ARB’s Study of Emissions from “Late-model” Diesel and CNG Heavy-duty Transit Buses

Presentation to South Coast Air Quality Management District

Alberto Ayala, Norman Kado, Robert Okamoto, and Paul Rieger

November 16, 2001

Technical Collaborators:

Dr. B. Holmen (UCD), Dr. L. Zafonte, Dr. M. Gebel, H. Porter (CAVTC), K. Stiglitz (CAVTC), F. Gonzalez (CAVTC), P. Kuzmicky (UCD), Reiko Kobayashi (UCD), K. Sahay, G. Gatt, N. Verma, C. Maddox, Dr. B. Dharmawardhana, Dr. S. Paulson (UCLA)
Project Scope

- Dynamometer Testing at ARB’s Heavy-duty Vehicle Emissions Laboratory (HDVEL) in Los Angeles
- Five driving schedules and corresponding tunnel blanks: 1) Idle, 2) Steady State (55mph, ~60% rated power), 3) CBD, 4) UDDS, 5) NYCB
- Pollutants: TPM, THC/NMHC, NOx, CO, NO2, and CO2
- On-site Analysis for Speciation of VOC’s
- Carbonyl Compounds
- Phase distribution of PAH’s
- PM extractions for Ames Bioassay
- Elemental Carbon/Organic Carbon Split
- Elements Analysis
- Size-segregated mass emissions (MOUDI)
- Particle number and size distribution (SMPS and ELPI)
- Fuel and lube oil analysis
Test Fleet

<table>
<thead>
<tr>
<th></th>
<th>"CNG"</th>
<th>"Diesel (OEM)"</th>
<th>"CRT"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>2000 DDC Series 50G</td>
<td>1998 DDC Series 50</td>
<td>1998 DDC Series 50</td>
</tr>
<tr>
<td>Aftertreatment</td>
<td>None</td>
<td>OEM Catalyzed Muffler</td>
<td>CRT™</td>
</tr>
<tr>
<td>Fuel</td>
<td>CNG</td>
<td>ECD-1</td>
<td>ECD-1</td>
</tr>
<tr>
<td>Odometer</td>
<td>19,629</td>
<td>15,169</td>
<td>15,569</td>
</tr>
<tr>
<td>Weight</td>
<td>33,150 lbs</td>
<td>30,510</td>
<td>30,510</td>
</tr>
</tbody>
</table>

- Los Angeles County Metropolitan Transit Authority fleet
- 8.5 liter, 4-stroke, turbocharged, 4-cylinder, New Flyer Low 40 passenger transit buses
Experimental Setup
Regulated Emissions

Total PM Uncorrected for TB - CBD

NOx - CBD

THC/NMHC - CBD

CO - CBD

Total PM Uncorrected for TB - SS

NOx - SS loaded cruise

THC/NMHC - SS loaded cruise

CO - SS loaded cruise
Bioassay Analysis

Procedure

- Collection of PM on Filter
- Collection of vapor-phase on PUF
- Solvent Extraction
- Salmonella/Microsuspension procedure
- TA98 and TA 100 Tester Strains with and w/o +S9 Metabolic Enzymes
Mutagenicity Results

CBD Emissions

- Mutagen Emissions
- Vehicle Type: CNG.1, Diesel (OEM), CRT, CNG retest
- Mutagen Emissions (+S9) and (-S9)

Steady State Emissions

- Mutagen Emissions
- Vehicle Type: CNG, Diesel (OEM), CRT
- Mutagen Emissions (+S9) and (-S9)

CBD Specific Activity (-S9)

- Specific Mutagenic Activity (Rev/ug)
- Vehicle Type: CNG.1, Diesel (OEM), CRT, CNG retest
- Sample and TBblank

Steady State Specific Activity (-S9)

- Specific Mutagenic Activity (Rev/ug)
- Vehicle Type: CNG, Diesel (OEM), CRT
- Sample and TBblank
Toxic Gas-Phase HC’s - Sampling Methodology

Target Analytes
- 1,3-Butadiene - Benzene
- Toluene - Ethylbenzene
- m,p-xylene - o-xylene
- Styrene

Tedlar Bag Collection

On-site GC-FID’s
Carbonyl Compounds

Sampling Methodology and Analysis

- Collection on DNPH cartridges
- High-precision Liquid Chromatography Analysis

Target Analytes

- Formaldehyde
- Acetone
- Propionaldehyde
- Methyl ethyl ketone
- Butyaldehyde
- Valeraldehyde
- Hexanal

- Acetaldehyde
- Acrolein
- Crotonaldehyde
- Methacrolein
- Benzaldehyde
- M-tolualdehyde
Carbonyl Emission for CBD Cycle
(range of values for multiple tests denoted)

- Formaldehyde
- Acetaldehyde
- Total Carbonyls
Carbonyl LOD ~ 0.9

Vehicle Emission (mg/mile)

<table>
<thead>
<tr>
<th>CNG vehicle</th>
<th>Diesel w/CRT</th>
<th>CNG re-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>Acetaldehyde</td>
<td>Total Carbonyls</td>
</tr>
</tbody>
</table>

Carbonyl Emission for SS tests
(range of values for multiple tests denoted)

- Formaldehyde
- Acetaldehyde
- Total Carbonyls
Carbonyl LOD ~ 0.1

Vehicle Emission (mg/mile)

<table>
<thead>
<tr>
<th>CNG vehicle</th>
<th>Diesel w/CRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>Total Carbonyls</td>
</tr>
</tbody>
</table>

Additional Carbonyls for CBD Cycle

Vehicle Emission (mg/mile)

- Acrolein
- Acetone
- Propionaldehyde
- Butyraldehyde
- Methyl Ethyl Ketone
- Methacrolein
- Benzoaldehyde
- Crotonaldehyde
- Valeraldehyde
- m-Tolualdehyde
- Hexanal

CNG vehicle
Diesel w/CRT
CNG re-test
Carbonyl LOD ~ 0.1
Polycyclic Aromatic Hydrocarbons

TARGET PAHS

Particle Associated PAHs
- Benzo[ghi]perylene
- Dibenz[ah]anthracene
- Indeno[1,2,3-cd]pyrene
- Perylene
- Benzo[a]pyrene
- Benzo[e]pyrene
- Benzo[k]fluoranthene
- Benzo[b]fluoranthene
- Chrysene
- Benzo[a]Anthracene

Semi-Volatile PAHs
- Pyrene
- Fluoranthene
- Methyl Phenanthrene
- Anthracene
- Phenanthrene
- Fluorene

Volatile PAHs
- Dimethyl naphthalene
- Acenaphthene
- Acenaphthylene
- Dimethyl naphthalene
- Biphenyl
- 1-methyl naphthalene
- 2-methyl naphthalene
- Naphthalene

Particle Associated PAH's	OEHHA Unit risk for cancer by inhalation per million (ug/m3)E-1
Benz[a]anthracene | 1100
Chrysene | 11
Benzo[b]fluoranthene | 110
Benzo[k]fluoranthene | 110
Benzo[a]pyrene | 1200
Dibenz[ah]anthracene | 1200

Expected PAH phase distribution in ambient and CARB diesel exhaust samples
*All results not corrected for tunnel blanks and XAD values corrected for background contamination
• **CBD and SS Results PAHs in PM**
 --Diesel (OEM)-Most PAHs Detected
 --CNG CBD - Most PAHs m.w. 252 Not Detected except for BaP
 --CNG SS- All PAHs m.w. 252 Not Detected
 --CRT- CBD and SS Only Benz[a]anthracene and Chrysene Detected

• **CBD and SS Semi-volatile PAHs**
 --Diesel (OEM) Generally the Highest Levels
 --CNG Similar Levels to Diesel OEM
 --CRT Lowest Levels

• **CBD and SS Volatile PAHs**
 --At Similar Levels

• **Fluoranthene and Pyrene Phase Distribution**
 --CBD Diesel(OEM)-Primarily in Filter
 --SS Distributed more evenly between the Filter and PUF
 --CRT and CNG-Primarily in PUF
EC/OC and Elemental Analysis

EC/OC Procedure
- Quartz-Filter Collection of PM
- DRI/IMPROVE Optical/Thermal Analysis

Elemental Analysis
- Teflon-Filter Collection of PM
- X-ray Fluorescence

Primary Dilution Tunnel
Sampling Probes
Average Composition of PM

- OC dominates CNG PM composition across all cycles
- Similar tunnel blank composition
- EC/OC fraction in Diesel (OEM) PM shows strong cycle dependence
- OC dominates CRT PM composition across all cycles

NOTE: TPM = Total PM = EC + OC + Elements
Elemental Analysis Results

- Ca, Cl, P, Zn, S are oil components
- Fe from engine wear
- Si source unknown
- Si emissions: Diesel (OEM) >> CNG ~ CRT
- In general, TB << SS and CBD

NOTE: Cumulative results per test sequence, not per cycle
CRT Effect on Diesel Bus NO$_x$ Emissions

Ave NO/NO$_2$ Split from "Baseline" Diesel Bus

<table>
<thead>
<tr>
<th></th>
<th>NO g/mi</th>
<th>NO$_2$ g/mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>29.28</td>
<td>0.92</td>
</tr>
<tr>
<td>SS</td>
<td>22.49</td>
<td>2.14</td>
</tr>
</tbody>
</table>

Ave NO/NO$_2$ Split in CRT-equipped Diesel Bus

<table>
<thead>
<tr>
<th></th>
<th>NO g/mi</th>
<th>NO$_2$ g/mi</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>17.7</td>
<td>16.7</td>
</tr>
<tr>
<td>SS</td>
<td>13.8</td>
<td>12.7</td>
</tr>
<tr>
<td>NYBC</td>
<td>28.3</td>
<td>23.8</td>
</tr>
<tr>
<td>UDDS</td>
<td>14.1</td>
<td>9.0</td>
</tr>
</tbody>
</table>

Ave % NO$_2$ in CRT Exhaust

<table>
<thead>
<tr>
<th></th>
<th>Ave % NO$_2$ in Total NOx</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBD</td>
<td>45</td>
</tr>
<tr>
<td>SS</td>
<td>45</td>
</tr>
<tr>
<td>NYBC</td>
<td>45</td>
</tr>
<tr>
<td>UDDS</td>
<td>45</td>
</tr>
</tbody>
</table>
Average of Individual Scans - Mini-diluter- SS Tests
SIZE-SCAN MODE

Note: CNG retest#1 = 55mph, 0% gradient, CNG retest#2=55mph,0.6% gradient
Final Remarks

Regulated and NO₂ Emissions

• CRT showed reductions in CO (87%), THC (100%), and uncorrected PM (88%) relative to Diesel (OEM)

• CRT and Diesel OEM NOₓ not significantly different

• Significantly different NO₂/NOₓ ratios in CRT (50%) and Diesel OEM (3%)

• CNG NOₓ exhibited high variability. CNG re-test NOₓ was 75% of Diesel (OEM) NOₓ

Ultrafine Number Emissions

• CRT showed reduction in size distribution across entire size range compared to Diesel OEM

• Only accumulation mode was evident in diesel

• For SS, modes in CNG size distributions were not distinct, but nanoparticle (<50nm) concentrations were higher than for CRT

• For SS, total particle numbers were always lower for CNG and CRT compared to Diesel OEM
Final Remarks (cont’d)

Toxic Hydrocarbons and Carbonyl Compounds

- Butadiene was only detected in CNG vehicle exhaust (with 1 exception: Diesel without trap idle test).

- Generally, BTEX concentrations in CVS exhaust samples were close to ambient levels

- Generally, BTEX emission follows the order: CNG > Diesel (OEM) > CRT

- Carbonyl emissions from CNG vehicle were much higher than from CRT-equipped vehicle

- Total carbonyl emissions (by mass) from CNG vehicles are two orders of magnitude higher than BTEX and 1,3 Butadiene emissions

- CNG vehicle carbonyl emissions are dominated (>80%) by formaldehyde
Composition of PM

- OC dominates CNG PM composition across all cycles.
- Similar tunnel blank composition.
- EC/OC fraction in Diesel (EOM) PM shows strong cycle dependence.
- OC dominates CRT PM composition across all cycles.
- Ca, Cl, P, Zn, S are oil components.
- Fe from engine wear.
- Si source unknown. Emissions: Diesel (OEM) >> CNG ~ CRT.

PAH’s and Bioassay

- Emission rates (ug/mi) for most PAH’s were higher in the CBD than SS.
- Emission rates for CNG retest were generally higher than CNG.
- Differences were observed in the properties of PM from CNG, Diesel (OEM), and CRT.
- CRT PAH levels are similar levels to TB’s.
- Generally, CNG and Diesel (OEM) are higher than TB’s.
- Emissions of mutagenic compounds showed cycle dependence.
- For CBD, bioassay follows: CNG > Diesel (OEM) > CRT.
- For SS, bioassay follows: CNG > CRT > Diesel (OEM).