Introduction

US EPA and California Air Resources Board (CARB) promulgated new stringent emission standards for heavy-duty diesel engines, which limits the PM and NOx emissions to 0.01g/bhp-hr (as of 2007) and 0.2 g/bhp-hr (as of 2010), respectively. In order to achieve these ultra low PM and NOx emissions, a preferred approach is to combine diesel particle filters (DPF) and selective catalytic reduction (SCR) technologies. Biomass-based soluble and particulate bound metals can do harm to human health. Metal based catalysts have been used in the after-treatment devices to reduce the emissions. Recent studies suggest elevated ambient levels of platinum group elements (PGE) since introduction of these-way catalytic converters for gasoline vehicles. There is a parallel concern metals will be released from the after-treatment devices from heavy-duty (ID) vehicles. In the current work we present a comprehensive profile of metals emissions from several vehicles and after-treatment devices evaluated at the California Air Resources Board’s Heavy-duty Diesel Emissions Test Laboratory located in Los Angeles, CA.

Experimental

Four heavy-duty vehicles in various configurations include various types of diesel particle filters (DPF) and catalytic and non-catalytic, particle and after-treatment devices evaluated at the California Air Resources Board’s Heavy-duty Diesel Emissions Test Laboratory located in Los Angeles, CA. (DPX at UDDS cycle) to 0.09 \(\mu g \) km \(^{-1} \) at cruise and UDDS cycle, respectively. The overall emission rates of total trace elements from retrofit vehicles (excluding CCRT and Horizon) varied from 0.01 to 0.03 mg km \(^{-1} \) (DPX at UDDS cycle) to 0.09 to 0.06 mg km \(^{-1} \) (CRT or CCRT cycle). Trace elements as a percentage of PM for the retrofits are comparable to the baseline vehicle (less than 1%), which could be due to the similar trend of reductions of PM and trace elements. The retrofits significantly reduce the emissions of the overall total trace elements (43% and 95% for cruise and UDDS, respectively) when compared to the baseline.

Summary

All the DPFs significantly reduced emissions of total trace elements (+85%). Catalyst metals were soon released from the after-treatment devices at low levels. For example, the vanadium-based DPF-SCR vehicle during cruise operation exhibited higher emission rates of vanadium (182 \(\times \) 2.03 kg km \(^{-1} \)) and titanium (301 \(\times \) 3.3 kg km \(^{-1} \)), suggesting the possible release of SCR washcoat. For the catalyst under high temperature conditions. During cruise cycle, vehicles with catalyzed after-treatment emitted higher levels of platinum (\(\geq 1 \) \(\times \) 0.6 mg km \(^{-1} \) to \(\leq 1 \) \(\times \) 3.5 kg km \(^{-1} \)) when compared to the baseline (3 \(\times \) 5.1 kg km \(^{-1} \)). For the DPF-SCR systems, Fe-zosil-based system showed a higher water-soluble fraction of the emissions of most metals than vanadium based system.

Acknowledgements

AEI Ralph Bockes, George Gatt, Ken Suh, University of California-Psilon Protectors Institute, Southico Bureau and Vohal Verma.

Reference

Disclaimer

The statements and opinions expressed here are solely the authors’ and do not represent the official position of the California Air Resources Board. The names of firms, products, and organizations are solely for the convenience of the reader.

Research Team

California Air Resources Board, 2 University of Wisconsin, Madison

Sponsors:

UCLA, USC, AQMD, Co-sponsors: bp, Transportation, Principal in-kind contributors: