Comparison of Emissions from Diesel and CNG Buses with After-treatment

Alberto Ayala, Norman Y. Kado, Robert A. Okamoto, Michael E. Gebel, and Paul L. Rieger
Air Resources Board
California Environmental Protection Agency

Paul A. Kuzmicky and Reiko Kobayashi
Department of Environmental Toxicology
University of California, Davis

Britt A. Holmén
Environmental Engineering Program
University of Connecticut

The statements and opinions expressed in this presentation are solely the authors’ and do not represent the official position of the California Air Resources Board, the University of California, or the University of Connecticut. The mention of trade names, products, and organizations does not constitute endorsement or recommendation for use.
Project Background

• CARB has reported benefits offered by diesel transit bus with a trap and low-sulfur fuel relative to benefits offered by CNG transit bus without after-treatment

• This presentation focuses on comparison of same diesel bus relative to CNG bus outfitted with OEM catalyst
An “apples-to-apples” comparison of “state of the art” technology based on speciated emission profiles

<table>
<thead>
<tr>
<th></th>
<th>Diesel Bus (Diesel_Trap)</th>
<th>CNG Bus (CNG_OxiCat)</th>
</tr>
</thead>
<tbody>
<tr>
<td>engine</td>
<td>1998 DDC Series 50</td>
<td>2001 Cummins Westport C Gas Plus</td>
</tr>
<tr>
<td>fuel</td>
<td>BP/ARCO’s ECD-1 (15 ppm sulfur)</td>
<td>(pipeline) CNG meeting CARB spec’s</td>
</tr>
<tr>
<td>after-treatment</td>
<td>JMI’s CRT™</td>
<td>OEM Catalyst</td>
</tr>
<tr>
<td>Chassis</td>
<td>New Flyer 40 passenger</td>
<td>New Flyer 40 passenger</td>
</tr>
</tbody>
</table>
Scope of Presentation

- Chassis dynamometer testing at CARB’s Heavy-Duty Emissions Laboratory in Los Angeles

- Central Business District Cycle (particle sizing under steady state)

- Exhaust Emission Profile Speciation:
 - Criteria gases and PM
 - Unregulated gases, toxic hydrocarbons, and mutagen emissions

- Other info. available: Steady Steady results, additional assay results, metals and carbon emissions, and ultrafine particle size characterization (to be reported by CARB in future publications)
After-treatment for both diesel bus (i.e. trap) and CNG bus (i.e. catalyst) results in significant reduction of emissions relative to uncontrolled levels.

References: SAE Tech. Paper 2003-01-1900
6th ETH Nanoparticle Conference, Aug. 2002, Zurich
SAE Tech. Paper 2002-01-1722
Average PM and NOx Emissions - CBD

<table>
<thead>
<tr>
<th></th>
<th>Diesel Trap</th>
<th>CNG_OxiCat</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO₂, g/mi</td>
<td>16.7</td>
<td>2.1</td>
</tr>
<tr>
<td>NOₓ, g/mi</td>
<td>31.1</td>
<td>13.9</td>
</tr>
<tr>
<td>PM, mg/mi</td>
<td>14.2</td>
<td>20.7</td>
</tr>
</tbody>
</table>
Average HC, CO2, and CO Emissions - CBD

<table>
<thead>
<tr>
<th></th>
<th>Diesel_Trap</th>
<th>CNG_OxiCat</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH4 (GC), g/mi</td>
<td>non-detect</td>
<td>13.7</td>
</tr>
<tr>
<td>THC (FID), g/mi</td>
<td>non-detect</td>
<td>14.1</td>
</tr>
<tr>
<td>CO2/100, g/mi</td>
<td>25.13</td>
<td>19.87</td>
</tr>
<tr>
<td>CO, g/mi</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

California Environmental Protection Agency
Air Resources Board
Average NMOG Emissions - CBD

<table>
<thead>
<tr>
<th></th>
<th>Diesel_Trap</th>
<th>CNG_OxiCat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonyls, mg/mi</td>
<td>15</td>
<td>80.1</td>
</tr>
<tr>
<td>NMHC, mg/mi</td>
<td>36</td>
<td>184</td>
</tr>
</tbody>
</table>
Average PAH Emissions - CBD

<table>
<thead>
<tr>
<th></th>
<th>Diesel Trap</th>
<th>CNG_OxiCat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light PAHs, (ug/mi)</td>
<td>350</td>
<td>70</td>
</tr>
<tr>
<td>Heavy PAHs, (ug/mi)</td>
<td>0.09</td>
<td>1</td>
</tr>
</tbody>
</table>

California Environmental Protection Agency
Air Resources Board
CNG Buses: Steady-State Cruise (55 mph)

Mini-diluter

\[
dN/d\log D_p \text{ (cm}^{-3}\text{)}
\]

- Cummins w/Oxi Cat
- DDC CNG-3 w/Oxi Cat
- DDC CNG-3

California Environmental Protection Agency
Air Resources Board
CNG Buses: Idle

Mini-diluter

Cummins w/Oxi Cat
DDC CNG-3 w/Oxi Cat
DDC CNG-3

\(\frac{dN}{d\log D_p} \) (cm\(^{-3}\))

\(D_p \) (nm)

California Environmental Protection Agency
Air Resources Board
Relative Tailpipe Average Emission of Species of Toxic Significance - CBD

Results show cycle dependence

- PM, mg/mi
- NOx, g/mi
- NO2, g/mi
- CO, g/mi
- NMHC, mg/mi
- Heavy PAHs, (ug/mi)
- Light PAHs, (ug/mi)
- Benzene, mg/mi
- Formaldehyde, mg/mi
- Acetaldehyde, mg/mi
- Mutagenic Activity, TA98(+S9) Revert/ug
- Mutagen Emissions, TA98 (+S9) Revert/mile X10E5
Summary of CBD Results

• CNG_OxiCat and Diesel_Trap total PM emissions are similar and CO emissions are the same.

• CNG_OxiCat offers potential reductions for NOx, NO2, CO2, and PAH emissions.

• Diesel_Trap offers potential reductions for HC, carbonyls, benzene, and mutagen emissions.

http://www.arb.ca.gov/research/cng-diesel/cng-diesel.htm
Final Remarks

• CNG catalysts reduce ultrafine particle numbers for some operating conditions.

• Results show duty cycle dependence.

• Results support dual fuel path regulations for California.

• Results are “snap-shot” of two buses only.

• As technology evolves, emission profiles will change.

• After-treatment durability, deterioration, and vehicle maintenance effects were not investigated.

• Dilution tunnel background concentrations are important factors. Tunnel blank is not constant or negligible.
Further Research Needs

- How to use results to determine toxicity equivalency?

- CNG PM is not a Toxic Air Contaminant (TAC) while Diesel PM is a TAC. This includes after-treatment.

- Results must be confirmed. Concurrent studies by: BP/ARCO, USDOE, International, MTC, others?