28th ANNUAL AEROSOL CONFERENCE
American Association for Aerosol Research, Oct 26 – 30, 2009 Minneapolis, MN
Session 10F: Combustion

The Effect of Diesel Particle Filters and Selective Catalytic Reduction - A Predictive Framework for Ultrafine Particle Formation, Toxicity and Chemical Composition

Jorn Dinh Herner, Shaohua Hu, William Robertson, Tao Huai, John Collins, Harry Dwyer, and Alberto Ayala

California Air Resources Board

The statements and opinions expressed in this presentation are solely the authors’ and do not represent the official position of the California Air Resources Board. The mention of trade names, products, and organizations does not constitute endorsement or recommendation for use.
Acknowledgements:

CARB Staff: Keshav Sahay, John Karim, Ralph Rodas, George Gatt, Paul Rieger, Oliver Chang, Christine Maddox, Subhasis Biswas, and many more.

USC: Prof. Constantinos Sioutas, Vishal Verma, Harish Phuleria

Co-Sponsors:

In Kind Contributors:
Experimental Setup

CARB Heavy duty Diesel Emissions Test Laboratory

- Ultra Low Sulfur Diesel (6ppm)
- CVS - Dilution Tunnel
- Real time particle measurements: EEPS, DMS500, SMPS, CPC’s, DC, PAS
- Cycles: Cruise at 50mph, UDDSx2, Idle
Test Matrix
4 vehicles, 6 configurations + Baseline

Aftertreatment - (red signifies catalyzed surface)

- **DPF**
 - Horizon
 - Uncatalyzed Filter
 - CRT
 - Uncatalyzed Filter
 - DPX
 - Catalyzed Filter
 - V-SCRT, Z-SCRT
 - Vanadium or Zeolite SCR
 - CCRT
 - Catalyzed Filter

- **SCR**
 - Urea
 - Oxid Cat

Vehicles

- **Veh#1**
 - 1998 Cummins Diesel
 - 11L, 360,000 miles

- **Veh#2**
 - 1999 International Diesel
 - 7.6L, 40,000 miles

- **Veh#3**
 - 2003 Cummins Diesel
 - 5.9L, 50,000 miles

- **Veh#4**
 - 2006 Cummins Diesel w/ Allison Hybrid drive.
 - 5.9L, 1,000 miles
Aftertreatment as Chemical Reactors
A Predictive Framework - Redox Chemistry

Oxidation of Diesel Exhaust

- Organics (OC, THC, PAHs) ↓
- CO ↓
- \(\text{NO}_2/\text{NO}_x \) ↑
- \(\text{SO}_2 \rightarrow \text{SO}_3 \rightarrow \text{nucleation} \) ↑
Aftertreatment *Significantly* Reduces PM and NO\textsubscript{x}

PM Mass Reductions of 95%+
(not temperature or cycle dependent)

NO\textsubscript{x} Reductions of 75%+
(dependent on temperature, i.e. duty cycle)

Herner et al., *ES&T* 2009, 43 (15), pp 5928–5933
Nucleation

Accumulation mode seen in:
- Veh#1 Baseline

Veh#1 CRT
- Veh#1 V-SCRT®
- Veh#1 Z-SCRT®
- Veh#2 DPX
- Veh#3 - Horizon
- Veh#4 CCRT®

No nucleation mode in
- Veh#1 Baseline

Veh#2 DPX
- Veh#3 Horizon
- Veh#4 CCRT

Average Size Distribution
Cruise at 50mph - Measured in the CVS (uncorrected for dilution)

- SO₂ → SO₃ → Nucleation (water or ammonia)
- Storage
Nucleation

Nucleation occurs when a **threshold** temperature has been reached leading to sulfation.
Chemical Composition of PM

- Baseline PM – 50% OC 50% EC
- Nucleating Aftertreatment – Majority Ions such as Sulfate and Ammonium
- Non Nucleating Aftertreatment – Still mostly OC with some EC
 -(DPF preferentially filters EC)
IN VITRO TEST FOR THE TOXICITY OF PARTICULATE MATTER

- Measurement of Oxidative Stress Potential
 - *in vitro toxicity test*
 - Acellular systems (DTT) / Cellular systems (macrophage cell, DCFH-DA)

• DTT highly correlated with water-soluble organic carbon (WSOC)*
• Uncatalyzed filters better at filtering EC than WSOC
• Catalyzed aftertreatment reduces WSOC

*Biswas et al., ES&T, 2009, 43 (10), pp 3905–3912
OXIDATIVE STRESS POTENTIAL OF TOTAL PM PER DISTANCE DRIVEN IS REDUCED BY ALL HD RETROFITS

DTT expression decrease with particle number increase
Conclusions

• The decrease of diesel PM and NO\textsubscript{x} with the advent of DPFs and SCR will greatly improve air quality in California.

• Secondary effects of diesel aftertreatment are becoming better understood:
 – Oxidation of exhaust is a function of catalytic loading and exhaust temp.
 – As NO\textsubscript{2}/NO\textsubscript{x} and particle number increase, organics (THC, PAH’s, WSOC, etc), CO and DTT expression decrease.

• Not all Ultrafine particles are the same
 – Nucleation mode particles, when present, post aftertreatment are morphologically, chemically and toxicologically different from traditional diesel exhaust particles.
Next Steps

• Effect of toxicity in other assays forthcoming

• Current study based on passive retrofit or pre-2010 technology.

• It will be important to test 2010 OEM technology, as effect may be different from what is described here.

Thank you