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Outline

• Project motivation/introduction
• Test vehicle/component selection
• Test cycle development
• Dynamometer lab setup
• Emissions testing
• Results
• Implications
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Brake emissions 
• Sliding wear at friction couple
• Emitted into the air or settle on body, 

wheels, chassis, or roadway



Project Motivation
• Increasing non-exhaust share of total light-duty PM emissions
• CARB ready to update braking-related emissions factors in their 

EMFAC inventory model due to potential effects of changes in:
• Fleet makeup including new technologies such a regenerative braking
• Driving habits
• Brake assembly geometry and materials (notably metal content)

• Shift from brake-event-matrix style studies to full driving cycle 
simulation with by-distance outputs
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Project Overview
• Project Goals

• Improve Emission Factors Related to Light Duty Braking in EMFAC
• Better understand brake PM Emissions and refine brake testing procedures

• Develop a Brake Dynamometer Test Cycle
• Use existing on-road data as a basis for representativeness
• Compare with existing cycles for representativeness, use most representative

• EMFAC Unified Cycle (UC) and Speed Correction Cycles (SCC) and WLTP-Brake

• Identify Candidate Test Vehicles and Conduct Temperature Measurements on a Test 
Track

• Conduct Brake Dynamometer Testing
• Develop Test Matrix of up to 90 tests
• Conduct dynamometer testing and perform continuous and/or batch measurements of:

• Particle mass (via multiple methods; EPA participation)
• Particle number
• Particle size distribution
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Test Vehicle Selection and Market Share 
Analysis (1/3)
• Goals for Test Vehicle Selection

• Representativeness of common vehicles in California
• Cover a wide range of LD vehicle types
• Include a vehicle with regenerative braking

• Started with a Scrubbed Query of the 2017 CA Vehicle registration
• Provided to ERG by ARB
• Contained counts of all vehicle makes, models, Trimlines, and Model Years
• No further editing was required

• Then began narrowing down to the top 25 most common vehicle models 
(making sure all vehicle types of interest were included)

• Sedan, Compact, Pickup, Minivan, SUV, Hybrid
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Test Vehicle Selection and Market Share 
Analysis (2/3)
• Group each by brake FMSI (Friction Materials Standards Institute) codes

• model years and trimlines of a given model were grouped as one if they had the same 
FMSI codes and the new, combined model was recounted

• Brake wear index (BWI) was created to prioritize vehicles that are typical in 
terms of wearable mass (BWI1) and replacement rate (BWI2)
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Selected Test Vehicle Registration RANK BWI1 RANK BWI2 RANK COMMENTS
2011 Toyota Camry LE 1 1 1 Top rank by all three metrics

2013 Honda Civic LX 5 4 3 Rear drum brakes

2013 Toyota Sienna LE 8 8 6 Top in the list of class ‘D’ VIOs, Minivan

2015 Ford F-150 
Supercrew

17 11 10 Top in the list of class ‘E’ VIOs, Large Pickup,
Very common vehicle for friction material 

formulation evaluations
2016 Toyota Prius 
Two Eco

2 3 15 Regenerative braking

2016 Nissan Rogue S 10 14 16 Top in the list of non-luxury SUVs
Medium level ranking based on BWI1 and BWI2



Test Vehicle Selection and Market Share 
Analysis (3/3)
• General Brake Pad Formulation Trend vs Vehicle Age
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NAO – Non-asbestos Organic
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Proving Ground Testing at LINK
• Instrumentation

• Vehicles were logged for:
• Inner and outer pad temperature
• Inner and outer rotor temperature
• Vehicle speed
• Prius was also instrumented for brake pressure

• Test Cycles
• Vehicles were tested over two test cycles

• Heating and Cooling Matrix: A specific series of discrete braking events and cruises 
• Braking events at specified starting and ending speeds and deceleration rates
• Cruises at specified steady state speeds

• WLTP-Brake cycle, converted for driving on a track
• LINK also performed coastdowns to measure road load
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Proving Ground Testing at LINK 

Front

Rear

Ford F-150



Proving Ground Testing at LINK 

Front

Rear

Honda Civic



Proving Ground Testing at LINK 

Front, 
Wheel Off

Front, 
Wheel On

Toyota Prius



WLTP brake dynamometer cycle
• 300 brake events
• Divided into 10 trips
• 6 hour duration (including soaks)
• Decels starting from 40-130 kph (25-80 mph)
• Moderate braking at unchanging deceleration rates
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Proving Ground Testing – Temperature Results

Camry
Sedan



Proving Ground Testing – Temperature Results

Sienna 
Minivan

Prius 
Hybrid



Representing On-Road California Driving
• Goal is to use a driving cycle representative of real on-road driving on the basis 

of:
• Speed
• Deceleration Rate
• Brake Event Durations
• Brake Temperature

• Use the continuously logged OBD data from the 2010-2012 Caltrans Household 
Travel Survey to represent typical on-road driving

• QA Process
• Vehicles with large number of speed discontinuities were dropped
• Application of general coastdown curve to determine braking
• OBD speed digitization – smoothed using moving regression

OBD Files OBD+GPS Files GPS Files
Number of Vehicles 2130 365 677
Hours of Data 14001 1819 3162
Time gaps of 2s in data 1.6% 0.1% 0.1%
Time gaps in data 3-10s 0% 0.6% 0.6%



Temperature Modeling of On-Road Data
• Use proving ground logged temperature data to develop a 

model of brake heating and cooling during operation
• Model depends on coast down data, speed, deceleration rates

• Then apply model to all Caltrans data to estimate temperature 
during operation

• The temperature model has heating and cooling terms
• Cooling term is always in effect from one observation to the next
• Heating term is only active during braking (ie vehicle deceleration 

exceeds coastdown deceleration)

ΔT  =  (A + B∙V0 + C∙V0
2) ∙ (T0 – Tamb) ∙ Δtime + D∙(v0

2 – v1
2) ∙ Δtime



Temperature Modeling



Cycle Building/WLTP Representativeness
• ERG will use vector co-linearity method for cycle building

• This method has been used for past projects including EPA nonroad cycle 
building and TxDOT fuel evaluation

• Method involves describing a cycle in terms of a vector using dimensions 
representing the distributions of key attributes of the time series

• Speed
• Acceleration
• Temperature
• Braking Event Duration

• Test cycles are based on concatenating microtrips (consisting of single 
contiguous braking events)

• Each successive individual microtrip is selected based on making the overall vector 
of the created cycle as parallel as possible with the vector describing the entire 
dataset

• End result is a cycle that has distributions of the above that best match 
overall Caltrans data (including temperatures modeled at each second)

Overall

Microtrip A

Minimize this error

Microtrip B



California Brake Dynamometer Cycle (CBDC)
Consider deceleration rates, event durations, brake temperatures, and speeds 
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~4.1 hr duration
347 braking events

Represents 131 km 
(81.55 mi) of driving

Can be subdivided 
into 3 cycles 
representing 
medium, high, and 
low trip average 
speeds



California Brake Dynamometer Cycle (CBDC)
Consider deceleration rates, event durations, brake temperatures, and speeds 
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CBDC = California Brake Dynamometer Cycle 
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Development of a Brake Burnish Cycle
• Brakes must be burnished prior to testing

• Pad and rotor to be bedded in together at the friction surface
• Increases repeatability of testing
• Test results are more representative of long-term emission rates

• Goal is to use high energy, short duration cycle
• ERG developed an ~11.5 hr burnish cycle

• Selected a high energy subset segment of the CBDC
• Repeated segment until reaching the equivalent braking energy of 5 WLTP-Brake
• Appended our low average speed segment as cool down/final stabilization

• One project goal was to evaluate this cycle as acceptable for burnishing
• Repetitive nature of cycle helps determine when steady-state emissions are 

reached

21



CVS-Based Measurement of Brake PM

Point of sampling – flow to various instruments
• Batch measurement (collect on filters and measure mass)
• Continuous measurement (mass, particle size and count)

Brake dynamometer
• Electric motor spins a single brake rotor or drum (and 

inertia-simulating weight)
• Brakes are operated hydraulically
• Brake mounted in a duct enclosure
• Constant-speed airflow provides

• Cooling for brake assembly
• Medium to transfer particles to sample

The test basis
• Past studies have been event-based

• Matrix of standard brake events
• Interpret for representativeness

• This study involved a representative
vehicle speed trace w/ results on per-mile basis

• Developed an 85-test matrix varying assemblies, 
friction materials (NAO, LM), vehicle weight loading

Constant Volume Sampling (CVS)

Bulk 
Airflow

Sample Flow
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Test Laboratory Setup



Brake Dynamometer and CVS
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Test Laboratory Setup - Instrumentation

Filter 
Material

Analysis Options

Teflon • Gravimetric Mass (@LINK, EPA, 
ARB)

• XRF elemental (@ ARB)

Quartz 
Fiber (QFF) 
– Following 
Teflon

• Volatile Organics that pass through 
Teflon (artifact collection) (@EPA)

Quartz 
Fiber (QFF) 
– Lone

• Particle Phase Organic Molecular 
Weight Distribution (which can 
inform further test types) (perform 
on initial filters only?) (@EPA)

• EC/OC

Coated AL 
Impactor 
(100S4)

• Gravimetric (@LINK)

Glass Fiber 
(100S4)

• Gravimetric Mass (@ LINK)CPC 
(Counter)

QCM MOUDI 
(time based 
mass < PM2.5)

MOUDI 100S4 
Coated AL Impactors with 
Glass Fiber after-filter 
(@ size cutpoints)

PM10
Cyclone

PM10 
Cyclone

47 mm 
Teflon Filter

|
47 mm QFF 

Filter

47 mm 
QFF Filter

Sample Line 
1

Sample Line 
2

APS Sizer
560 nm to 20 
µm

Sample Line 
3

Sample Line 
4 (EPA Scope)

EEPS Sizer
(6 to 560) nm

Partector TEM Grids 
(subset of test), 
analyze @ EPA



Test Matrix Summary

Number of Test Subjects within each Parameter for each Vehicle

Test 
Vehicle

Front/ 
Rear

Pad 
Material

Wheel 
Loading

# 
Replicates

Reference 
Repeats # Tests

Camry 2 3 1 2 0 12

Civic 2 2 1 2 0 8

F-150 2 3 1.5 2 3 21

Sienna 2 3 1.5 2 0 18

Prius 2 2 1 2 0 8

Rogue 2 3 1.16 2 0 14

Tunnel Blanks 2 2

Total 83

• Test all front and rear 
assemblies

• Pad materials: combo of OES, 
aftermarket organic, and 
aftermarket metallic

• Simulated vehicle  weight: 
normal test weight for all 
vehicles; additionally at 
elevated weight for F-150, 
Sienna, Rogue

• Two replicates conducted for 
all tests in the matrix, except 
for the Reference test

• Reference test will be the OES 
front pad for the F-150. 5 total 
replicates performed 
throughout testing.



Setting CVS Flow Rate
the PMP method worked on multiple vehicles, while the F150-FA was a challenge

FA- Front Axle
RA-Rear Axle
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Prius – FA F150 – FA 

Prius – RA 
F150 – RA 



Evaluation of burnish procedure
Stable particle generation rates need a stable friction layer

Evaluated by Particle # Emission Rate –
Camry Example
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Evaluated by estimated coefficient of friction –
F-150 Example
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Evaluation of Prius Regeneration Simulation
Comparing Camry to Prius (similar vehicle mass)

29

0

20

40

60

80

100

120

140

160

180

0 1000 2000 3000 4000 5000

Te
m

pe
ra

tu
re

 (c
) a

nd
 S

pe
ed

 (k
ph

)

Cycle Time (s)

Camry Front Track Temp
Prius Front Track Temp
Camry Front Dyn Temp
Prius Front Dyn Temp

Speeds/ Hydraulic Pressure Temperatures



Results
• Operational Parameters
• PM Mass

• Test Level
• Vehicle Level

• Speed Correction/Implementation in EMFAC
• Particle Size Distribution
• Comparison to Literature
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Operational Parameters
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Results – PM Mass
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PM Mass Emission Rate vs Vehicle Mass and 
Pad Material Type
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Measured PM10 v. Total Brake Component Wear
The observed trend is intuitive, but total wear rate is only an approximate predictor for PM10
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PM2.5 vs PM10
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Implementation of PM Mass in EMFAC

• Base Emission Rate (BER)
• Overall cycle average speed is close to that of UC so consider overall cycle 

result to be BER
• Conceptually similar to UC exhaust emission results

• Deterioration Factor (DF)
• Based only on shift from OES materials to aftermarket  

• Speed Correction Factor (SCF)
• Generated from minute by minute QCM data vs associated source 

microtrip average speed
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Vehicle Level Mass Emissions

37

0

5

10

15

20

25

30

35

Camry Civic Rogue F-150 F-150 HLW Sienna Sienna HLW Prius

Ve
hi

cl
e 

Le
ve

l E
m

is
si

on
s (

m
g/

m
i)

OES-NAO After-NAO After-LM

Passenger Car Light Truck Regen-Equipped



Base Emission Rate and Deterioration Rate
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Vehicle Type PM2.5 BER 
(mg/mi)

PM2.5 Additive 
deterioration per 
year of vehicle 
age, (mg/mi)

PM10 BER 
(mg/mi)

PM10 Additive 
deterioration per 
year of vehicle 
age, (mg/mi)

Conventional 
Passenger 1.62 0.01 8.18 0.16

Light Truck 1.54 0.07 6.94 0.41
Regenerative-
equipped 0.93 0.003 3.30 0.005



PM 10 Base Emission Rate and Deterioration 
Rate
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Speed Correction Factor
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Particle Size Distribution Measurement

• Measurement types/size ranges
• Engine Exhaust Particle Sizer (EEPS) - 5.6-560 nm

• Aerodynamic Particle Sizer (APS) – 0.5-20 µm

• Measurements are not on the same basis
• Presenting normalized data 
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EEPS Example (Civic Front)
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PM Mass Comparison to Literature
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Sonntag et. al. Modeling 
Brake and Tire Wear 
Emissions in Regulatory 
Models in the United 
States, 2018 ISES-ISEE 
Joint Annual Meeting



Next Steps / Future Work
• Parallel study for heavy duty truck brakes funded by Caltrans

• Various truck types and vocation duty cycles
• Recently completed and used to update EMFAC HD PM emissions factors

• Determine fraction of particle settling on vehicle 
components/roadway

• Update chemical tracers for new ambient/roadside studies
• Continue to refine industry-accepted emissions measurement 

methods
• Environmental dilution and health effects – toxicity
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Thank You
Alan Stanard
Eastern Research Group, Inc.
3508 Far West Blvd, Suite 210, Austin, TX 78731
1-512-407-1833
alan.stanard@erg.com

LINK, CARB, and ERG Published a paper from this work:
SAE Paper 2020-01-1637 
Brake Particulate Matter Emissions Measurements for Six 
Light-Duty Vehicles Using Inertia Dynamometer Testing 
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