Note: this document consists of the text of the proposed amendment to Method 20. Proposed deletions are noted by graphic screen and proposed additions are noted by underline.
1. **APPLICABILITY AND PRINCIPLE**

1.1 **Applicability.** This method is applicable for the determination of nitrogen oxides \((\text{NO}_x)\), sulfur dioxide \((\text{SO}_2)\), and a diluent gas, either oxygen \((\text{O}_2)\) or carbon dioxide \((\text{CO}_2)\), emissions from stationary gas turbines. For the \(\text{NO}_x\), \(\text{SO}_2\), and \(\text{O}_2\) diluent determinations, this method includes: (1) measurement system design criteria, (2) analyzer performance specifications and performance test procedures; and (3) procedures for emission testing.

1.2 **Principle.** A gas sample in continuously extracted from the exhaust stream of a stationary gas turbine; a portion of the sample stream is conveyed to instrumental analyzers for determination of \(\text{NO}_x\) and \(\text{O}_2\) diluent content. During each \(\text{NO}_x\) and \(\text{O}_2\) diluent determination, a separate measurement of \(\text{SO}_2\) emissions is made, using Method 6, or its equivalent. The \(\text{O}_2\) diluent determination is used to adjust the \(\text{NO}_x\) and \(\text{SO}_2\) concentrations to a reference condition.

Any modification of this method beyond those expressly permitted shall be considered a major modification subject to the approval of the Executive Officer. The term Executive Officer as used in this document shall mean the Executive Officer of the Air Resources Board (ARB), or his or her authorized representative.

2. **DEFINITIONS**

2.1 **Measurement System.** The total equipment required for the determination of a gas concentration or a gas emission rate. The system consists of the following major subsystems:

 2.1.1 **Sample Interface.** That portion of a system that is used for one or more of the following: sample acquisition, sample transportation, sample conditioning, or protection of the analyzers from the effects of the stack effluent.

 2.1.2 **\(\text{NO}_x\) Analyzer.** That portion of the system that senses \(\text{NO}_x\) and generates an output proportional to the gas concentration.

 2.1.3 **\(\text{O}_2\) Analyzer.** That portion of the system that senses \(\text{O}_2\) and generates an output proportional to the gas concentration.

 2.1.4 **\(\text{CO}_2\) Analyzer.** That portion of the system that senses \(\text{CO}_2\) and generates an output proportional to the gas concentration.

2.2 **Span Value.** The upper limit of a gas concentration measurement range that is specified for affected source categories in the applicable part of the regulations.

2.3 **Calibration Gas.** A known concentration of a gas in an appropriate diluent gas.

2.4 **Calibration Error.** The difference between the gas concentration indicated by the measurement system and the known concentration of the calibration gas.
2.5 **Zero Drift.** The difference in the measurement system output readings from zero after a stated period of operation during which no unscheduled maintenance, repair, or adjustment took place and the input concentration at the time of the measurements was zero.

2.6 **Calibration Drift.** The difference in the measurement system output readings from the known concentration of the calibration gas after a stated period of operation during which no unscheduled maintenance, repair, or adjustment took place and the input at the time of the measurements was a high-level value.

2.7 **Response Time.** The amount of time required for the continuous monitoring system to display on the data output 95 percent of a step change in pollutant concentration.

2.8 **Interference Response.** The output response of the measurement system to a component in the sample gas other than the gas component being measured.

3. **MEASUREMENT SYSTEM PERFORMANCE SPECIFICATIONS**

3.1 **NO₂ to NO Converter.** Greater than 90 percent conversion efficiency of NO₂ to NO.

3.2 **Interference Response.** Less than ±2 percent of span value.

3.3 **Response Time.** No greater than 40 seconds.

3.4 **Zero Drift.** Less than ±2 percent of span value over the period of each test run.

3.5 **Calibration Drift.** Less than ±2 percent of the span value over the period of each test run. The specification for calibration drift should read “Less than ±2 percent of the span value over the period of each test run.”

4. **APPARATUS AND REAGENTS**

4.1 **Measurement System.** Use any measurement system for NO₂, NO, and O₂ diluent that is expected to meet the specifications in this method. A schematic of an acceptable measurement system is shown in Figure 20-1. The essential components of the measurement system are described below:

4.1.1 **Sample Probe.** Heated stainless steel, or equivalent, open-ended, straight tube of sufficient length to traverse the sample points.

4.1.2 **Sample Line.** Heated (>95°C) stainless steel or Teflon tubing to transport the sample gas to the sample conditioners and analyzers.

4.1.3 **Calibration Valve Assembly.** A three-way valve assembly to direct the zero and calibration gases to the sample conditioners and to the analyzers. The calibration valve assembly shall be capable of blocking the sample gas flow and of introducing calibration gases to the measurement system when in the calibration mode.

4.1.4 **NO₂ to NO Converter.** That portion of the system that converts the nitrogen dioxide (NO₂)NO₂ in the sample gas to nitrogen oxide (NO)NO. Some analyzers are designed to measure NO₂ as NO on a wet basis and can be used without an NO₂ to

Draft March 3, 1998 - Proposed revision to ARB Method 20 - Page 3
NO converter or a moisture removal trap provided the sample line to the analyzer is heated (>95°C) to the inlet of the analyzer. In addition, an NO₂ to NO converter is not necessary if the NO₂ portion of the exhaust gas is less than 5 percent of the total NO₂NOx concentration. As a guideline, an NO₂ to NO converter is not necessary if the gas turbine is operated at 90 percent or more of peak load capacity. A converter is necessary under lower load conditions.

4.1.5 Moisture Removal Trap. A refrigerator-type condenser or other type device designed to continuously remove condensate from the sample gas while maintaining minimal contact between any condensate and the sample gas. The moisture removal trap is not necessary for analyzers that can measure NOx concentrations on a wet basis; for these analyzers, (a) heat the sample line up to the inlet of the analyzers, (b) determine the moisture content using methods subject to the approval of the Control Agency’s Authorized Representative Executive Officer, and (c) correct the NOx and O₂ diluent concentrations to a dry basis.

4.1.6 Particulate Filter. An in-stack or an out-of-stack glass fiber filter, of the type specified in Method 5; however, an out-of-stack filter is recommended when the stack gas temperature exceeds 250 to 300°C.

4.1.7 Sample Pump. A nonreactive leak-free sample pump to pull the sample gas through the system at a flow rate sufficient to minimize transport delay. The pump shall be made from stainless steel or coated with Teflon, or equivalent.

4.1.8 Sample Gas Manifold. A sample gas manifold to divert portions of the sample gas stream to the analyzers. The manifold may be constructed of glass, Teflon, stainless steel, or equivalent.

4.1.9 Diluent Gas. An analyzer to determine the percent O₂ or CO₂ concentration of the sample gas stream.

4.1.10 Nitrogen Oxides Analyzer. An analyzer to determine the ppm NO₂NOx concentration in the sample gas stream.

4.1.11 Data Output. A strip-chart recorder, analog computer, or digital recorder for recording measurement data.

4.2 SO₂ Analysis. Method 6 apparatus and reagents.

4.3 NOx Calibration Gases. The calibration gases for the NOx analyzer shall be NO in N₂. Use four calibration gas mixtures as specified below:

4.3.1 High-level Gas. A gas concentration that is equivalent to 80 to 90 percent of the span value.

4.3.2 Mid-level Gas. A gas concentration that is equivalent to 45 to 55 percent of the span value.

4.3.3 Low-level Gas. A gas concentration that is equivalent to 20 to 30 percent of the span value.
4.3.4 Zero Gas. A gas concentration of less than 0.25 percent of the span value. Ambient air may be used for the NO\textsubscript{x} zero gas.

4.4 Diluent Calibration Gases.

4.4.1 For O\textsubscript{2} calibration gases, use purified air at 20.9 percent O\textsubscript{2} as the high-level O\textsubscript{2} gas. Use a gas concentration that is equivalent to 11-14 percent O\textsubscript{2} in N\textsubscript{2} for the mid-level gas. Use purified N\textsubscript{2} for the zero gas.

4.4.2 For CO\textsubscript{2} calibration gases, use a gas concentration between 8 and 12 percent CO\textsubscript{2} in air for the high-level CO\textsubscript{2} gas. Use a gas concentration between 2 and 5 percent CO\textsubscript{2} in air for the mid-level gas, and use purified air (<100 ppm CO\textsubscript{2}) as the zero level calibration gas.

5. MEASUREMENT SYSTEM PERFORMANCE TEST PROCEDURES

Perform the following procedures before measurement of emissions (Section 6) and only once for each test program, i.e., the series of all test runs for a given gas turbine engine.

5.1 Calibration Gas Checks. There are two alternatives for checking the concentrations of calibration gases.

(a) The first is to use calibration gases that are documented traceable to National Bureau of Standards Reference Materials. Use "Traceability Protocol for Establishing True Concentrations of Gases Used for Calibrations and Audits of Continuous Source Emission Monitors" (Protocol Number 1) that is available from the Environmental Monitoring Support Laboratory, Quality Assurance Branch, Mail Drop 77, Environmental Protection Agency, Research Triangle Park, North Carolina NC 27711. Obtain a certification from the gas manufacturer that the protocol was followed. These calibration gases are not to be analyzed with the Reference Methods.

(b) The second alternative is to use calibration gases not prepared according to the protocol. If this alternative is chosen, within 1 month prior to the emission test, analyze each of the calibration gas mixtures in triplicate using Reference Method 7 or the procedure outlined in Citation 8.1 an alternative procedure approved by the United States Environmental Protection Agency for NO\textsubscript{x}CO\textsubscript{2} and use Reference Method 3 for O\textsubscript{2} or CO\textsubscript{2}. Record the results on a data sheet (example is shown in Figure 20-2). For the low-level, mid-level, or high-level gas mixtures, each of the individual NO\textsubscript{x}NO\textsubscript{2} analytical results must be within 10 percent (or 10 ppm, whichever is greater) of the triplicate set average (O\textsubscript{2} or CO\textsubscript{2} test results must be within 0.5 percent O\textsubscript{2} or CO\textsubscript{2}); otherwise, discard the entire set and repeat the triplicate analyses. If the average of the triplicate reference method test results is within 5 percent for NO\textsubscript{x} gas or 0.5 percent O\textsubscript{2} or CO\textsubscript{2} for the O\textsubscript{2} or CO\textsubscript{2} gas of the calibration gas manufacturer's tag value, use the tag value; otherwise, conduct at least three additional reference method test analyses until the results of six individual NO\textsubscript{x} runs (the three original plus three additional) agree within 10 percent (or 10 ppm, whichever is greater) of the average (O\textsubscript{2} or CO\textsubscript{2} test results must be within 0.5 percent O\textsubscript{2} or CO\textsubscript{2}). Then use this average for the cylinder value.

5.2 Measurement System Preparation. Prior to the emission test, assemble the measurement system following the manufacturer's written instructions in preparing and operating the NO\textsubscript{2} to NO converter, the NO\textsubscript{2}NO\textsubscript{x} analyzer, the O\textsubscript{2} analyzer, and other
components.

5.3 Calibration Check. Conduct the calibration checks for both the NO$_2$ and the O$_2$ diluent analyzers as follows:

5.3.1 After the measurement system has been prepared for use (Section 5.2), introduce zero gases and the mid-level calibration gases; set the analyzer output responses to the appropriate levels. Then introduce each of the remainder of the calibration gases described in Section 4.3 or 4.4, one at a time, to the measurement system. Record the responses on a form similar to Figure 20-3.

5.3.2 If the linear curve determined from the zero and mid-level calibration gas responses does not predict the actual response of the low-level (not applicable for the O$_2$ diluent analyzer) and high-level gases within ±2 percent of the span value, the calibration shall be considered invalid. Take corrective measures on the measurement system before proceeding with the test.

5.4 Interference Response.

Introduce the gaseous components listed in Table 20-1 into the measurement system separately, or as gas mixtures. Determine the total interference output response of the system to these components in concentration units; record the values on a form similar to Figure 20-4. If the sum of the interference responses of the test gases for either the NO$_2$ or O$_2$ diluent analyzers is greater than 2 percent of the applicable span value, take corrective measures on the measurement system.

Conduct an interference response test of each analyzer before its initial use in the field. Thereafter, recheck the measurement system if changes are made in the instrumentation that could alter the interference response, e.g., changes in the type of gas detector.

In lieu of conducting the interference response test, instrument vendor data, which demonstrate that for the test gases of Table 20-1 the interference performance specification is not exceeded, are acceptable.

5.5 Response Time. To determine response time, first introduce zero gas into the system at the calibration valve until all readings are stable; then, switch to monitor the stack effluent until a stable reading can be obtained. Record the upscale response time. Next, introduce high-level calibration gas into the system. Once the system has stabilized at the high-level calibration concentration, switch to monitor the stack effluent and wait until a stable value is reached. Record the downscale response time. Repeat the procedure three times. A stable value is equivalent to a change of less than 1 percent of span value for 30 seconds or less than 5 percent of the measured average concentration for 2 minutes. Record the response time data on a form similar to Figure 20-5, the readings of the upscale or downscale response time, and report the greater time as the "response time" for the analyzer. Conduct a response time test before the initial field use of the measurement system, and repeat if changes are made in the measurement system.

5.6 NO$_2$ to NO Conversion Efficiency.

5.6.1 Add gas from the mid-level NO in N$_2$ calibration gas cylinder to a clean,
evacuated, leak-tight Tedlar bag. Dilute this gas approximately 1:1 with 20.9 percent \(\text{O}_2 \), purified air. Immediately attach the bag outlet to the calibration valve assembly and begin operation of the sampling system. Operate the sampling system, recording the \(\text{NO}_2 \) response, for at least 30 minutes. If the \(\text{NO}_2 \) to NO conversion is 100 percent, the instrument response will be stable at the highest peak value observed. If the response at the end of 30 minutes decreases more than 2.0 percent of the highest peak value, the system is not acceptable and corrections must be made before repeating the check.

5.6.2 Alternatively, the \(\text{NO}_2 \) to NO converter check described in CFR Title 40, Part 86: Certification and Test Procedures for Heavy-Duty Engines for 1979 and Later Model Years, may be used. Other alternative procedures may be used with approval of the Control Agency’s Authorized Representative Executive Officer.

6. EMISSION MEASUREMENT TEST PROCEDURE

6.1 Preliminaries.

6.1.1 Selection of a Sampling Site. Select a sampling site as close as practical to the exhaust of the turbine. Turbine geometry, stack configuration, internal baffling, and point of introduction of dilution air will vary for different turbine designs. Thus, each of these factors must be given special consideration in order to obtain a representative sample. Whenever possible, the sampling site shall be located upstream of the point of introduction of dilution air into the duct. Sample ports may be located before or after the upturn elbow, in order to accommodate the configuration of the turning vanes and baffles and to permit a complete, unobstructed traverse of the stack. The sample ports shall not be located within 5 feet or 2 diameters (whichever is less) of the gas discharge to atmosphere. For supplementary-fired, combined-cycle plants, the sampling site shall be located between the gas turbine and the boiler. The diameter of the sample ports shall be sufficient to allow entry of the sample probe.

6.1.2 A preliminary \(\text{O}_2 \) or \(\text{CO}_2 \) traverse is made for the purpose of selecting sampling points of low \(\text{O}_2 \) values or high \(\text{CO}_2 \) concentrations as appropriate for the measurement system. Conduct this test at the turbine operating condition that is the lowest percentage of peak load operation included in the program. Follow the procedure below or alternative procedures subject to the approval of the Control Agency’s Authorized Representative Executive Officer.

6.1.2.1 Minimum Number of Points. Select a minimum number of points as follows: (1) Eight, for stacks having cross-sectional areas less than 1.5 m\(^2\) (16.1 ft\(^2\)); (2) eight plus one additional sample point for each 0.2 m\(^2\) (2.2 ft\(^2\)) of areas\(_i\) for stacks of 1.5 m\(^2\) to 10.0 m\(^2\) (16.1 to 107.8 107.6 ft\(^2\)) in cross-sectional area; and (3) 49 sample points (48 for circular stacks) for stacks greater than 10.0 m\(^2\) (107.6 ft\(^2\)) in cross-sectional area. Note that for circular ducts, the number of sample points must be a multiple of 4, and for rectangular ducts, the number of points must be one of those listed in Table 20-2; therefore, round off the number of points (upward), when appropriate.

6.1.2.2 Cross-sectional Layout and Location of Traverse Points. After the number of traverse points for the preliminary diluent sampling has been determined, use Method Method 1 to located the traverse points.
6.1.2.3 Preliminary O_2 Diluent Measurement. While the gas turbine is operating at the lowest percent of peak load, conduct a preliminary O_2 diluent measurement as follows: Position the probe at the first traverse point and begin sampling. The minimum sampling time at each point shall be 1 minute plus the average system response time. Determine the average steady-state concentration of O_2 or CO_2 at each point and record the data on Figure 20-6.

6.1.2.4 Selection of Emission Test Sampling Points. Select the eight sampling points at which the lowest O_2 concentrations or highest CO_2 concentrations were obtained. Sample at each of these selected points during each run at the different load conditions. More than eight points may be used, if desired, providing that the points selected as described above are included. Use these same points for all the test runs at the different turbine conditions. More than eight points may be used if desired.

6.2 NO_x and O_2 Diluent Measurement. This test is to be conducted at each of the specified load conditions. Three test runs at each load condition constitute a complete test.

6.2.1 At the beginning of each NO_xNO_2 test run and, as applicable, during the run, record turbine data as indicated in Figure 20-7. Also, record the location and number of the traverse points on a diagram.

6.2.2 Position the probe at the first point determined in the preceding section and begin sampling. The minimum sampling time at each point shall be at least 1 minute plus the average system response time. Determine the average steady-state concentration of diluent and NO_x at each point and record the data on Figure 20-8.

6.2.3 After sampling the last point, conclude the test run by recording the final turbine operating parameters and by determining the zero and calibration drift, as follows: Immediately following the test run at each load condition, or if adjustments are necessary for the measurement system during the tests, reintroduce the zero and mid-level calibration gases as described in Sections 4.3 and 4.4, one at a time, to the measurement system at the calibration valve assembly. (Make no adjustments to the measurement system until after the drift checks are made). Record the analyzers’ responses on a form similar to Figure 20-3. If the drift values exceed the specified limits, the test run preceding the check is considered invalid and will be repeated following corrections to the measurement system. Alternatively, recalibrate the measurement system and recalculate the measurement data. Report the test results based on both the initial calibration and the recalibration data.

6.3 SO_2 Measurement.

This test is conducted only at the 100 percent peak load condition. Determine SO_2 using Method 6, or equivalent, during the test. Select a minimum of six total points from those required for the NO_xNO_2 measurements; use two points for each sample run. The sample time at each point shall be at least 10 minutes. Average the O_2 diluent readings taken during the NO_xNO_2 test runs at sample points corresponding to the SO_2 traverse points (see Section 6.2.2) and use this average diluent concentration to correct the integrated SO_2 concentration obtained by Method 6 to 15 percent O_2 (see Equation 20-1 equations in Section 7.3).
If the applicable regulation allows fuel sampling and analysis for fuel sulfur content to demonstrate compliance with regulatory requirements, sulfur emission unit, emission sampling with Method 6 is not required, provided the fuel sulfur content meets the limits of the regulation.

7. EMISSION CALCULATIONS

7.1 Moisture Correction. Measurement data used in most of these calculations must be on a dry basis. If measurements must be corrected to dry conditions, use the following equation:

\[\frac{C_d}{1-B_{ws}} \cdot \frac{C_w}{1-B_{ws}} = \text{Eq. 20-1} \]

where:

- \(C_d \): Pollutant or diluent concentration adjusted to dry conditions, ppm or percent
- \(C_w \): Pollutant or diluent concentration measured under moist sample conditions, ppm or percent.
- \(B_{ws} \): Moisture content of sample gas as measured with Method 4 or another method approved by the Executive Officer, percent/100.

7.2 CO₂ Correction Factor. If pollutant concentrations are to be corrected to 15 percent \(O_2 \) and \(CO₂ \) concentration is measured in lieu of \(O_2 \) concentration measurement, a \(CO₂ \) correction factor is needed. Calculate the \(CO₂ \) correction factor as follows:

7.2.1 Calculate the fuel-specific \(F_o \) value for the fuel burned during the test using values obtained from EPA Method 19, Section 5.2, and the following equation.

\[\frac{F_o}{F_d} = \frac{0.209 \cdot F_d}{F_c} \quad \text{Eq. 20-2} \]

Where:

- \(F_o \): Fuel factor based on the ratio of oxygen volume to the ultimate \(CO₂ \) volume produced by the fuel at zero percent excess air, dimensionless.
- \(0.209 \): Fraction of air that is oxygen, percent/100.
- \(F_d \): Ratio of the volume of dry effluent gas to the gross calorific value of the fuel from EPA Method 19, dsm³/J (dscf/106 Btu).
- \(F_c \): Ratio of the volume or carbon dioxide produced to the gross calorific value of the fuel from EPA Method 19, dsm³/J (dscf/106 Btu).

7.2.2 Calculate the \(CO₂ \) correction factor for correcting measurement data to 15 percent oxygen, as follows:

\[X_{CO₂} = \frac{5.9}{F_o} \quad \text{Eq. 20-3} \]

where:

- \(X_{CO₂} \): \(CO₂ \) Correction factor, percent.
- \(5.9 \): 20.9 percent \(O_2 \) - 15 percent \(O_2 \), the defined \(O_2 \) correction value, percent.
7.3 Correction of Pollutant Concentrations to 15 percent O_2. Using equation 20-1, calculate the NO_x, NO, and SO_2 gas concentrations (adjusted to 15 percent O_2), using Equation 20-4 or 20-5, as appropriate. The correction to 15 percent O_2 is very sensitive to the accuracy of the O_2 or CO_2 concentration measurement. At the level of the analyzer drift specified in the method (±2 percent of full scale) Section 3, the change in the O_2 or CO_2 correction can exceed 10.5 percent at the concentration levels expected in gas turbine exhaust gases. Therefore, O_2 or CO_2 analyzer stability and careful calibration are necessary.

7.3.1 Correction of Pollutant Concentration Using O_2 Concentration. Calculate the O_2 corrected pollutant concentration, as follows:

Old equation to be deleted:

$$C_{adj} = \frac{C_{meas}}{20.9 - \%O_2}$$ \hspace{1cm} \text{Eq. 20-1}

New equation to be added:

$$C_{adj} = C_d \frac{5.9}{20.9 - \%O_2}$$ \hspace{1cm} \text{Eq. 20-4}

where:

$C_{adj} = \text{Pollutant concentration corrected to 15 percent } O_2, \text{ (ppm)}.$

C_{meas} = Pollutant concentration measured, dry basis, (ppm).

C_d = Measured O_2 concentration dry basis, \%.

7.3.2 Correction of Pollutant Concentration Using CO_2 Concentration. Calculate the CO_2 corrected pollutant concentration, as follows:

$$C_{adj} = C \frac{X_{CO_2}}{\%CO_2}$$ \hspace{1cm} \text{Eq. 20-5}

where:

$%CO_2 = \text{Measured } CO_2 \text{ concentration, dry basis, percent.}$

7.4 Average Adjusted NO_x Concentration. Calculate the average adjusted NO_x concentration by summing the adjusted values for each sample point and dividing by the number of points for each run, point values and dividing by the number of points.

7.5 NO_x and SO_2 Emission Rate Calculations. The emission rates for NO_x and SO_2 in units of pollutant mass per quantity of heat input can be calculated using the pollutant and diluent concentrations and fuel-specific F-factors based on the fuel combustion characteristics. The measured concentrations of pollutant in units of parts per million by volume (ppm) must be converted to mass per unit volume concentration units for these calculations. Use the following table for such conversions:

CONVERSION FACTORS FOR CONCENTRATION
7.5.1 Calculation of Emission Rate Using Oxygen Correction. Both the O_2 concentration and the pollutant concentration must be on a dry basis. Calculate the pollutant emission rate, as follows:

$$E = \frac{C \cdot F}{C_{O_2}}$$ \hspace{1cm} \text{Eq. 20-6}$$

where:

E = Mass emission rate of pollutant, ng/J (lb/106 Btu).

7.5.2 Calculation of Emission Rate Using Carbon Dioxide Correction. The CO_2 concentration and the pollutant concentration may be on either a dry basis or a wet basis, but both concentrations must be on the same basis for the calculations. Calculate the pollutant emission rate using Equation 20-7 or 20-8:

$$E = \frac{C_w \cdot F}{%CO_2} \cdot \frac{100}{%CO_2_w}$$ \hspace{1cm} \text{Eq. 20-7}$$

$$E = \frac{C_w \cdot F}{%CO_2} \cdot \frac{100}{%CO_2_w}$$ \hspace{1cm} \text{Eq. 20-8}$$

where:

C_w = Pollutant concentration measured on a moist sample basis, ng/sm3 (lb/scf).

${%CO_2_w}$ = CO_2 concentration measured on a moist sample basis, percent.

8. BIBLIOGRAPHY

1. EPA Method 20, Determination of Nitrogen Oxides, Sulfur Dioxides and Diluent Emissions from Stationary Gas Turbines, CFR40, Part 60, Appendix A

2. EPA Method 19, Determination of Sulfur Dioxide Removal Efficiency and Particulate Matter, Sulfur Dioxide, and Nitrogen Oxides Emission Rates, CFR40, Part 60, Appendix A

3. ARB Method 1, Sample and Velocity Traverses for Stationary Sources
4. ARB Method 3, Gas Analysis for Carbon Dioxide, Oxygen, Excess Air, and Dry Molecular Weight

5. ARB Method 4, Determination of Moisture Content in Stack Gases

6. ARB Method 5, Determination of Particulate Matter Emissions from Stationary Sources

7. ARB Method 6, Determination of Sulfur Dioxide Emissions from Stationary Sources

8. ARB Method 7, Determination of Nitrogen Oxide Emissions from Stationary Sources

Figure 20-1 Measurement System Design
Figure 20-2 Analysis of Calibration Gases

Date __________________ (Must be within 1 month prior to test period)
Reference method used ________________________________

<table>
<thead>
<tr>
<th>Sample Run</th>
<th>Gas concentration, ppm</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low level(a)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum % deviation(c)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Average must be 20 to 30% of span value.
(b) Average must be 45 to 55% of span value.
(c) Average must be 80 to 90% of span value.
(d) Must be < or = 10% of applicable average or 10 ppm, whichever is greater.
Figure 20-3 Zero and Calibration Data

Turbine Type___________________________ Identification Number____________________

Date_____________________________ Test Number______________________________

Analyzer Type_____________________ Identification Number____________________

<table>
<thead>
<tr>
<th></th>
<th>Cylinder value, ppm or %</th>
<th>Initial Analyzer Response, ppm or %</th>
<th>Final analyzer response, ppm or %</th>
<th>Difference: initial-final ppm or %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Level Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mid Level Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Level Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Percent Drift = \[\frac{\text{Absolute Difference}}{\text{Span Value}} \times 100\]
Table 20-1 Interference Test Gas Concentration

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>500 ± 50 ppm</td>
</tr>
<tr>
<td>SO2</td>
<td>200 ± 20 ppm</td>
</tr>
<tr>
<td>CO2</td>
<td>10 ± 1%</td>
</tr>
<tr>
<td>O2</td>
<td>20.9 ± 1%</td>
</tr>
</tbody>
</table>

Figure 20-4 Interference Response

<table>
<thead>
<tr>
<th>Date of test</th>
<th>Analyzer type</th>
<th>Serial No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test gas type</th>
<th>Concentration ppm</th>
<th>Analyzer output response</th>
<th>% of span</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\% \text{ of span} = \frac{\text{Analyzer output response}}{\text{Instrument span}} \times 100 \]
Figure 20-5 Response Time

Date of Test________________________
Analyzer Type_______________________
Serial Number_______________________
Span gas concentration ppm__________
Analyzer span setting_______________

Upscale:
1 _______seconds
2 _______seconds
3 _______seconds
Average upscale response _________seconds

Downscale:
1 _______seconds
2 _______seconds
3 _______seconds
Average downscale response _________seconds

System response time = slower average time = ________ seconds
Table 20-2 Cross-Sectional Layout for Rectangular Stacks

<table>
<thead>
<tr>
<th>No. of traverse points</th>
<th>Matrix Layout</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3 x 3</td>
</tr>
<tr>
<td>12</td>
<td>4 x 3</td>
</tr>
<tr>
<td>18</td>
<td>4 x 4</td>
</tr>
<tr>
<td>20</td>
<td>5 x 4</td>
</tr>
<tr>
<td>25</td>
<td>5 x 5</td>
</tr>
<tr>
<td>30</td>
<td>6 x 5</td>
</tr>
<tr>
<td>36</td>
<td>8 x 8</td>
</tr>
<tr>
<td>42</td>
<td>7 x 7</td>
</tr>
<tr>
<td>48</td>
<td>7 x 7</td>
</tr>
</tbody>
</table>

Figure 20-2 Preliminary Diluent Traverse

Date:
Location:
Plant:
City, State:
Turbine Identification:
Manufacturer:
Model, serial no.:
Sample point	Diluent concentration, ppm
Figure 20-7 Stationary Gas Turbine Data

Turbine Operation Record

Test Operator ___

Type__

Serio\al Number___

Location________________________

 Plant__
 City___

Ambient Temperature________________

Ambient Humidity________________

Test time start____________________

Test time finish___________________

Fuel Flow rate(a)___

Water or steam flow rate(a)________________________

Ambient Pressure________________

Ultimate Fuel Analysis: Trace Metals:

C_________________ Na________________________

H_________________ Va_______________________

O_________________ K_______________________

N_________________ etc(b)____________

S___________________

Ash___________________

H2O___________________

Operating Load____________

(a) Describe measurement method, i.e. for continuous meter, start finish
 volumes etc.

(b) i.e. additional elements added for smoke suppression
Figure 20-8 Stationary Gas Turbine Sample Point Record

Turbine Identification:
- Manufacturer___
- Model, Serial no.__

Location:
- Plant__
- City, State__
- Ambient temperature_____________________
- Ambient Pressure________________________
- Date____________________________________
- Test time: start________________________
- Test time: finish_______________________
- Diluent instrument type__
 - Serial no.___
- NOX instrument type___
 - Serial no.___

<table>
<thead>
<tr>
<th>Sample point</th>
<th>Time, min</th>
<th>Diluent(a), %</th>
<th>NOx(a), ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(A) average steadystate value from recorder or instrument