results

Britt Holmén‡, Alberto Ayala†, Norman Kado†,‡, and Robert Okamoto†

†California Environmental Protection Agency
Air Resources Board
‡University of California, Davis

Technical Collaborators:
Dr. L. Zafonte, Dr. M. Gebel, H. Porter (CAVTC), K. Stiglitz (CAVTC), F. Gonzalez (CAVTC), P. Kuzmicky (UCD), Reiko Kobayashi (UCD), S. Barbosa (SCAQMD), K. Sahay, G. Gatt, N. Verma, C. Maddox, Dr. B. Dharmawardhana, Dr. S. Paulson (UCLA)
Global Objectives

- Take “snap-shot” of in-use fleet (not fleet average) and...

- Compare “toxicity” between similar “green” diesel and alternative fuel (CNG) technologies

- Assess duty cycle effects

- Investigate ultrafine (<100nm) emissions
Project Scope

- Testing at ARB’s Heavy-duty Vehicle Emissions Laboratory (HDVEL) in Los Angeles
- Three vehicle configurations:
 - CNG without oxidation catalyst
 - Diesel (OEM catalyzed muffler) - BP/ECD-1 (11 ppm S)
 - Diesel (CRT™) - BP/ECD-1 (11 ppm S)
- Five driving schedules + corresponding tunnel blanks:
 - Idle
 - Steady State+load (55mph, ~60% available power)
 - CBD - Central Business District Cycle
 - UDDS - Urban Dynamometer Driving Cycle
 - NYBC - New York Bus Cycle
- PM samples collected over multiple cycles
Project Scope (cont’d)

- Emissions: TPM, THC/NMHC, NO$_x$, CO, CO$_2$ and NO$_2$
- On-site Analysis for Speciation of Air Toxic HC’s
- Carbonyl Compounds
- Phase distribution of PAH’s
- PM extractions for Ames Bioassay
- Elemental Carbon/Organic Carbon Split (TOR)
- Elemental Analysis (XRF)
- Size-segregated mass emissions (MOUDI)
- Particle number and size distribution (2 SMPS’s, ELPI)
- Fuel and lube oil analysis
Test Vehicles

<table>
<thead>
<tr>
<th></th>
<th>"CNG"</th>
<th>"Diesel (OEM)"</th>
<th>"CRT"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2000 DDC Series 50G</td>
<td>1998 DDC Series 50</td>
<td>1998 DDC Series 50</td>
</tr>
<tr>
<td>Aftertreatment</td>
<td>None</td>
<td>OEM Catalyzed Muffler</td>
<td>CRT™</td>
</tr>
<tr>
<td>Fuel</td>
<td>CNG</td>
<td>ECD-1</td>
<td>ECD-1</td>
</tr>
<tr>
<td>Odometer</td>
<td>19,629</td>
<td>15,169</td>
<td>15,569</td>
</tr>
<tr>
<td>Weight</td>
<td>33,150 lbs</td>
<td>30,510</td>
<td>30,510</td>
</tr>
</tbody>
</table>

- Los Angeles County Metropolitan Transit Authority fleet
- 8.5 liter, 4-stroke, turbocharged, 4-cylinder, New Flyer Low 40 passenger transit buses
Experimental Setup

Not to scale

Constant Volume Sampling Dilution Tunnel

3-stage Filter

Primary Dilution Tunnel

EC/OC Elements

Mini-diluter

ELPI

VEHICLE EXHAUST

SECONDARY DILUTION TUNNEL

PM filters

MOUDI

PM filters

PUF/XAD

CVS BLOWER

CVS SAMPLE BAGS (CO and CO2)

Air Toxic HC's SPECIATION BAGS (8.0L TEDLAR)

On-site GC's-FID
Average NO\textsubscript{x} and Raw PM Emissions-CBD

Note:
1] CRT mass emissions were comparable to background levels
2] PM emissions uncorrected for Tunnel Blanks
3] CNG engine software upgraded and O\textsubscript{2} sensor module replaced prior to re-test
Average HC and CO Emissions-CBD

Note: THC for diesel/NMHC for CNG
Ultrafine Particles

- Two SMPS sampling locations/systems:
 - CVS dilution tunnel
 - Raw exhaust single-stage Dekati mini-diluter:
 - Two dilution ratios: ~65 and ~18
 - Oil-free compressor, dessicant/carbon/HEPA-filtered air
 - Aerosol transport lines: residence time ~ 1 to 1.5 sec
- Full scans (size-scan mode) for steady state, idle, and tunnel blanks (size range 6 – 237 nm)
- Single diameter real-time recording (size-filtered mode) for transient cycles (8, 20, 80, and 140 nm)
- Results shown = actual measured traces uncorrected for dilution or losses
Average of Individual Scans - **Mini-diluter- SS Tests**

SIZE-SCAN MODE

- CRT 3&4 (DR~65)
- CRT 1&2
- Diesel (OEM)
- CNG
- CNG retest #1 (DR~18)
- CNG retest #2

Note: CNG retest#1 = 55mph, 0% gradient, CNG retest#2=55mph,0.6% gradient
Individual Diameter Traces - Mini-diluter - 4 CBD Cycles
SIZE-FILTERED MODE

CNG re-test
DR~18

Time of Day

CRT Traces - CBD Tests
SIZE-FILTERED MODE

Orange = CVS

Purple = Mini-diluter, DR=18

Orange = CVS
Purple = Mini-diluter, DR=18

Central Business District (CBD) Cycle
Individual Diameter Traces - CVS - CBD Tests
SIZE-FILTERED MODE

Diesel (OEM)

CRT
Individual Diameter Traces - CVS - CBD Tests
SIZE-FILTERED MODE

CNG re-test

CNG

CNG
Average of Individual Scans - Dilution Comparison - CBD Tests
SIZE-SCAN MODE

CVS

Mini-diluter

AVERAGES

DR~65
CVS Tunnel Blanks

AVERAGES of TB Scans collected during testing of vehicle listed in legend

- **CNG**
- **Diesel (OEM)**
- **CRT**
- **CNG retest**

Total Concentration [# cm$^{-3}$]

dN/dlogD$_p$

- **CNG**
- **Diesel (OEM)**
- **CRT**
- **CNG retest**

School bus+trap testing

CRC lab inter-comparison HD Class 8 truck testing

School bus+trap testing

Feb **June**

D$_p$ (nm)
Remarks for Regulated Emissions over CBD

• CRT showed reductions in CO (87%), THC (100%), and raw/uncorrected PM (88%) relative to Diesel (OEM)

• CRT and Diesel OEM NO\textsubscript{x} not significantly different

• Significantly different NO\textsubscript{2}/NO\textsubscript{x} ratios in CRT (50%) and Diesel OEM (3%)

• Raw/uncorrected PM for CNG and CNG re-test showed reduction of 66 to 72%, respectively, relative to Diesel (OEM)

• CNG NO\textsubscript{x} exhibited high variability. CNG re-test NO\textsubscript{x} was 75% of Diesel (OEM) NO\textsubscript{x}

• Because of composition of PM from CRT and role/magnitude of tunnel background, we may define “MINIMUM” reduction efficiency for PM traps if current sampling methods continue to be used
Remarks for Ultrafine Particles

- CRT showed reduction in particle counts for all particles in measured range for SS tests
- Only accumulation mode was evident in diesel for SS tests
- For SS, modes in CNG size distributions were not distinct, but nanoparticle (<50nm) concentrations were higher than for CRT
- Transient and cold-start resulted in highest numbers of ultrafines for all vehicles
- For SS, total counts for CNG and CRT were equivalent and lower than baseline
Remarks for Ultrafine Particles (cont’d)

- For CBD, CNG nanoparticles were smaller and more numerous than for baseline and CRT
- For CBD, CNG re-test resulted in highest 8 nm and 20 nm nanoparticle concentrations. Observed increase in THC’s may explain
- Vehicle conditioning/tunnel artifacts play role when measuring CVS ultrafine concentrations for low emission vehicles
- Relative size distributions appear to be preserved between CVS and mini-diluter systems for 3 vehicle types examined